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Abstract. We present a novel abstraction technique which allows the analysis of
reachability and safety properties of Markov decision processes with very large
state spaces. The technique, called magnifying-lens abstraction, (MLA) copes
with the state-explosion problem by partitioning the state-space into regions, and
by computing upper and lower bounds for reachability and safety properties on
the regions, rather than on the states. To compute these bounds, MLA iterates
over the regions, considering the concrete states of each region in turn, as if one
were sliding across the abstraction a magnifying lens which allowed viewing the
concrete states. The algorithm adaptively refines the regions, using smaller re-
gions where more detail is needed, until the difference between upper and lower
bounds is smaller than a specified accuracy. We provide experimental results on
three case studies illustrating that MLA can provide accurate answers, with sav-
ings in memory requirements.

1 Introduction

Markov decision processes (MDPs) provide a model for systems with both probabilis-
tic and nondeterministic behavior, and they are widely used in probabilistic verification,
planning, optimal control, and performance analysis [13,4,26,8,10]. MDPs that model
realistic systems tend to have very large state spaces, and the main challenge in their
analysis consists in devising algorithms that work efficiently on such large state spaces.
In the non-probabilistic setting, abstraction techniques have been successful in cop-
ing with large state-spaces: abstraction enables to answer questions about a system by
considering a smaller, more concise abstract model. This has spurred research into the
use of abstraction techniques for probabilistic systems [7,18,22,19]. We present a novel
abstraction technique, called magnifying-lens abstraction (MLA), for the analysis of
reachability and safety properties of MDPs with very large state spaces. We show that
the technique can lead to substantial space savings in the analysis of MDPs.

An MDP is defined over a state space S. At every state s ∈ S, one or more actions
are available; with each action is associated a probability distribution over the successor
states. We focus on safety and reachability properties of MDPs. A safety property spec-
ifies that the MDP’s behavior should not leave a safe subset of states T ⊆ S; a reach-
ability property specifies that the behavior should reach a set T ⊆ S of target states.
A controller can choose the actions available at each state so as to maximize, or min-
imize, the probability of satisfying reachability and safety properties. MLA computes
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converging upper and lower bounds for the maximal reachability or safety probability;
the minimal probabilities can be obtained by duality. In its ability to provide both upper
and lower bounds for the quantities of interest, MLA is similar to [19].

In the analysis of large MDPs, the main challenge lies in the representation of the
value v(s) of the reachability or safety probability at all s ∈ S. In contrast, actions
and transition probabilities from each state s can usually be either computed on the
fly, or represented in a compact fashion, via Kronecker representations or probabilis-
tic guarded commands [23,10,17]. The goal of MLA is to reduce the space required
for storing v and, secondarily, the running time of the analysis. To this end, MLA par-
titions the state space S of the MDP into regions; for each region r, it stores upper
and lower bounds v+(r), v−(r) for the maximal reachability or safety probability. The
values v+(r), v−(r) constitute bounds for all states s ∈ r. In order to update these
estimates, MLA iterates over the regions, “magnifying” one of them at a time. When
the region r is magnified, MLA computes v+(s), v−(s) at all concrete states s ∈ r via
value iteration, and then summarizes these results by setting v+(r) = maxs∈r v+(s)
and v−(r) = mins∈r v−(s). Figuratively, MLA slides a magnifying lens across the ab-
straction, enabling the algorithm to see the concrete states of one region at a time when
updating the region values. Given a desired accuracy ε for the answer, MLA periodi-
cally splits regions r with v+(r) − v−(r) > ε into smaller regions. In this way, the
abstraction is refined in an adaptive fashion: smaller regions are used where finer de-
tail is needed, guaranteeing the convergence of the bounds, and larger regions are used
elsewhere, saving space. When splitting regions, MLA takes care to re-use information
gained in the analysis of the coarser abstraction in the evaluation of the finer one. MLA
can be adapted to the problem of computing a control strategy by recording the optimal
actions for the concrete states of interest, when they are magnified.

Related work on MDP abstraction. Compared with other approaches to MDP abstrac-
tion, MLA has two distinctive features:

1. it clusters states based on value, rather than based on the similarity in their transition
function;

2. it updates the valuation of abstract states by considering the concrete states associ-
ated with the abstract states, rather than by considering an abstract model only.

The second of the above points underlines how MLA is a semi-abstract, rather than fully
abstract, approach to verification: the abstract computation still involves consideration
of the concrete states, even though this is done in a way that provides space savings.

For the most part, approaches to MDP abstraction in the literature have followed an-
other route, which we call very broadly the full abstraction approach: an abstract model
is constructed, and then analyzed on the basis of an abstract transition structure, without
further reference to the concrete model. These fully abstract approaches generally rely
on clustering states that are similar not only in value, but also in transition structure: in
this way, every region of concrete states can be summarized via an abstract state with
an associated abstract transition structure. The abstract transition structure may, or may
not, be similar to the concrete one. For instance, [19] bases the abstract transition struc-
ture on games, rather than MDPs: in this fashion, player 1 can represent the choice of
action of the MDP, and player 2 can represent the uncertainty about the concrete state
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corresponding to the abstract state. This approach enables the computation of lower and
upper bounds for properties of interest, similarly to MLA. In a somewhat related spirit,
but using entirely different technical means, [14] proposes to abstract Markov chains
into abstract Markov chains whose transitions are labeled with intervals of probability,
representing the uncertainty about the concrete state. Clustering states based on the sim-
ilarity in their transition probabilities has also been used in [12], which proposes to find
the coarsest refinement of an MDP where for each action, states in the same region have
the same probability of going to other regions. An approach for the verification of prob-
abilistic reachability properties via abstraction has been proposed in [7]. The abstrac-
tion is built through successive refinements starting from a coarse partition based on the
property. Several other approaches also, in fact, rely on constructing MDP abstractions
based on simulation or abstract interpretation [18,22,21]; all of these approaches rely
on clustering states with similar transition structure, and representing these clusters of
states, and their transition structures, via compact abstract representations.

The full-abstraction approach outlined above, and the partial value-based approach
followed by MLA, each have advantages. The full-abstraction result can handle un-
bounded, and (depending on the specific approach) even infinite state spaces. In con-
trast, the space savings afforded by MLA are limited to a square-root factor (a system of
size n can be studied in O(

√
n) space), due to the need to consider the concrete states

corresponding to each abstract one. Furthermore, the full-abstraction approaches typi-
cally need to construct the abstract model only once; in contrast, MLA needs to refer to
concrete states (albeit not all of them at once) during the computation.

On the other hand, the ability of MLA to cluster states based on value only, dis-
regarding differences in their transition relation, can lead to compact abstractions for
systems where full abstraction provides no benefit. We will give below an example sup-
porting this. Furthermore, in MLA the abstraction is refined dynamically, depending on
the required accuracy of the analysis; there is no need to “guess” the right state partition
in advance. In our experience, MLA is particularly well-suited to problems where there
is a notion of locality in the state space, so that it makes sense to cluster states based
on variable values — even though their transition relations may not be similar. Many
planning and control problems are of this type. MLA instead is not as well-suited to
problems where clustering states based on variable values is less effective. Approaches
based on predicate abstraction could lend the MLA approach more generality.

An example of Magnifying-Lens Abstraction. To illustrate MLA, and its potential ben-
efits, we give a simple example. We consider the problem of navigating an n × n mine-
field. The minefield contains m mines, each with coordinates (xi, yi), for 1 ≤ i ≤ m,
where 1 ≤ xi < n, 1 ≤ yi < n. We consider the problem of computing the maximal
probability with which a robot can reach the target corner (n, n), from all n × n states.
At interior states of the field, the robot can choose among four actions: Up, Down, Left,
Right; at the border of the field, actions that lead outside of the field are missing. From
a state s = (x, y) ∈ {1, . . . , n}2 with coordinates (x, y), each action causes the robot
to move to square (x′, y′) with probability q(x′, y′), and to “blow up” (move to an ad-
ditional sink state) with probability 1 − q(x′, y′). For action Right, we have x′ = x+ 1,
y′ = y; similarly for the other actions. The probability q(x′, y′) depends on the prox-
imity to mines, and is given by



328 L. de Alfaro and P. Roy

8 16 24

24

16

8

1
1

(a) Initial Abstraction
8 16 24

24

16

8

1
1

(b) Final Abstraction

Fig. 1. Initial, and final refined abstraction, for the problem of motion planning in a 24 × 24
minefield. The circles denote the mines

q(x′, y′) =
∏m

i exp
(
−0.7 ·

(
(x′ − xi)2 + (y′ − yi)2

))
.

The problem, for n = 24, is illustrated in Figure 1.
Intuitively, it is desirable to group the 8×8 states in the top-middle area into a single

region r0: since no mines are nearby, the robot can freely roam in r0, so that the maximal
probability of reaching the target corner is essentially constant across r0. Indeed, to a
human trying to determine a best path to the target corner, the states in r0 are essentially
equivalent. When the 8 × 8 concrete states are grouped in r0, MLA leads to accurate
results, since it can analyze the dynamics inside r0 when r0 is magnified. We also note
how, in this example, the ability of MLA to refine the abstraction adaptively is crucial.
As shown in Figure 1(b), MLA is able to use small regions close to mines, and large
regions elsewhere. If we insisted on a uniform region size, then we would have to adopt
the smallest size throughout, and no space savings would be possible.

On the other hand, the full-abstraction approaches described earlier, such as [7,22,19],
based on probabilistic simulation [27], are not well suited to this example. Such tech-
niques would associate with an abstract state, such as r0, a summary of the transition
structure from states s ∈ r0, and use that summary to analyze the abstraction. The prob-
lem is that the states in r0, while similar in value, are not similar in transition structure:
the states on the border of r0 can transition outside of r0, while those in the interior can-
not. In the abstraction, the probability of going from r0 to the region at the right hand
side will be modeled as being in an interval [0, q], for some q close to 1 (all mines are far
away). Consequently, previous techniques would have yielded a lower bound of 0, and
an upper bound close to 1, for the maximum probability of reaching the target corner.
Similarly, the technique of [12] would lead to recursively splitting the MDP, until the
regions consisted of only one concrete state each.

Other related work. MLA is reminiscent to methods that represent value functions
via ADDs or MTBDDs [6,1] with an approximation factor used to merge leaves. The
similarity, however, is superficial: MLA leads to far more precise results in the analysis;
we discuss this in the conclusions, where the appropriate notation will be available.

MLA is also loosely reminiscent of adaptive mesh refinement (AMR) methods used
in the solution of partial differential equations [3]. There are, however, two important
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differences between MLA and AMR. In AMR, separate lower and upper bounds are not
kept. AMR methods perform computation at the finest mesh sizes only where needed. In
MLA, due to the discrete nature of MDPs, we have no way of computing over a “coarse
mesh” only: to update valuations over a region, we need to “magnify” the region to its
individual states. Thus, MLA is forced to consider the individual states over the whole
system, and it summarizes and returns the results in terms of lower and upper bounds,
which are well-suited to answering verification questions.

2 Preliminary Definitions and Algorithms

For a countable set S, a probability distribution on S is a function p : S �→ [0, 1] such
that

∑
s∈S p(s) = 1; we denote the set of probability distributions on S by D(S). A

valuation over a set S is a function v : S �→ R associating a real number v(s) with every
s ∈ S. For x ∈ R, we denote by x the valuation with constant value x; for T ⊆ S, we
indicate by [T ] the valuation having value 1 in T and 0 elsewhere. For two valuations
v, u on S, we define ||v − u|| = sups∈S |v(s) − u(s)|.

A partition of a set S is a set R ⊆ 2S , such that
⋃

{s|s ∈ R} = S, and such that for
all r, r′ ∈ R, if r �= r′ then r ∩ r′ = ∅. For s ∈ S and a partition R of S, we denote by
[s]R the element r ∈ R with s ∈ r. We say that a partition R′ is finer than a partition R
if the elements of R can be written as unions of the elements of R′.

A Markov decision process (MDP) M = 〈S, A, Γ, p〉 consists of the following com-
ponents:

– A finite state space S.
– A finite set A of actions (moves),
– A move assignment Γ : S → 2A \ ∅.
– A probabilistic transition function p : S × A → D(S).

At every state s ∈ S, the controller can choose an action a ∈ Γ (s); the MDP then
proceeds to the successor state t with probability p(s, a, t), for all t ∈ S. A path of G
is an infinite sequence s = s0, s1, s2, . . . of states of S; we denote by Sω the set of all
paths, and we denote by sk the k-th state sk of s = s0, s1, s2, . . ..

We model the choice of actions, on the part of the controller, via a strategy (strategies
are also variously called schedulers [26] or policies [13]). A strategy is a mapping
π : S+ �→ D(A): given a past history σs ∈ S+ for the MDP, a strategy π chooses
each action a ∈ Γ (s) with probability π(σs)(a); we obviously require π(σs)(b) = 0
for all b ∈ A \ Γ (s). Thus, strategies can be both history-dependent, and randomized.
We denote by Π the set of all strategies.

We consider safety and reachability goals. Given a subset T ⊆ S of states, the reach-
ability goal ♦T = {s ∈ Sω | ∃k.sk ∈ T } consists in the paths that reach T , and
the safety goal �T = {s ∈ Sω | ∀k.sk ∈ T } consists in the paths that stay al-
ways in T . These sets of paths are measurable [28], so that given a strategy π ∈ Π ,
we can define the probabilities Prπs (♦T ), Prπs (�T ) of following a path in these sets
from an initial state s ∈ S under strategy π. By choosing appropriate strategies, the
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Algorithm 1. ValIter(T, f, g, εfloat) Value iteration

1. v := [T ]
2. repeat
3. v̂ := v

4. for all s ∈ S do v(s) := f
�
[T ](s), g

��
s′∈S p(s, a, s′) · v̂(s′)

�� a ∈ Γ (s)
��

5. until ||v − v̂|| ≤ εfloat

6. return v

controller can maximize or minimize these probabilities. Thus, we consider the problem
of computing, at all s ∈ S, the quantities:

V max
�T (s) = max

π∈Π
Prπs (�T ) V max

♦T (s) = max
π∈Π

Prπs (♦T )

V min
�T (s) = min

π∈Π
Prπs (�T ) V min

♦T (s) = min
π∈Π

Prπs (♦T ).

The fact that on the right-hand side we have max, min rather than sup, inf is a conse-
quence of the existence of optimal (and memoryless) strategies [13]. In the remainder
of the paper, unless explicitly noted, we present algorithms and definitions for a fixed
MDP M = 〈S, A, Γ, p〉.

Reachability and safety probabilities on an MDP can be computed via a classical
value-iteration scheme [13,4,11]. The algorithm, depicted as Algorithm 1, is
parametrized by two operators f, g ∈ {max, min}. The operator f specifies how to
merge the valuation of the current state with the expected next-state valuation; we use
f = max for reachability goals, and f = min for safety ones. The operator g specifies
whether to select the action that maximizes, or minimizes, the expected next-state valua-
tion; we use g = max to compute maximal probabilities, and g = min to compute min-
imal probabilities, The algorithm is also parametrized by εfloat > 0: this is the threshold
below which we consider value iteration to have converged. The following facts are
well-known (see, e.g., [13,8,9]). For all εfloat > 0 and for all f, g ∈ {min, max}, the
call ValIter(T, f, g, εfloat) terminates. Moreover, consider any g ∈ {max, min} and any
� ∈ {�, ♦}, and let f = min if � = �, and f = max if � = ♦. Then, for all δ > 0,
there is εfloat > 0 such that, at all s ∈ S:

v(s) − δ ≤ V g
�T (s) ≤ v(s) + δ

where v = ValIter(T, f, g, εfloat). We note that can replace statement 1 of Algorithm 1
with the following initialization: if f = max then v := 0 else v := 1.

3 Magnifying-Lens Abstraction

Magnifying-lens abstractions (MLA) is a technique for the analysis of reachability and
safety properties of MDPs. Let v∗ be the valuation on S that is to be computed: v∗ is one
of V min

�T , V max
�T , V min

♦T , V max
♦T . Given a desired accuracy εabs > 0, MLA computes upper
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Algorithm 2. MLA(T, f, g, εfloat, εabs) Magnifying-Lens Abstraction

1. R := some initial partition.
2. if f = max then u− := 0; u+ := 0 else u− := 1; u+ := 1
3. loop
4. repeat
5. û+ := u+; û− := u−;
6. for r ∈ R do
7. u+(r) := MagnifiedIteration(r, R, T, û+, û−, û+, max, f, g, εfloat)
8. u−(r) := MagnifiedIteration(r, R, T, û−, û−, û+, min, f, g, εfloat)
9. end for
10. until ||u+ − û+|| + ||u− − û−|| ≤ εfloat

11. if ||u+ − u−|| ≥ εabs

12. then R, u−, u+ := SplitRegions(R, u−, u+, εabs)
13. else return R, u−, u+

14. end if
15. end loop

and lower bounds for v∗, spaced less than εabs. MLA starts from an initial partition R
of S, and computes the lower and upper bounds as valuations u− and u+ over R. The
partition is refined, until the difference between u− and u+, at all regions, is below a
specified threshold. To compute u− and u+, MLA iteratively considers each r in turn,
and performs a magnified iteration: it improves the estimates for u−(r) and u+(r) using
value iteration on the concrete states s ∈ r.

The MLA algorithm is presented as Algorithm 2. The algorithm has parameters T ,
f , g, which have the same meaning as in Algorithm ValIter. The algorithm also has
parameters εfloat > 0 and εabs > 0. Parameter εabs indicates the maximum difference
between the lower and upper bounds returned by MLA. Parameter εfloat, as in ValIter,
specifies the degree of precision to which the local, magnified value iteration should
converge. MLA should be called with εabs greater than εfloat by at least one order of
magnitude: otherwise, errors in the magnified iteration can cause errors in the estima-
tion of the bounds. Statement 2 initializes the valuations u− and u+ according to the
property to be computed: reachability properties are computed as least fixpoints, while
safety properties are computed as greatest fixpoints [11]. A useful time optimization,
not shown in Algorithm 2, consists in executing the loop at lines 6–9 only for regions r
where at least one of the neighbor regions has changed value by more than εfloat.

Magnified iteration. The algorithm performing the magnified iteration is given as Al-
gorithm 3. The algorithm is very similar to Algorithm 1, except for three points.

First, the valuation v (which here is local to r) is initialized not to [T ], but rather,
to u−(r) if f = max, and to u+(r) if f = min. Indeed, if f = max, value iteration
converges from below, and u−(r) is a better starting point than [T ], since [T ](s) ≤
u−(r) ≤ v∗(s) at all s ∈ r. The case for f = min is symmetrical.

Second, for s ∈ S \ r, the algorithm uses, in place of the value v(s) which is
not available, the value u−(r′) or u+(r′), as appropriate, where r′ is such that s ∈
r′. In other words, the algorithm replaces values at concrete states outside r with the
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Algorithm 3. MagnifiedIteration(r, R, T, u, u−, u+, h, f, g, εfloat)
v: a valuation on r
1. if f = max
2. then for s ∈ r do v(s) = u−(r)
3. else for s ∈ r do v(s) = u+(r)
4. repeat
5. v̂ := v
6. for all s ∈ r do

v(s) = f

�
[T ](s), g

�	
s′∈r

p(s, a, s′) · v̂(s′) +
	

s′∈S\r

p(s, a, s′) · u([s]R)
���� a ∈ Γ (s)


�

7. until ||v − v̂|| ≤ εfloat

8. return h{v(s) | s ∈ r}

“abstract” values of the regions to which the states belong. To this end, we need to be
able to efficiently find the “abstract” counterpart [s]R of a state s ∈ S. We use the follow-
ing scheme, similar to schemes used in AMR [3]. Most commonly, the state-space S of
the MDP consists in value assignments to a set of variables X = {x1, x2, . . . , xl}. We
represent a partition R of S, together with the valuations u+, u−, via a binary decision
tree. The nodes of the tree are labeled by 〈y, i〉, where y ∈ X is the variable according
to which we split, and i is the position of the bit (0 =LSB) of the variable according
to whose value we split. The leaves of the tree correspond to regions, and they are la-
beled with u−, u+ values. Given s, finding [s]R in such a tree requires time logarithmic
in |S|.

Third, once the concrete valuation v is computed at all s ∈ r, Algorithm 3 returns
the minimum (if h = min) or the maximum (if h = max) of v(s) at all s ∈ r, thus
providing a new estimates for u−(r), u+(r), respectively.

Adaptive abstraction refinement. We denote the imprecision of a region r by Δ(r) =
u+(r) − u−(r). MLA adaptively refines a partition R by splitting all regions r having
Δ(r) > εabs. This is perhaps the simplest possible refinement scheme. We experi-
mented with alternative refinement schemes, but none of them gave consistently better
results. In particular, we considered splitting the regions with high Δ-value, all whose
successors, according to the optimal moves, have low Δ-value: the idea is that such re-
gions are the ones where precision degrades. While this reduces somewhat the number
of region splits, the total number of refinements is increased, and the resulting algorithm
is not clearly superior, at least in the examples we considered. We also experimented
with splitting all regions r ∈ R with Δ(r) > δ, for a threshold δ that is initially set
to 1

2 , and that is then gradually decreased to εabs. This approach, inspired by simulated
annealing, also failed to provide consistent improvements.

In the minefield example, each region is squarish (horizontal and vertical sizes dif-
fer by at most 1); we split each such squarish region into 4 smaller squarish regions.
In more general cases, the following heuristic for splitting regions is widely applica-
ble, and has worked well for us. The user specifies an ordering x0, x1, . . . , xl for the
state variables X defining S: this specifies a priority order for splitting regions. As
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previously mentioned, we represent a partition R via a decision tree, whose leaves cor-
respond to the regions. In the refinement phase, we split a leaf according to the value
of a new variable (not present in that leaf), following the variable ordering given by
the user. Precisely, to split a region r, we look at the label 〈xj , i〉 of its parent node. If
i > 0, we split according to bit i − 1 of xj ; otherwise, we split according to the MSB
of xj+1. A refinement of this technique allows the specification of groups of variables,
whose ranges are split in interleaved fashion. Once a region r has been split into re-
gions r1, r2, we set u−(rj) = u−(r) and u+(rj) = u+(r) for all j = 1, 2. A call to
SplitRegions(R, u+, u−, εabs) returns a triple R̃, ũ−, ũ+, consisting of the new partition
with its upper and lower bounds for the valuation.

Correctness. The following theorem summarizes MLA correctness.

Theorem 1. For all MDPs M = 〈S, A, Γ, p〉, all T ⊆ S, and all εabs > 0, the follow-
ing assertions hold.

1. Termination. For all εfloat > 0, and for all f, g ∈ {min, max}, the call MLA
(T, f, g, εfloat, εabs) terminates.

2. (Partial) correctness. Consider any g ∈ {max, min}, any εabs > 0, and any � ∈
{�, ♦}, and let f = min if � = �, and f = max if � = ♦. The following holds.
For all δ > 0, there is εfloat > 0 such that:

∀r ∈ R : u+(r) − u−(r) ≤ εabs

∀s ∈ S : u−([s]R) − δ ≤ V g
�T (s) ≤ u+([s]R) + δ

where (R, u−, u+) = MLA(T, f, g, εfloat, εabs).

We note that the theorem establishes the correctness of lower and upper bounds only
within a constant δ > 0, which depends on εfloat. This limitation is inherited from the
value-iteration scheme used over the magnified regions. If linear programming [13,4]
were used instead, then MLA would provide true lower and upper bounds. However, in
practice value iteration is preferred over linear programming, due to its simplicity and
great speed advantage, and the concerns about δ are solved — in practice, albeit not in
theory — by choosing a small εfloat > 0.

4 Experimental Results

In order to evaluate the time and space performance of MLA, we have implemented
a prototype, and we have used it for three case studies: the minefield navigation prob-
lem, the Bounded Retransmission Protocol [7], and the ZeroConf protocol for the au-
tonomous configuration of IP addresses [5,19].

When comparing MLA to ValIter, we compute the space needs of the algorithms
as follows. For ValIter, we take the space requirement to be equal to |S|, the do-
main of v. For MLA, we take the space requirement to be the maximum value of
2 · |R| + maxr∈R |r| that occurs every time MLA is at line 4 of Algorithm2: this gives
the maximum space required to store the valuations u+, u−, as well as the values v for
the largest magnified region. Since maxr∈R |r| ≥ (|S|/|R|), the space complexity of
the algorithm is (lower) bounded by a square-root function

√
8 · |S|.
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Algorithm Space Time
ValIter 16,384 21.97
MLA 7,926 123.54

MLA Iteration Details
#Abs |R| D Time

1 144 0.994 9.21
2 576 0.837 38.48
3 2,312 0.663 47.36
4 3,256 0.645 11.39
5 3,566 0.020 14.59
6 3,899 0.007 2.52
(a) n = 128, m = 128

Algorithm Space Time
ValIter 65,536 130.18
MLA 7,944 185.13

MLA Iteration Details
#Abs |R| D Time

1 256 0.983 49.48
2 985 0.656 76.27
3 1,513 0.776 12.61
4 2,341 0.605 17.58
5 3,844 0.007 29.19
(b) n = 256, m = 128

Algorithm Space Time
ValIter 262,144 1,065.36
MLA 30,180 3,199.31

MLA Iteration Details
#Abs |R| D Time

1 576 0.999 299.02
2 2,295 0.777 1648.67
3 4,347 0.777 206.64
4 7,171 0.659 228.95
5 11,678 0.525 362.70
6 14,862 0.007 453.33
(c) n = 512, m = 512

Fig. 2. Comparison between MLA and ValIter for n×n minefields with m mines, for εabs = 10−2

and εfloat = 10−4. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. All times
are in seconds. #Abs is the number of abstraction steps (number of loops 3–15 of MLA), and
D = maxr∈R(u+(r) − u−(r)).

Algorithm Space Time
ValIter 16,384 20.51
MLA 3,672 54.51

(a) n = 128, m = 128

Algorithm Space Time
ValIter 65,536 130.08
MLA 4,548 126.40

(b) n = 256, m = 128

Algorithm Space Time
ValIter 262,144 1,065.65
MLA 15,476 1,853.01

(c) n = 512, m = 512

Fig. 3. Comparison between MLA and ValIter for n×n minefields with m mines, for εabs = 10−1

and εfloat = 10−2. Mine densities (m/n2) are (a) 1/64, (b) 1/512, and (c) 1/512. All times are
in seconds.

4.1 Minefield Navigation

We experimented with different-size minefields in the mine-field example. In all cases,
the mines were distributed in a pseudo-random fashion across the field. The perfor-
mance of algorithms ValIter and MLA, for εabs = 0.01, are compared in Figure 2. As
we can see, the space savings are 2.06 for a mine density of 1/64, and an average of
8.47 for a mine density of 1/512. This comes at a cost in running time, which is of
5.67 for a mine density of 1/64, and 1.42 to 3.00 for a mine density of 1/512. Espe-
cially for lower mine densities, MLA provides space savings that are larger than the
incurred time penalty. The space savings are even more pronounced when we decrease
the desired precision of the result to εabs = 0.1, as indicated in Figure 3.

4.2 The ZeroConf Protocol

The ZeroConf protocol [5] is used for the dynamic self-configuration of a host joining a
network; it has been used as a testbed for the abstraction method considered in [19]. We
consider a network with 4 existing hosts, and 32 total IP addresses; protocol messages
have a certain probability of being lost during transmission. We consider the problem
of determining the worst-case probability of a host eventually acquiring an IP address:
this is a probabilistic reachability problem.
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N MAX ValIter #Reachable MLA MLA
time states space time

16 3 0.08 1,966 918 27.38
32 5 0.21 5,466 2,604 140.79
64 5 0.40 10,650 5,380 266.53

Fig. 4. Comparison between MLA and ValIter for BRP. N denotes number of chunks and MAX
denotes the maximum number of retransmissions. All times are in seconds.

The abstraction approach of [19] reduces the problem from 26, 121 concrete reach-
able states to 737 abstract states. MLA reduces the problem to 131 regions, requiring
a total space of 1267 (including also the space to perform the magnification step) for
εabs = 10−3 and εfloat = 10−6. We cannot compare the running times, due to the ab-
sence of timing data in [19].

4.3 Bounded Retransmission Protocol

We also considered the Bounded Retransmission Protocol described in [7]. We com-
pared the performance of algorithms ValIter and MLA on “Property 1” from [7], stating
that the sender eventually does not report a successful transmission. The results are
compared in Figure 4, for εabs = 10−2 and εfloat = 10−4. MLA achieves a space saving
of a factor of 2, but at the price of a great increase in running time.

4.4 Discussion

From these examples, it is apparent that MLA does well on problems where there is
some notion of “distance” between states, so that “nearby” states have similar values for
the reachability or safety property of interest. These problems are common in planning
and control. As we discussed in the introduction, many of these problems do not lend
themselves to abstraction methods based on the similarity of transition relations, such
as [19,7], and other methods based on simulation. We believe the MLA algorithm is
valuable for the study of this type of problems. We note that each mine affects a region
of size 5×5 by more than the desired precision εabs = 10−2. Therefore, while the mine
density is only 1/512, the ratio of “disturbed” vs. “undisturbed” state space is 25/512,
or 1/20. This is a typical value in planning problems with sparse obstacles.

On the other hand, for problems where simulation-based methods can be used, these
methods tend to be more effective than MLA, as they can construct, once and for all, a
small abstract model on which all properties of interest can be analyzed.

5 Conclusions

A natural question about MLA is the following: why does MLA consider the concrete
states at each iteration, as part of the “magnification” steps, rather than constructing an
abstract model once and for all, and then analyze it, as other approaches to MDP ab-
straction do [7,18,22,19]? The answer has two parts. First, we cannot build an abstract
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model once and for all: our abstraction refinement approach would require the computa-
tion of several abstractions. Second, we have found that the cost of building abstractions
that are sufficiently precise, without resorting to a “magnification” step, is substantial,
negating any benefits that might derive from the ability to perform computation on a
reduced system.

To understand the performance issues in constructing precise abstractions, consider
the problem of computing the maximal reachability probability. To summarize the max-
imal probability of a transition from a region r to r1, we need to compute P+

r (r1) =
mins∈r maxπ∈Π Prπs (r U r1), where U is the “until” operator of linear temporal logic
[20]; this quantity is related to building abstractions via weak simulation [27,2,24].
These probability summaries are not additive: for r1 �= r2, we have that P+

r (r1) +
P+

r (r2) ≤ P+(r1 ∪r2), and equality does not hold in general. Indeed, these probability
summaries constitute capacities, and they can be used to analyze maximal reachability
properties via the Choquet integral [25,15,16]. To construct a fully precise abstraction,
one must compute P+

r (R′) for all R′ ⊆ R, clearly a daunting task. In practice, in the
minefield example, it suffices to consider those R′ ⊆ R that consist of neighbors of r.
To further lower the number of capacities to be computed, we experimented with re-
stricting R′ to unions of no more than k regions, but for all choices of k, the algorithm
either yielded grossly imprecise results, or proved to be markedly less efficient than
MLA.

The space savings provided by MLA are bounded by a square-root function of the
state space. We could improve this bound by applying MLA hierarchically, so that each
magnified region is studied, in turn, with a nested application of MLA.

Symbolic representations such as ADDs and MTBDDs [6,1] have been used for
representing the value function compactly [10,17]. The decision-tree structure used by
MLA to represent regions and abstract valuations is closely related to MTBDDs, and in
future work we intend to explore symbolic implementations of MLA, where separate
MTBDDs will be used to represent lower and upper bounds.
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