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Abstract. Symbolic state-space generators are notoriously hard to par-
allelise, largely due to the irregular nature of the task. Parallel languages
such as Cilk, tailored to irregular problems, have been shown to offer ef-
ficient scheduling and load balancing. This paper explores whether Cilk
can be used to efficiently parallelise a symbolic state-space generator on
a shared-memory architecture. We parallelise the Saturation algorithm
implemented in the SMART verification tool using Cilk, and compare it
to a parallel implementation of the algorithm using a thread pool. Our
experimental studies on a dual-processor, dual-core PC show that Cilk
can improve the run-time efficiency of our parallel algorithm due to its
load balancing and scheduling efficiency. We also demonstrate that this
incurs a significant memory overhead due to Cilk’s inability to support
pipelining, and conclude by pointing to a possible future direction for
parallel irregular languages to include pipelining.

1 Introduction

Automated verification, such as temporal-logic model checking [§], relies on effi-
cient algorithms for computing state spaces of complex system models. To avoid
the well-known state-space explosion problem, symbolic algorithms working on
decision diagrams, usually BDDs, have proved successful in practise [7, [16]. Sev-
eral efforts have been made to implement these algorithms on parallel com-
puter platforms, most notably on networks of workstations and on PC clus-
ters [TT}, 12, 13} [T7, [T9]. The efforts range from simple approaches that essentially
implement BDDs as two-tiered hash tables [I7, [T9], to sophisticated approaches
relying on slicing BDDs [12] and techniques for workstealing [I1]. However, the
resulting implementations show only limited speedups.

While parallel implementations of symbolic model checkers are often success-
ful in increasing available memory, limited speedups can largely be attributed
to the irregular nature of the state-space generation task and the resulting high
parallel overheads such as load imbalance and scheduling of small computations.
When combined with the extra overheads incurred from synchronisation on the
symbolic data structure, it is possible for irregularity to severely decrease run-
time efficiency. Irregular problems have been addressed in the parallel literature,
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resulting in languages such as Cilk [II, [I0] for shared memory architectures. Cilk
has been shown to alleviate the irregular overheads by offering efficient schedul-
ing and load balancing. When successfully applied, it offers potential improve-
ments in time efficiency, and a large reduction in effort with respect to deriving
and implementing scheduling and load balancing techniques. To date, Cilk has
been used for other irregular problems involving searches, but overlooked for
parallelising state-space generation, which underlies model checking.

Saturation [0, as implemented in the verification tool SMART [], is a sym-
bolic state-space generation algorithm with unique features (cf. Sec. 2). It is
intended for asynchronous system models with interleaving semantics, and ex-
ploits the local effect of firing events on state vectors by locally manipulating
MDDs, which are a generalisation of BDDs [I4]. Saturation has proved to be or-
ders of magnitude more time-efficient and memory-efficient than other symbolic
algorithms [5], including the one in NuSMV [7], when applied to asynchronous
system models. Like other symbolic algorithms, Saturation is irregular in nature
and suffers from high parallelisation overheads. Hence, the question arises as to
whether using a proven parallel language for irregular problems is beneficial to
the time efficiency of a parallel implementation of Saturation. A previous ap-
proach to parallelising Saturation [2] on a PC cluster used a message-passing
library, but not a language tailored to irregular problems.

This paper investigates the parallelisability of the Saturation algorithm for
shared-memory architectures using Cilk and reports on our experiences made.
Our implementation (cf. Sec. 3) focuses on shared-memory architectures, but
due to the increasing popularity of distributed shared-memory libraries, our re-
sults are also of significance for parallelisations of Saturation on PC clusters. To
put our results into context, we contrast our Cilk algorithm with our own thread
pool parallelisation of Saturation for shared memory architectures [9], which is
based on the POSIX Pthreads library [15], and compare run-time and memory
efficiency. We extend our investigation to optimise the parallel ordering in which
the state space is generated, and determine the effects on run-time and memory
for both parallel implementations. Our experimental studies (cf. Sec. 4) using a
PC with two dual-core Intel processors show that the efficiency of Cilk improves
the run-time of the parallel algorithm when compared to our thread pool imple-
mentation, but incurs a significant increase in memory due to Cilk’s inability to
support pipelining. Our experiences show how parallel irregular languages can be
considered when parallelising symbolic state-space generators, and we conclude
by pointing to a potential future direction within the parallel community which
may allow parallel irregular languages to improve the time-efficiency of parallel
state-space generation without severely impacting on memory (cf. Sec. 6).

2 Background

A discrete-state model is a triple (5'\7 s%, V), where S is the set of potential states

of the model, s° €8 is the initial state, and N : S§—25 is the next-state function
specifying the states reachable from each state in one step. Assuming that the
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model contains K submodels, a (global) state i is a K-tuple (if,...,i1), where iy
is the local state of submodel k, for K > k> 1, and S = Sk X -+ x 8 is the
cross-product of K local state-spaces. This allows us to use symbolic techniques
based on decision diagrams to store sets of states. We decompose A into a
disjunction of next-state functions, so that N(i) = J.ce Ne(i), where £ is a
finite set of events and N, is the next-state function for event e. We seek to
build the reachable state-space S C S, the smallest set containing s” and closed
with respect to N: & = {s®} UN(s®) UNN(s?)) U -+ = N*(sY), where “*”
denotes reflexive and transitive closure and N(X) = [J;c» N (i).

Symbolic Encodings of S and N. In the sequel, we assume that each Sy, is
finite and known a priori. In practise, the local state spaces Si can actually be
generated on-the-fly by interleaving symbolic global state-space generation with
explicit local state-space generation [6]. Without loss of generality, we assume
that S = {0,1,...,n,—1}, with ny = |Sg|. We then encode any set X C S in
a (quasi-reduced ordered) MDD over S. Formally, an MDD is a directed acyclic
edge-labelled multi-graph where:

Each node p belongs to a level k € {K, ..., 1,0}, denoted p.lvl.

There is a single root node r at level K.

Level 0 can only contain the two terminal nodes Zero and One.

A node p at level k£ > 0 has ny outgoing edges, labelled from 0 to n;y—1. The
edge labelled by i points to a node ¢ at level k—1; we write plix] = q.

— Given nodes p and q at level k, if p[ig] = g[ix] for all i, € Sk, then p = g,
i.e., there are no duplicates.

The set encoded by an MDD node p at level k& > 0 is B(p) = U,, s, {6} ¥
B(plir]), letting X x B(0) = and X x B(1) = X for any set X

For storing N, we adopt a representation inspired by work on Markov chains.
This requires the model to be Kronecker consistent [5], a restriction that can
often be automatically satisfied by concurrency models such as Petri nets. Each
N, is conjunctively decomposed into K local next-state functions Ny, ., for K >
k > 1, satisfying Ne(if, ... 11) = Nk e(ix) X -+ x N1 c(i1), in any global state
(iK, - ,il) S 3\ Using K - |5| matrices Nk,e € {0, 1}”"’X"k with Nk,e[ik,jk] =
1< ji € Nie(ir), we encode N, as a boolean Kronecker product: j € N.(i) &
@ x>i>1 Nielin, ji] = 1, where @ indicates the Kronecker product of matrices.
The Ny . matrices are extremely sparse; when encoding a Petri net, for example,
each row contains at most one nonzero entry.

Saturation-Based Iteration Strategy. In addition to efficiently representing
N, the Kronecker encoding allows us to recognise event locality [5] and employ
Saturation [5]. We say that event e is independent of level k if Ny . = I, the
identity matrix. Let Top(e) denote the highest level for which Ny . # I. An
MDD node p at level k is saturated if it is a fixed point with respect to all N,
such that Top(e) < k, i.e., Sk X+ X Sgr1 X B(p) = N<i(Sk x -+ - X Sp1 X B(p)),
where ./\[Sk = Ue:TOP(E)Sk/\fe. To saturate MDD node p once all its descendants
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are saturated, we update it in place so that it encodes also any state in N . X
-+ XN ¢(B(p)), for all events e such that Top(e) = k. This can create new MDD
nodes at levels below k, which are saturated immediately, prior to completing
the saturation of p. If we start with the MDD encoding the initial state s and
saturate its nodes bottom up, the root  will encode S = N*(s”) at the end, as
shown in [5].

Saturation consists of many “lightweight” nested fixed-point iterations and
is completely different from the traditional breadth-first approach that employs
a single “heavyweight” global fixed-point iteration. The algorithm contains two
main mutually recursive functions (cf. Sec. 3): Saturate calls Fire to recursively
perform the event firings while saturating nodes, while Fire calls Saturate to
saturate nodes that are created as a result of event firings. The algorithm also
uses supporting functions for creating and deleting nodes, performing a union
on two nodes, storing saturated nodes by checking them into a hash table, and
caching results to previous calls of Fire. Experimental results reported in [3, [5] 6]
consistently show that Saturation outperforms breadth-first symbolic state-space
generation by orders of magnitude in both memory and time, making it arguably
the most efficient state-space generation algorithm for globally-asynchronous
locally-synchronous discrete event systems.

Cilk. Symbolic state-space generation algorithms incur significant overheads
from parallelisation, making gains in time-efficiency difficult to achieve. The
main overheads are synchronisation overheads due to frequent locking on the
symbolic structure (i.e., nodes stored in hash tables), load imbalance from the
irregular sizes of computations during state-space generation, and scheduling
overheads since state-space generation computations can be small. Parallel tools
to reduce these overheads are thus desirable. To the best of our knowledge,
Cilk [T} [10] is the only parallel language that offers both efficient scheduling and
load balancing. The Cilk language simplifies parallel programming by allowing
the use of C-based functions to express control over the parallelism of a program.
The language is powerful enough to facilitate mutually recursive algorithms such
as Saturation [5]. It is designed to run efficiently on symmetric processors, e.g.,
those found in shared-memory machines, and includes a scheduler employing ran-
domised work-stealing, that is theoretically and practically efficient. To achieve
efficiency, Cilk employs its own model of multithreaded computation.

Cilk uses call/return semantics to enable parallelism, and provides keywords
that enable the programmer to easily express parallelism. A Cilk function can
be specified by using the keyword cilk in front of a C function, and can be
spawned to run in parallel by using the keyword spawn when calling it. The
C function semantics is preserved by allowing the return value of the spawned
function to be stored by the parent. Multiple functions can be spawned within
the calling function, and the calling function continues its computation while
the spawned functions work in parallel. To permit controlled synchronisation of
spawned threads, the sync keyword prevents the calling function from continuing
its computation until all of its spawned functions have completed. Cilk functions
contain an implicit sync before they are allowed to return.
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The return value of the calling function can either be stored by the parent
once the function completes, or can be handled by the parent in a more complex
way via the use of an inlet. An inlet can be specified as an internal function
to a Cilk function, which handles the result of a spawned function. To preserve
atomicity, only one completed Cilk function can be handled at a time by the
inlet, and further computation by the parent is prevented until the inlet has
returned. The spawn and sync keywords cannot be used within an inlet. This
restriction arises from Cilk’s inability to support pipelining, making it difficult
to express producer/consumer problems such as state-space generation.

3 Parallel Saturation

Using Cilk we can easily interpret Saturation as a parallel algorithm in divide
and conquer format. The algorithm in Fig. [l shows the original Saturation algo-
rithm [5] expressed as a parallel algorithm in Cilk. The algorithm is parallelised
via task parallelism in exactly the same way as in our thread pool implementation
using POSIX Pthreads [9], where the Fire function is defined as a parallel task,
so that event firings can execute in parallel. We therefore choose to spawn the
function Fire on line 16 of the algorithm, while the return value of the spawned
function is handled using an inlet we call DoUnion, specified in lines 1 to 9 of
the algorithm. The inlet performs the Union on the node being saturated if the
firing returns a non-zero node. The calling function synchronises on the spawned
firings in line 17 of the Cilk algorithm using the keyword sync. The firing loop
continues again when all of the currently spawned firings have completed. Access
to the hash table and caches is granted on a per-level basis via a mutex lock that

cilk Saturate(in k:lvl, p:node) cilk Fire(in e:event, l:lvl, g:node):node
Update p, a node at level k not in the hash table, Build an MDD rooted at level [, encoding
in—place, to encode N2, (B(p)). NZ,(Ne(B(q))).
declare pCng : bool; e : event; i, 7 : lcl; declare L : set of lcl;
declare L : set of lcl; u : node; declare 4, j : lci;
1. inlet void DoUnion(f : lel) { declare f, u, s : node;
2. if f # 0 then declare sCng : bool;
3. foreach j € Ny (i) do 1. if Il < Last(e) then return g;
4. u <= Union(k—1, f,p[j]); 2. if Find(FireCache[l], {q, e}, s) return s;
5. if u#plj] then 3. s <= NewNode(l); sCng < false;
6. plj] < u; pCng = true; 4. L < Locals(e, 1, q);
7. if N e(j) # 0 then 5. while £ # 0 do
8. L=LU{j}; 6. i< Pick(L);
9. 7. f < Fire(e,1—1,qli]);
10. repeat 8. if f # 0 then
11. pCng < false; 9.  foreach j € N .(3) do
12. for each e € & do 10. u < Union(l—1, f, s[4]);
13. L = Locals(e,k,p); 11. if u+# s[j] then
14. while £ # () do 12. s[j] < u; sCng < true;
15. i = Pick(L); 13. if sCng then Saturate(l, s);
16. DoUnion(spawn Fire(e, k—1, p[i])); 14. CheckIntoHashTable(l, s);
17.  syng 15. Insert(FireCache[l]{q, e}, s);
18. until pCng = false; 16. return s;

Fig. 1. Cilk based Saturation using inlets
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Fig. 2. Calling order for spawns

can be specified in Cilk. We argued the correctness of this way of parallelising
Saturation in [9].

Unfortunately, this parallelisation approach creates a load imbalance since all
firings must be completed before performing the union operation. The ordering
can be shown in Fig.2(a), where function Saturate must wait for the two spawned
Fire calls to synchronise before spawning more work. It would be more efficient
to perform the union operation and then immediately spawn new work using the
ordering in Fig. Plc).

Expressing a Producer/Consumer Problem. The call/return semantics of
Cilk means that we cannot elegantly deal with a spawned function as soon as
it has completed, since we cannot tell when an individual firing has completed
outside of an inlet. It is desirable to use an inlet to spawn off more work as soon
as a firing completes; however, inlets are restricted to prevent new functions
being spawned from within them. We could attempt to let the calling function
know when a firing has completed via an inlet through the use of a flag or a
queue, but Cilk does not allow us to suspend the calling function outside of a
sync statement, which means that the calling function would have to continue
monitoring for completed child functions. It is undesirable to tie up the processor
with a function that is polling in this manner, since it largely performs useless
work. This means that the ordering of work shown in Fig.[2lc¢) cannot be achieved
using Cilk, due to the restrictions arising from Cilk’s lack of pipelining in its
multithreaded computational model.

We can rewrite the algorithm to continue spawning firings when they have
completed by utilising the spawn keyword, without exploiting the call/return
semantics of Cilk. An example algorithm is shown in Fig. Bl which breaks the
original Saturation function into sub-functions. Once a spawned firing has been
completed, it performs the union in DoUnion and then immediately spawns fur-
ther firings on the updated state. Expressing our producer/consumer problem by
bypassing the call/return semantics is not ideal. When the functions complete,
they do not have any further work to do, yet they are left on the Cilk func-
tion stack after spawning more work, waiting for it to complete. This ordering
is shown in Fig. [A(b). A large number of functions can be unnecessarily left on
the stack during the state-space generation process, which potentially increases
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cilk Saturate(in k:lvl, p:node) cilk FireEvent(in k:lvl, p:node, i:lcl, e:event)

Update p, a node at level k not in the hash table, Fire e on node p[i] at level k.
in—place, to encode N2, (B(p)).
- declare j : lcl; f : node;

declare i : lcl; 1. f < Fire(e, k—1,pli]);
1. foreach i € Sy do 2. if f # 0 then
2. if p[i] # O then 3. foreach j € Ny (i) do
3. spawn FireEvents(k,p,i); 4. spawn DoUnion(k,p,j, f);
cilk FireEvents(in k:lvl, p:node, i:lcl) cilk DoUnion(in k:lvl, p:node, j:lcl, finode)
Fire e on p[i] when Ny, (i) # O. Fire events on p[j] when p[j] changes.
declare e : event; declare u : node;
1. foreach e € &, do 1. u < Union(k—1, f,p[4]);
2. if N e (i) # O then 2. if u#p[j] then
3. spawn FireEvent(k,p,i,e); 3. p[j] < u; spawn FireEvents(k, p,j);

Fig. 3. Cilk based Saturation without exploiting call/return semantics

the amount of memory required for the process. The problem is compounded
because of the mutually recursive calls between Saturate and Flire.

Using a Thread Pool. To achieve the ideal ordering in Fig. 2lc), we must re-
linquish functions from the stack while spawned work executes. Since a function
frame requires its own storage, a smaller amount of memory could be used by
storing only the variables that are required once a spawned child is complete,
instead of storing the calling function. We can use a thread pool for load balanc-
ing purposes, an auxiliary structure to store required variables, and structure
our algorithm to relinquish functions, leaving the child functions to complete
the work of the calling function. In our thread pool algorithm [9], we store the
variables in upward arcs in the MDD structure. Children can be spawned using
tasks allocated to threads in the thread pool via the use of a FIFO queue. An
available thread will pick up a task from the queue and execute it. Tasks can
restore the status of their calling function using the upward arcs, which allows
calling functions to terminate, leaving spawned tasks to complete their work.

A snippet of the pseudo-code from the thread pool algorithm is shown in
Fig. @l The algorithm behaves (or acts) in much the same way as the sequen-
tial Saturation algorithm, except that, when a firing is performed in function
Fire, an upward arc is set to the node that needs to be updated as a result
of the firing. This allows the Fire call to terminate since the upward arc con-
tains the information required for spawned tasks to complete the Fire function.
The mutual recursion on the function stack is broken as Fire spawns Saturate
tasks, i.e., once the node created by Fire is ready to be saturated, a saturation
task is added to the queue and Fire terminates. To determine whether a node
has been saturated, the number of tasks performing computations on the node
needs to be stored. When all tasks have completed, the node is saturated and
the function NodeSaturated is called. NodeSaturated picks up where Fire left off,
updating any of the nodes which have upward arcs set to them, and continues
to fire events on any updated node until the node is saturated.
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Saturate(in k:lvl, p:node) Fire(in e:event, k:lvl, p:node, g:node, i:lcl):node

declare i : lcl: ‘cli‘eclare s : node; j : lcl;

1. foreach i € Sy do 4. s=CreateNode(k—1);

2. if p[i] # O then 5. foreach j € Ny (i) do

3. FireEvents(k, p, i); 6. AddTask(k,p); SetUpArc(k—1,s,7,p);
4. if Tasks(k,p) = 0 then

5.  NodeSaturated(k, p); 14. AddQueue(Saturate(k—1, s));
FireEvents(in k:lvl, p:node, i:lcl) NodeSaturated(in k:lvl, p:node)

declare e : event; declare ¢ : node;

1. foreach e € & do 1. while GetUpArc(k, p, i, q)

2. if Ng,e(i) # O then 2. DoUnion(k+1,q,1,p);

3. Fire(e, k, p, p[i], i); 3. if Tasks(k+1,q) = 0 then

4. NodeSaturated(k+1, q);
Fig. 4. Thread pool Saturation [9J]

The use of upward arcs introduces its own overheads [9]: additional locks, task
management, and the thread pool queue. The upward arcs also require extra
memory for both the arcs and the locks to synchronise the arcs. The thread pool
is not as efficient as Cilk, due to the time required to add and remove a task
from the queue. When we compare Cilk to a thread pool using the functionally
lightweight Fibonacci problem in [10] on a dual-processor, dual-core machine,
Cilk reports a 3x speedup whereas the thread pool reports a 2x slowdown due
to the time spent adding and removing tasks from the queue. Our thread pool
is, however, very efficient compared to creating threads on demand, where the
allocation of work to a thread is over 10x faster than creating one. [9].

:SCC#2

561\12

Fig. 5. The effect of events with Top = k on the states {0,1,2,3,4,5} of Sy

Optimising the Ordering of Events. The study of the thread pool algorithm
in [9] revealed that the ordering in which events are fired in parallel can signifi-
cantly affect Saturation’s run-time and memory requirements. Fig. [l shows the
effect of events ey, e2, and e3, with Top(e1) = Top(es) = Top(es) = k, on the
local states at level k (these events may of course affect lower levels as well).
When saturating a node p at level k, we must repeatedly fire e1, e2, and e3 in p,
until no more new states are found, i.e., until p encodes a fixed point. However,
Saturation does not dictate the order in which these events should be fired. For
example, firing 0-=-1 followed by 1-250 might be sub-optimal, since we might
have to fire 1-250 again once 0-21 has been fired, if this causes p[1] to point
to a different node encoding more states. Similarly, if we fire 1-22 before firing
0-251, all transitions in SCC#2 may have to be fired again.
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To address this problem, we use the chaining heuristic of [3], which extracts
the strongly connected components (SCCs) from a dynamic transition graph
that is built from the static graph of Fig. [l and the dynamic pattern of non-zero
children of node p. We use these SCCs to enhance the order of parallel event
firings. However, while this chaining heuristic tends to improve run-time and
memory in a sequential implementation, it also reduces the potential parallelism
and introduces time and memory overheads due to storing the SCC graphs,
traversing them and managing parallel access.

4 Experimental Results

We implemented four experimental algorithms, two using Cilk and two utilising
a thread pool, which either fire events using the unoptimised ordering or the
chaining heuristic. Our thread pool algorithms were implemented using C and
the POSIX Pthreads library [I5]. The machine used for this evaluation is a dual-
processor, dual-core PC with 2GB of memory and Intel Xeon CPU 3.06GHz
processors with 512KB cache sizes, running Redhat Linux AS 4, Redhat kernel
2.6.9-22.ELsmp, with glibc 2.3.4-2.13. We applied the algorithms to a set of
parameterised models previously used to evaluate Saturation [3|, [5 [6], where
the parameter controls the size of a model’s state space. One of our models is
the Runway Safety Monitor (RSM) designed by Lockheed Martin and NASA
to reduce aviation accidents [I8]. For each model, Table [I] shows the run-time
and memory when executing our experimental algorithms on four cores, where
N is the parameter and |S| is the approximate size of the final state space.
The thread pool algorithms are denoted by TP, the Cilk algorithms are denoted
by Cilk, and a C' at the end of these names indicates the use of chaining. We
ran only non-chained versions of the algorithms on the FMS and Philosophers
models since the SCC graphs using the chaining heuristic were too large to fit
into memory.

The run-time speedup shows the comparative speed of the parallel algorithms
against the sequential version, where a value greater (less) than 1 indicates a
speedup (slowdown). The ideal speedup on our machine is approximately 3.2,
since the speedup obtained from a secondary core is less than that of a secondary
processor. A speedup greater than 3.2 is a superlinear speedup, which occurs
when the parallelism introduced into an algorithm causes it to be more optimal
than its sequential counterpart. It is difficult to achieve an ideal speedup for
any parallel search algorithm due to the search overhead factor. For Saturation
this includes synchronisation overheads on the symbolic structure, where the
MDD has to be locked frequently, and model specific factors such as how small
the computations are. In contrast to standard breadth-first state exploration
techniques, Saturation is heavily optimised. Hence, many of its computations
are extremely small and are thus difficult to parallelise efficiently [9].

Our experimental results reflect these overheads and model specific factors,
since only seven of the models exhibit parallelism, varying from small speedups
of just over 1 to a superlinear speedup of over 4. The results, however, also show
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Table 1. Run-time and memory results on a dual-processor, dual-core machine

N |S| Run-time speedup Memory increase
Seq (s) Tp TpC Cilk CilkC Seq (b) Tp TpC Cilk CilkC
Slotted ring network protocol (Slot) N = no. of nodes in the network
90 5.9 x 10 6.79 0.26 0.31 0.28 0.42 5923040 11.84 5.55 2.52 1.40
120 5.1 x 10'*° 15.80 0.29 0.33 0.29 0.44 13405440 12.00 5.67 2.68 1.44
150 4.5 x 10'°® 30.84 0.30 0.37 0.31 0.45 25441840 12.10 5.88 2.73 1.52
Round robin mutex protocol (Robin) N = no. of processors
180 6.2 x 10°°  7.94 0.94 0.49 1.15 0.69 1165764 1.88 1.8218.01 17.51
210 7.8 x 10% 15.43 0.96 0.50 1.18 0.70 1574304 1.91 1.90 18.10 17.58
240 9.5 x 10™  41.71 0.99 0.50 1.22 0.72 2044044 1.94 1.92 18.13 17.59
Kanban manufacturing system (Kanban) N = no. of each type of parts
25 7.6 x 10"*  2.79 0.65 0.57 0.22 0.65 7334600 1.92 1.22 148 1.16
30 5.0 x 10"*  5.07 0.69 0.57 0.24 0.66 13784976 2.00 1.27 1.49 1.18
35 2.5 x 10" 10.25 0.71 0.58 0.25 0.66 23957940 2.08 1.31 1.54 1.19
Flexible manufacturing system (FMS) N = no. of each type of parts
11 1.1 x 10° 12.22 2.11 N/A 2.19 N/A 3148980 1.72 N/A 22.89 N/A
13 5.8 x 10° 55.54 2.18 N/A 2.35 N/A 8173844 1.88 N/A 23.56 N/A
14 1.3 x 10'° 119.87 2.26 N/A 2.47 N/A 12591300 1.97 N/A 24.35 N/A
Queen problem (Queens) N = no. of queens on an N x N chessboard
11 166926  1.78 0.52 0.53 1.22 0.60 4248776 1.91 2.05 17.68 17.99
12 856189 19.38 0.56 0.54 1.52 0.62 19920672 2.01 2.15 18.27 18.20
13 4674890 438.59 0.61 0.59 2.48 0.67 99807456 2.24 2.56 19.01 18.62
Runway safety monitor (RSM) Targets = 1, Speeds = 2, X=N, Y=3, Z=2
3 1.3 x 10" 541 049 0.78 0.54 0.93 6267568 2.21 1.63 16.22 15.95
5 3.8 x 10'° 37.62 0.55 1.420.84 1.75 23307704 2.36 1.72 16.91 16.55
8 1.0 x 10" 316.77 0.67 2.99 0.93 4.47 74024440 2.55 1.89 17.67 16.93
Aloha network protocol (Aloha) N = no. of nodes in the network
40 2.3 x 102 269 0.79 0.71 1.55 0.80 15879556 1.52 1.44 12.14 11.91
70 4.3 x 10*2 2220 0.86 0.84 1.69 0.89 82907316 1.66 1.63 13.22 12.90
100 6.5 x 10%"  66.28 0.87 0.85 1.74 0.91 239179076 1.78 1.75 14.38 14.33
Randomised leader election protocol (Leader) N = no. of processors
6 1.9 x 10° 3.72 0.48 0.71 0.89 0.97 2422704 2.81 2.01 14.34 13.71
7 24 x 107 24.34 0.44 0.650.81 1.1 7063232 3.29 2.17 15.89 14.43
8 3.0 x 10® 128.08 0.43 0.63 0.82 1.24 16107968 3.61 2.52 16.70 15.61
Bounded open queueing network (BQ) N = no. of customers
30 2.4 x 10° 2.1 0.36 0.41 0.82 0.90 2241036 2.08 1.96 18.66 17.59
50 4.6 x 10° 24.25 0.39 0.44 0.85 0.91 15112996 2.14 2.05 18.93 17.92
70 3.3x 10'0 146.01 0.41 0.45 0.87 0.94 54895356 2.50 2.23 19.20 18.36
Dining philosophers (Philosophers) N = philosophers, phil./level = 6
20 3.5 x 10" 14.82 1.12N/A 1.26 N/A 569608 1.82 N/A 14.07 N/A
40 1.2 x 10 33.32 1.13N/A 1.32 N/A 1097560 1.96 N/A 14.40 N/A
80 1.4 x 10°° 77.35 1.19 N/A 1.35 N/A 2321768 228 N/A 14.93 N/A
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that the efficient load balancing and scheduling of Cilk is superior to our thread
pool in exploiting parallelism where parallelism exists. In comparison, Cilk is able
to obtain a speedup for seven of the models instead of three for the thread pool.
Where models can be parallelised, the larger the size of the model, the greater
the parallelism. The models of particular interest due to their comparatively high
speedups against the other models, are the Queens, FMS, and RSM models. On
a four processor 2.4GHz Intel Operon machine, the speedups for these models
increase to over 3 for the Queens and FMS models and over 5 for the RSM
model, demonstrating that all of the cores are being utilised. The RSM model
exhibits a superlinear speedup due to the combined effects of chaining and the
effective parallelisation using Cilk.

Chaining is practically effective in improving the run-time on both the RSM
and Leader models, although it may conceptually hinder run-time due to the
synchronisation overhead from managing access and updates to the chaining
graphs. This is because chaining can also decrease the overall amount of work by
finding an event ordering that leads to firing fewer events. This effect also leads to
the use of less memory across all of the models, as shown in the memory increase
column indicating the relative increase in memory for the parallel algorithms
against the sequential version. The column also shows that the Cilk algorithms
require significantly more memory than the sequential algorithm, due to the size
of the Cilk stack. The only model where Cilk requires less memory than the
thread pool algorithm when using chaining is the slotted ring model. For this
model, chaining helps the thread pool algorithm, halving the memory used by the
non-chained version. Overall, however, the thread pool algorithm significantly
outperforms the Cilk algorithm regarding memory, which is due to the fact that
it does not have to allocate memory for a waiting stack.

Our results show that Cilk is more effective in exploiting parallelism than our
hand-crafted thread pool algorithm, but incurs a significant memory overhead
due to its lack of support for pipelining. This is a relevant and timely observation
due to the increasing popularity of multi-core machines. However, the scalability
of our algorithm across a larger number of processors (or processor cores) requires
further study in order to fully understand the impact of the synchronisation
overhead introduced by each processor (core). We leave this to future work.

5 Related Work

Research on symbolic model checking has primarily focused on networks of
workstations (NOWSs) [2] [TT), 12, 13} [17, [19], using message-passing libraries
to communicate between workstations. None of the existing approaches uses
a parallel language to facilitate scheduling and load balancing; approaches to
dealing with these overheads are implemented by hand. Also, most work on
parallel state-space generation considers how to parallelise the underlying data
structure. These approaches target the increased memory available on a NOW
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by slicing data structures and distributing them across processors. The structure
of decision diagrams has previously been sliced horizontally [2] and vertically [13]
[I7, [19]. Horizontal slicing scales well but prevents significant speedups, since each
slice has to complete its work before the next slice can begin.

Grumberg, Heyman, Ifergan, and Schuster [T1] parallelised symbolic state-
space generation algorithms to gain speedups by developing vertical slices on
different processors of a NOW. If the algorithm controlling the slices has to fre-
quently synchronise on the application of the next-state function, each round of
computation is only as fast as the slowest time it takes for a slice to develop on
a processor. To achieve speedups, the parallel algorithm allows slices to develop
asynchronously while the next-state function is applied to create more work.
The algorithm is load-balanced using workstealing techniques implemented by
hand [I2]. For very large circuits, these techniques can lead to efficient paralleli-
sation, showing up to an order of magnitude improvement in time-efficiency.

Our approach is unique in that we consider how to functionally decompose
the Saturation algorithm rather than its data structures. In comparing a proven
efficient parallel language to our own hand-crafted approach, we determined
how efficient both implementations are in terms of run-time and memory. We
expect that our observations can be extrapolated to PC clusters when utilising
distributed shared-memory (DSM) techniques.

6 Conclusions

We investigated whether the parallel language Cilk could improve the efficiency
of a parallel variant of the MDD-based Saturation algorithm for computing
reachable state spaces of asynchronous systems on shared-memory architec-
tures, such as modern multi-processor multi-core PCs. Our experimental studies
showed that Cilk is much more effective than a hand-crafted implementation for
addressing load balancing and scheduling. However, while the usage of Cilk led
to considerable improvements in time-efficiency, the restrictions imposed by the
Cilk language implied an enormous memory overhead.

The results from running our hand-crafted solution demonstrated that
preventing idle functions from inhabiting the stack removes this memory
overhead. Pipelining is therefore an essential feature of any language for par-
allelising symbolic state-space generators. To the best of our knowledge, there
is currently no parallel language fitting this description. However, a possible
future direction of parallel irregular languages extending the Cilk model of mul-
tithreaded computation to include pipelining is proposed in [20]. This would en-
able the truly efficient parallelisation of symbolic state-space generators, thereby
making significant progress in utilising parallel architectures in automated
verification.
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