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Abstract. For two naturals m, n such that m < n, we show how to
construct a circuit C with m inputs and n outputs, that has the fol-
lowing property: for some 0 ≤ k ≤ m, the circuit defines a k-universal
function. This means, informally, that for every subset K of k outputs,
every possible valuation of the variables in K is reachable (we prove that
k is very close to m with an arbitrarily high probability). Now consider
a circuit M with n inputs that we wish to model-check. Connecting the
inputs of M to the outputs of C gives us a new circuit M ′ with m inputs,
that its original inputs have freedom defined by k. This is a very attrac-
tive feature for underapproximation in model-checking: on one hand the
combined circuit has a smaller number of inputs, and on the other hand
it is expected to find an error state fast if there is one.

We report initial experimental results with bounded model checking of
industrial designs (the method is equally applicable to unbounded model
checking and to simulation), which shows mixed results. An interesting
observation, however, is that in 13 out of 17 designs, setting m to be n/5
is sufficient to detect the bug. This is in contrast to other underapproxi-
mation that are based on reducing the number of inputs, which in most
cases cannot detect the bug even with m = n/2.

1 Introduction

Experience with model-checking of industrial hardware designs shows that when
the model violates a specification, it is frequently the case that the values of
only some of the inputs is important for triggering an erroneous behavior (as the
saying goes: “when it rains - it pours!”). Based on this observation it is appealing
to underapproximate the model, attempting to make it easier to check, yet not
eliminating the problematic behavior altogether. In other words, the challenge
is to underapproximate by finding those restrictions that do not prevent all
error states from being reached. Designing a fully automatic model-checking
algorithm based on underapproximation that is still sound and complete requires
an iterative process of underapproximation and refinement.

Automatic underapproximation/refinement for model-checking is not nearly
as popular as its dual, automated overapproximation/refinement. An
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overapproximating abstraction may result in a false negative, accompanied by
a spurious (abstract) counterexample. This counterexample can then be used
to guide the refinement process, as in the CEGAR [8,4,5,3] and proof-based [1]
frameworks (in the latter only the length of the counterexample is used). All of
these works are based on overapproximation.

An underapproximation, on the other hand, may result in a false positive:
here, good refinements are harder to achieve, as there is no equivalent to the
counterexample that can guide it. An exception to this rule is in SAT-based
Bounded Model-Checking (BMC), where the unsatisfiable core can guide the re-
finement: Grumberg et al. [6] used this fact in their work on underapproximation-
refinement for bounded model checking of multi-process systems. We are only
aware of few works on underapproximations with BDDs (e.g., [10,11,2]), all of
which are based on the size of the BDD (e.g., restricting the growth of the reach-
able state-space when the BDD size becomes too large), but none of them are
fully automatic and complete.

In this paper we focus on underapproximations that are based on reducing
the number of inputs to the model. In theory this should make the model easier
to solve, at least in the worst-case, since the number of computation paths has
exponential dependency on the number of inputs1. The most basic technique is
to restrict some of the inputs to constants. Such naive underapproximation, com-
bined with a gradual lifting of these restrictions (typically in a manual manner)
is a common practice in the industry probably from the very first days of in-
dustrial model-checking. If no user-guidance is provided, however, an automated
refinement based on some arbitrary order of lifting the restrictions has a small
chance to succeed, unless the bug is ubiquitous enough to be very simple to find.
It is enough for one of the inputs necessary for exposing the error-trace to be
falsely restricted, to potentially make the model too big for model-checking by
the time this input is released. Another option is to combine inputs (arbitrar-
ily) and refining by splitting the combined sets. In Section 2.2 we analyze these
options in more depth.

What is this article about? The current work suggests an underapproxi-
mation which reduces the number of inputs as well, but it is based on adding
circuitry to the model, while maintaining a measurable and uniform degree of free-
dom to the original inputs. This technique is automatic, easy to combine in an
underapproximation-refinement method, and is applicable to any form of model-
checking or simulation, whether it is SAT-based or BDD-based. The technique is
inspired by theoretical constructions of cryptographic circuits, the Pseudo Ran-
dom Generators (PRGs). These PRGs can expand a short truly random Boolean
sequence into a longer one, which is almost random (more details are given in Sec-
tion 2). Based on constructions of these PRGs, we build simple Boolean circuits
and prove that they have the universality property as defined below.

1 In the context of SAT this is less obvious because SAT does not distinguish between
inputs and other variables. But the reduction in the number of inputs implies that
it has a smaller upper-bound on the size of the smallest back-door set [13], namely
the inputs, which suggest a better upper-bound on the run-time.
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Consider a model M with n inputs that we wish to model-check. We build a
Boolean circuit with m inputs and n outputs, 0 < m < n, which is k-universal.
Informally, this means that the circuit implements a function such that any
valuation of at most k outputs can be reached under some assignment to the
inputs. We then connect the outputs of C to the inputs of M (see Figure 1). The
composed model M ′ has less inputs and underapproximates the original model
M . One of the challenges in such a construction is to guarantee high values of k
for a given value of m. We discuss this question in detail in Section 3.1.

Universality was also used in [7], in the context of simulation. The authors
constructed vectors that have a certain degree of universality and showed that
this indeed has a better chance to expose problems in comparison to alterative
vector sets of the same size.

in out
in out

Cm

n

M

M ′

Fig. 1. Since the attached Boolean circuit is k-universal, any assignment on any k out
of the n inputs of the original model M , can be achieved under some assignment on
the inputs of M ′

The main contribution of this paper is theoretical: we show how to construct
M ′ and derive lower-bounds on the value of k as a function of m. Since the
construction is based on a random function, the results are probabilistic. We
also define a weaker version of universality, called (k, ε)-universality, in which
for only a 1 − ε fraction of the subsets of size k, any assignment is possible
(k-universality corresponds to ε = 0). With this relaxation we prove that for
k = max(0, m − log 1

ε·δ ), where δ is the confidence level, the circuit C is (k, ε)-
universal with probability at least 1 − δ. For example, with probability 0.99, for
99% of the subsets of size k = max(0, m − 14), any assignment can be achieved.

In Section 4 we describe our experiments, which attempt to check whether
k-universality can be useful in the context of model-checking. In other words,
whether the freedom on the original inputs as guaranteed by this method is
indeed helpful in detecting bugs in real designs, in comparison to other forms of
underapproximation that have the same search-space. The answer is conclusive:
it is able to find bugs with far less inputs. The results are less conclusive, but
still positive, when it comes to comparing to a run without underapproximation
at all. This is probably due to the fact that our construction is based on a XOR
function, which is notoriously hard for SAT solvers. We conclude in Subsection
4.1 by pointing to several practical issues in applying this method that are still
open.
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2 Local Universality

2.1 k-Universal Circuits and Upper-Bound on k

Let C be a Boolean circuit with m inputs and n outputs, m ≤ n, implementing
a corresponding function C : {0, 1}m → {0, 1}n.

Definition 1 (k-universal functions). The function C is k-universal if for
every subset K ⊂ {1, . . . , n} of k outputs and every partial assignment αK ∈
{0, 1}k on K, there is a full assignment α ∈ {0, 1}m on the inputs of C such
that C(α)|K = αK . ��

In other words, any subset of k output bits can take all 2k possible assignments
in a k-universal function C.

Example 1. The following function C : {0, 1}2 → {0, 1}3 is 2-universal, since
every two output coordinates have all four values:

C(00) = 000
C(01) = 011
C(10) = 101
C(11) = 110

(1)

��

In Section 3 we present a method for constructing k-universal circuits.

2.2 Universality of Some Known Underapproximations

Underapproximations based on restricting the inputs can be seen as functions
mapping inputs of the restricted model to inputs of the original model. It is
worthwhile to check how universal these functions are. Recall that if the model
is unrestricted, it is n-universal, where n is the number of inputs.

– Underapproximation by restricting a subset of the inputs to constant val-
ues. Regardless of the method for choosing these inputs and their values, or
whether it is part of a refinement process or not, it is clear that the under-
lying set of possible assignment vectors to the restricted model is not even
1-universal, since there are inputs that cannot have both values.

– Underapproximation by combining inputs. In this method the set of inputs is
partitioned, and all inputs in the same partition class are forced to agree on
their value. Regardless of the partitioning method, this method guarantees 1-
universality, but not 2-universality, because two inputs in the same partition
class cannot have all 4 valuations.

3 The PRG-Like Construction

The structure of our k-universal circuits, as mentioned earlier, were inspired by
constructions of Pseudo Random Generators. PRG is a circuit that, given a short
sequence of truly random bits, outputs a longer sequence of pseudo random bits.
More formally:
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Definition 2 (PRG). Pseudo Random Generator (PRG) is a deterministic
polynomial time function G : {0, 1}m → {0, 1}n, where n > m, such that the
following distributions are not distinguishable by circuits of size n:

– Distribution Gn defined as the output of function G on a uniformly selected
input in {0, 1}m.

– Distribution Un defined as the uniform distribution on {0, 1}n. ��

The original motivation for constructing PRG’s was derandomizing probabilistic
algorithms2.

In this section we sketch briefly how the original PRG of [9] is constructed,
and introduce a slightly different (random) construction that, as we prove later,
provides with arbitrarily high probability, k-universal circuits. The parameter
k here is almost linear in m, with practically small coefficients. Without going
into the details, based on a result in [12] it can be shown that (2k log n ≤ 2m),
which means that an upper bound on k is m − log log n. Hence, the circuit we
construct has nearly optimal parameters.

Definition 3 (System3). A family S = (S1, S2, . . . , Sn) of equally-sized subsets
Si ⊂ {1, 2, . . . , m} is a (l, ρ, m, n)-system if

– ∀i, |Si| = l

– ∀i, j |Si ∩ Sj | ≤ ρ ��

Given a Boolean function f : {0, 1}l → {0, 1} and a system S = (S1, S2, . . . , Sn),
we construct the circuit C = C(S, f) as follows:

– IC = {i1, . . . , im} are the inputs of C.
– OC = {o1, . . . , on} are the outputs of C.
– For j ∈ {1, . . . , n},

• Let I(oj) = {ih : h ∈ Sj} be a set of l inputs chosen according to the
system S.

• Set oj = f(I(oj)).

In the original paper [9] the existence of systems with “good” parameters is
proved, and the PRG’s are constructed based on these “good” systems using
functions f that have some specific cryptographic properties. Further details are
given in the above reference.

Now we define our random systems, based on which we will build k-universal
circuits.

2 For instance, a “perfect” PRG would be a function G : {0, 1}log n → {0, 1}n. If we
have such a PRG, then we can deterministically simulate any probabilistic algorithm
by going over all 2log n = n possible seeds for G, running the probabilistic algorithm
and taking the majority vote.

3 In the original terminology this set system is called a Design. We avoid this term to
prevent ambiguity.
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Definition 4 (Random System). Let n, m be naturals such that 1 ≤ m ≤ n.
An (m, n)-Random System is a family RS = (S1, S2, . . . , Sn) of n uniformly
chosen random subsets Si ⊂ {1, 2, . . . , m}. Namely, for every 1 ≤ i ≤ n (inde-
pendently of each other), the set Si is chosen uniformly at random out of all 2m

possible subsets of {1, 2, . . . , m}. ��

Similarly to the previous construction, we build the circuit C = C(RS, f) where
we set f to be the XOR function (⊕). Formally,

– IC = {i1, . . . , im} are the inputs of C.
– OC = {o1, . . . , on} are the outputs of C.
– For j ∈ {1, . . . , n},

• Let I(oj) = {ih : h ∈ Sj} be the randomly chosen set of inputs from RS.
• Set oj = ⊕(I(oj)).

In the following section we prove that with arbitrary high probability these
circuits are k-universal for relatively high k.

3.1 Lower Bounds on k

First we prove that if the family RS has certain algebraic properties, then the
circuit C that is built from RS is k-universal.

Lemma 1. Let A be an n × m Boolean matrix defined by the family RS. For-
mally, the entry aij ∈ A is 1 if j ∈ Si and 0 otherwise. Then if every k rows of
A are linearly independent4, the circuit C = C(RS, ⊕) as above is k-universal.

Proof (of Lemma 1). First notice that the i’th output of C implements a XOR
function on the inputs that correspond to the ‘1’ entries of the i’th row in the
matrix A. So we can think of C as a linear transformation in field GF (2) (Galois
Field), induced by multiplying the matrix A with the input vector (recall that
addition in GF (2) is equivalent to the XOR operator). In other words, for every
α1α2 · · · αm ∈ {0, 1}m and β1β2 · · ·βn ∈ {0, 1}n, C(α1α2 · · · αm) = β1β2 · · · βn if
and only if the following holds:

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1m

a21 a22 . . . a2m

. .

. .

. .
an1 an2 . . . anm

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

α1
α2
:
αm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1
β2
.
.
.
βn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Let K = {o1, o2, . . . , ok} ⊂ {1, 2, . . . , n} be arbitrary set of k outputs, and let
βo1βo2 · · · βok

be any partial assignment on K. Notice that for any α1α2 · · · αm

the value C(α1α2 · · · αm) restricted to K equals βo1βo2 · · · βok
if and only if

4 Equivalently, every k rows of A form a full rank matrix.
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⎛
⎜⎜⎜⎜⎜⎜⎝

ao11 ao12 . . . ao1m

ao21 ao22 . . . ao2m

. .

. .

. .
aok1 aok2 . . . aokm

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

α1
α2
:
αm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

βo1

βo2

.

.

.
βok

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

We denote this restricted k×m matrix by B. Recall that our purpose is to prove
that such an assignment α1α2 · · · αm indeed exists. Here we use the fact that
every k rows in A are linearly independent, and thus the matrix B is invertible.
Therefore such an assignment exists, and it can be computed by:

⎛
⎜⎜⎜⎝

α1
α2
...
αm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ao11 ao12 . . . ao1m

ao21 ao22 . . . ao2m

. .

. .

. .
aok1 aok2 . . . aokm

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

βo1

βo2

.

.

.
βok

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

��

The next lemma states that with probability 1 − δ (wher δ > 0 is an arbitrary
confidence parameter), in the matrix A defined by the family RS, every k rows
are linearly independent.

Lemma 2. Let k > 1, a > 1, b > 1 be natural numbers and let δ > 0 be a
fixed confidence parameter. Set b = m/k and a = n/m. Let RS be a family of
subsets in (m, n)-Random System and let A be the underlying matrix as above.
If b > log(e · ab(1/δ)1/k) + 1 then with probability at least 1 − δ every k rows in
A are linearly independent5.

Before proving the lemma, we list some known useful inequalities:

(i) Let x1, x2, . . . , xn be non negative reals. Then
n∏

i=1

(
1 − xi

)
> 1 −

n∑
i=1

xi .

(ii)
(
n
k

)
< ( en

k )k .

(iii) Let m, k be naturals such that m > k. Then
k∑

i=1

2i−m ≤ 2 · 2k−m .

Proof (of Lemma 2). According to the construction of random systems, every
row in A is a random Boolean vector of length m. Let K = {o1, o2, . . . , ok} ⊂
{1, 2, . . . , n} be any sequence of k rows in A. Now we define a sequence of “bad”
event indicators: Ij = 1 if and only if the j’th row oj ∈ K is a linear combination
of the rows o1, . . . , oj−1. Obviously if (

∑k
j=1 Ij) = 0 then the rows in K are

linearly independent. Note that in every step j, the j − 1 preceding vectors span

5 e = 2.718... is the Euler constant.
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a linear space of size at most 2j−1. Since the rows of A are chosen uniformly at
random (independently of each other), we have Pr[Ij = 0] ≥ 2m−2j−1

2m . Therefore,

Pr
[( k∑

j=1

Ij

)
= 0

]
=

k∏
j=1

2m − 2j−1

2m
= (5)

=
k∏

j=1

(1 − 2j−1−m) ≥ 1 −
k∑

j=1

2j−1−m ≥ 1 − 2k−m . (6)

The last two inequalities follow from (i) and (iii). We can now conclude that

Pr
[( k∑

j=1

Ij

)
> 0

]
≤ 2k−m . (7)

There are
(
n
k

)
≤ ( en

k )k possible sets of k rows, and by the Union Bound6 the
probability that some set of k rows is not linearly independent is at most

(
en

k
)k · 2k−m = (eab)k · 2(1−b)k ≤ (eab)k · 2− log(eab(1/δ)1/k)·k = δ . (8)

��

Sample Values of Universality. It is worthwhile to see some values of k given
n, m and δ. For instance, for n = 140, m = 70 and δ = 0.02 we can get k = 10-
universality with probability at least 0.98. This means that we can reduce the
number of inputs to the model by half, and still get 10-universality in a very
high probability.

In general δ has negligible effect on k, hence the probability of success can be
made very close to 1. The chart in Figure 2 refers to a fixed value δ = 0.02. The
chart shows the value of k for n = 100, 200, . . . , 500, where m is sampled 9 times
for each value of n, in the range n/10 . . .9n/10. It is clear from the graph that
k is close to linear in m, and that it has a constant factor of about 5. In fact,
the equation b = log(e · ab(1/δ)1/k) +1 from Lemma 2 implies that k ∼ m

log(n/k) ,
which means that k is linear in m for all practical n.

Corollary 1. Let k > 1, a > 1, b > 1 be natural numbers and let δ > 0 be a
fixed confidence parameter, such that b > log(e ·ab(1/δ)1/k)+1. Set b = m/k and
a = n/m. Then with probability at least 1−δ, a circuit C based on the family RS
of a random system as described above (with parameters m, n) is k-universal.

Proof. By Lemma 2 we know that with these parameters, in the underlying
matrix A every k rows are linearly independent with probability 1− δ or higher.
On the other hand, by Lemma 1 we know that if every k rows in A are linearly
independent, then the circuit C = C(RS, ⊕) is k-universal. ��

6 Union Bound: For a countable set A1, A2, A3, . . . of events, Pr
��

i Ai

�
≤
�

i Pr
�
Ai

�
.
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Fig. 2. The value of k for different values of m and n, and a fixed value of δ (0.02)

Based on Corollary 1, it is left to show how we construct the underapproxi-
mating model M ′. The construction is as follows:

– Let {i1, . . . , in} be the primary inputs of M . Construct the k-universal circuit
C based on a random system RS = (S1, . . . , Sn).

– For each j ∈ {1, . . . , n}, connect the j’th input of M to the j’th output of
C.

The inputs of the underapproximating model M ′ are the m inputs of C.

3.2 A Better Lower Bounds on k for “Almost” k-Universality

In practice, given n and m the parameter of universality (k) is expected to be
significantly higher than what our analytic lower bound provides. But it is quite
challenging to estimate the gap between the lower bound and the actual values
of k, since checking k universality of a circuit C : {0, 1}m → {0, 1}n is hard for
reasonably large n, m and k. But if we slightly relax our notion of universality
we can get much better bounds on k. Formally, let m, n, k and C = C(RS, ⊕)
be as above. Given a subset K ⊂ {1, . . . , n} of k outputs, we say that the subset
K is covered by C if for every partial assignment αK ∈ {0, 1}k on K, there is a
full assignment α ∈ {0, 1}m on the inputs of C such that C(α) |K= αK .

Definition 5 ((k, ε)-universality). A circuit C is (k, ε)-universal if C covers
at least (1 − ε)

(
n
k

)
subsets K ⊂ {1, . . . , n} of k outputs. ��

Recall that our previous bounds on k were valid for circuits that cover all
(
n
k

)
subsets K, i.e. (k, 0)-universal circuits. The following result is another lower-
bound, which is better than the previous one as long as ε is not too small.

Lemma 3. Let m < n be naturals and let C = C(RS, ⊕) be a circuit as defined
above. Fix 0 < δ, 0 < ε < 1 and set k = max(0, m − log 1

ε·δ ). The circuit C is
(k, ε)-universal with probability at least 1 − δ.
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Observe the implication of this result : since m is an absolute upper bound on k, it
means that with a small sacrifice of universality and confidence we obtain a value
close to this theoretical limit. For example, for δ = ε = 0.1 (and m ≥ 7), we get
k = m−7, i.e., with probability at least 0.9, the circuit C is (max(0, m−7), 0.1)-
universal. Now consider a negligible sacrifice and failure probability, such as
δ = ε = 0.01. In this case we get (k, 0.01)-universality for k = max(0, m − 14).

Proof (of Lemma 3). The proof is a simple application of Markov’s inequality7

on one of the consequences from the proof of Lemma 2. For every subset K ⊂
{1, 2, . . . , n} of size k, we define XK as a random 0, 1 variable, such that XK = 1
if and only if the subset K is not covered by C. Referring to the proof of Lemma
1, the set K is covered by C if and only if the sub-matrix B that corresponds
to K has full rank (otherwise the linear transformation is not injective). Then
from the proof of Lemma 2 we have Pr[XK = 1] ≤ 2k−m. Now let

X =
∑

K⊂{1,...,n},|K|=k

XK

be the sum of these variables. By linearity of expectation8,

E[X ] =
∑
K

E[XK ] ≤
(

n

k

)
· 2k−m , (9)

and by Markov’s inequality,

Pr
[
X ≥ ε ·

(
n

k

)]
= Pr

[
X ≥ ε · 2m−k ·

(
n

k

)
· 2k−m

]
≤ 1

ε · 2m−k
= δ . (10)

From (10) we derive k ≥ m − log 1
ε·δ . ��

4 Experimental Results

We interfaced our tool with IBM’s model-checker RuleBase. We experimented
with bounded model-checking of 17 different real designs (after Rulebase has
applied numerous optimizations on them in the front-end, hence the relatively
small number of inputs) that had previously known bugs. The tables show our
results without an automatic refinement procedure. The reason we are giving
the tables in this form is that we want to show the influence of m on run-time
and chances to find the bug with each underapproximation technique. The tables
show run-times in seconds until detecting the bug, for different values of m, where
m in all techniques represent the number of inputs to the underapproximated
7 Markov inequality: Let X be a random variable assuming only non-negative values.

Then for all c > 0, Pr
�
X ≥ c · E[X]

�
≤ 1

c
.

8 Linearity of Expectation: For any n random variables X1, . . . , Xn the following holds:
E
��n

i=1 Xi

�
=
�n

i=1 E[Xi] .
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model. A sign ‘-’ denotes that the bug was not found up to a bound of 100. ‘TO’
denotes a timeout of 6 hours.

The table in Figure 3 summarizes results with our construction, hence m is
the number of inputs to the circuit. The column S denotes run-time with no
underapproximation. It is clear from this table that while m = n/10 is too low,
m = n/5 is high enough to find the bug in 13 out of 17 cases, and typically
in less time comparing to the S column, despite the complexity of the XOR
function in the PRG-like circuit. Thus, our refinement procedure is set to begin
with this value. The last three designs indicate that there are cases in which
underapproximation does not work (in all three methods – see Figure 4 as well).
Since Rulebase activates various engines in parallel, this is not a serious issue:
the contribution of a tool is mainly measured by the number of wins rather than
by the average run-time. This is also the reason it is acceptable that such a
method has no value if the design satisfies the property.

(PRG) m = ...
Design inputs (n) S n/2 n/3 n/5 n/10
IBM#1 45 96 66 63 66 63
IBM#2 76 173 149 76 72 68
IBM#3 76 191 127 77 79 -
IBM#4 85 211 170 121 105 140
IBM#5 68 61 65 20 592 -
IBM#6 68 73 59 14 661 -
IBM#7 68 482 308 46 52 -
IBM#8 68 122 152 16 90 -
IBM#9 64 2101 1915 1966 1654 1208
IBM#10 80 1270 1392 1830 1137 -
IBM#11 83 2640 2364 2254 1845 -
IBM#12 6 8201 7191 - - -
IBM#13 60 942 453 432 351 -
IBM#14 218 965 735 778 510 396
IBM#15 52 1206 - - - -
IBM#16 157 953 - - - -
IBM#17 68 21503 TO TO TO TO

Fig. 3. Run-times with the PRG construction. The second column indicates the num-
ber of inputs in the design, i.e., n. The column ‘S’ stands for run-times without any
underapproximation.

In Figure 4 we show results for the two alternative underapproximations de-
scribed in Subsection 2.2. It is clear from these tables that universality matters:
both of these underapproximations need far more inputs than the PRG con-
struction in order to find the bug. Somewhat surprisingly even in the cases they
are able to find the bug, they do so in time comparable or longer than without
underapproximation at all. The reason seems to be that the underapproximation
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(FIX) m = ... (Group) m = ...
Design inputs (n) S n/2 n/3 n/5 n/10 n/2 n/3 n/5 n/10
IBM#1 45 96 246 - - - 223 229 227 231
IBM#2 76 173 - - - - 361 446 - -
IBM#3 76 191 373 - - - 168 317 - -
IBM#4 85 211 191 317 - - 306 289 405 -
IBM#5 68 61 - - - - 410 - - -
IBM#6 68 73 - - - - - - - -
IBM#7 68 482 - - - - 561 491 - -
IBM#8 68 122 - - - - 113 - - -
IBM#9 64 2101 1693 - - - 2150 - - -
IBM#10 80 1270 - - - - - - - -
IBM#11 83 2640 - - - - - - - -
IBM#12 6 8201 - - - - - - - -
IBM#13 60 942 1206 - - - 413 407 - -
IBM#14 218 965 - - - - 969 1102 - -
IBM#15 52 1206 - - - - - - - -
IBM#16 157 953 - - - - - - - -
IBM#17 68 21503 - - - - TO - - -

Fig. 4. Run-times when (left) fixing n − m inputs to an arbitrary value and (right)
grouping the inputs into m sets, and forcing inputs in the same set to be equal. See
Section 2.2 for more details on these underapproximations. The column ‘S’ stands for
run-times without any underapproximation.

delays the finding of the bug to deeper cycles, which in general affects negatively
the run time of SAT.

4.1 Further Directions

There are various directions in which this research can progress. First, it has
to be evaluated with unbounded model-checking and simulation. Simulation is
insensitive to the XOR circuit, which indicates that it might show a stronger
influence on the results. Second, our current implementation of refinement is
very naive, as it simply increases m. There are probably better alternatives for
refinement, and we leave it for future work to find them. In the case of SAT-based
model checking, for example, the unsatisfiable core can guide the refinement.

Finally, the fact that in Bounded Model Checking the inputs of each time-
frame are represented by different variables can be exploited for reducing m
further. The PRG construction can be attached to the unrolled circuit. This
construction will now have m inputs for 0 < m < n · K, where K is the unrolling
bound. It is very likely that errors can be found this way with a smaller set of
inputs per cycle.

Acknowledgements. We thank E. Ben-Sasson, M. Shamis and K. Yorav for
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