SPADE: Verification of Multithreaded Dynamic and
Recursive Programs™
(Tool Paper)

Gaél Patin!, Mihaela Sighireanuz, and Tayssir Touili2

University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France
LIAFA, CNRS & University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France
{sighirea, touili}@liafa.jussieu.fr

1 Introduction

Recently, there are a lot of tools that have been considered for software verification. We
can for example mention BLAST [HIMS02], SLAM [BROI], KISS [QWO04JQRO5],
ZING [QRRO4], and MAGIC [CCGT03ICCGT04ICCK"06]. However, none of these
tools can deal with parallelism, communication between parallel processes, dynamic
process creation, and recursion at the same time. The tool we propose, called SPADE,
allows to analyse automatically boolean programs presenting all these features. As far
as we know, this is the first software model checking tool based on an expressive model
that accurately models all these aspects in programs.

SPADE checks safety properties of programs by iteratively refining abstractions of
the sets of the program execution paths that violate the property. Since property check-
ing is undecidable for programs presenting all the features mentioned above, the SPADE
refinement algorithm may not converge. In case of convergence, it can either find a bug
in the program and returns a counterexample to the user, or certify that the program is
correct.

We have applied SPADE to different case studies. Our results are encouraging and are
reported in Sectiond] In particular, we were able to automatically find two bugs in two
versions of a Windows NT Bluetooth driver. The bugs were already found in [CCK*06)].
But there, the verification was not completely automatic since the authors needed to
guess the number of processes for which the bugs occur. Whereas with SPADE, the
verification process was done in a completely automatic manner. Indeed, we don’t need
to make any guess since our tool handles dynamic creation of processes.

The current version of SPADE is available at http://www.liafa.jussieu.fr/~sighirea/spade.

2 The Underlying Techniques

SPADE is based on the SPAD model . A SPAD is a finite set of rules of the
form ¢ % ¢/, where a is a synchronisation action, ¢ and ¢’ are terms built up from the

* This work has been supported by the French Governement program ACI Jeunes Chercheurs,
Contract No.02 2 0205.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 254-257] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

SPADE: Verification of Multithreaded Dynamic and Recursive Programs 255
null process “0”, a finite number of variables (X), the sequential composition “-”, and
the asynchroneous parallel composition “||”, where the operators and are re-
spectively associative and associative/commutative, and where each action a has its
corresponding co-action a. Intuitively, the process “0” represents termination, a process
variable X corresponds to a control point of the program, and a process term ¢ describes
the control structure of the program. A procedure call is represented by a rule of the
form X — Y - Z, where the program at control point X calls the procedure ¥ and goes
to control point Z. This control point Z becomes active when Y terminates. Dynamic
creation of parallel processes is modeled by rules of the form X — Y||Z, expressing that
a process in control point X can create two parallel processes in control points ¥ and Z,
respectively. Finally, handshakes between parallel processes are represented according

(3R “H”

to the CCS style by rules of the form # i>t{ and 1 i>t§, meaning that two parallel
processes #1 and can synchronize and move simultaneously to ¢} and 5, respectively.

SPADE deals with rechability queries for SPAD models. More precisely, given two
(possibly infinite) sets of configurations /nit and Bad, the problem is to know whether
the set of bad configurations Bad can be reached from the initial configurations Init. The
approach implemented in SPADE consists in computing abstractions of the execution
path language that leads form Init to Bad and iteratively refining these abstractions
[Tou03]]. Our techniques are based on (1) the representation of the sets of configurations
with binary tree automata, (2) the use of these automata to compute a set of constraints
whose least fixpoint characterize the set of execution paths of the program, and (3) the
resolution of this set of constraints in an abstract domain. Our algorithm is generic and
can deal with different abstract domains. In particular, we considered the domains D,,
of finite action words of length less or equal to n. These domains allow to compute
abstractions of the execution paths that are exact up to the depth n. These abstractions
are called n-prefix abstractions. The refinement step consists in considering a “more
precise” abstract domain by incrementing the depth 7.

3 The SPADE Tool

SPADE has two inputs. The first input is an ASCII file describing (1) the SPAD model of
the program (names of processes, names of actions, rewriting rules), (2) the (possibly
infinite) set of initial configurations /nif (given by a tree automaton), and (3) the bad
configuration Bad (a tree automaton). The second input is optional and consists of an
integer that represents the depth n of the prefix abstraction. If this parameter is not
given by the user, the tool starts with a prefix abstration of depth one, and automatically
increases the abstraction depth until either an error is found or the program is proven to
be correct.

SPADE outputs (a) the language reach,, representing the n-prefix abstraction of the
paths between Init and Bad, and (b) the result of the intersection of reach, with the
set of good execution paths. This result may be either (CANNQOT) if the intersection is
empty (i.e., the n-prefix abstraction does not allow to find an execution leading from
Init to Bad), (MAYBE) if the intersection is not empty but the path found has been cut
by the abstraction, (CAN) if a real path (i.e., not cut by abstraction) has been found
between Init and Bad.

256 G. Patin, M. Sighireanu, and T. Touili

SPADE implements in OCAML the algorithm described in [Tou03]. OCAML pro-
vides a rich and efficient built-in library of data structures (e.g., hash tables, maps,
sets), a powerful system of modules, and garbage collection facilities. Due to these
features, the algorithm is implemented as a generic module parameterized by two sig-
natures (interfaces): the first signature collects types and operations dealing with tree
automata, and the second signature collects types and operations of the abstract domain
of execution paths. The current version of SPADE instantiates the first parameter of the
algorithm with the OCAML implementation of tree automata provided by the TIMBUK
tool [GTOI]. This implementation provides a large list of operations on tree automata
(union, intersection, emptiness test, minimization, etc) and an easy access to the states
and the transitions of automata. For the second parameter, we implemented in OCAML a
library for the abstract domain D,, (i.e., finite sets of finite words of length less or equal
to n). The library provides efficient implementation of operations intensively used by
the algorithm: union, concatenation, shuffle, prefix, and inclusion.

4 Summary of the Results

SPADE has been applied to several examples. The performances are given in Table [Tl
The experiments were obtained on a 4GHz Pentium IV with 4GB of memory.

Table 1. Performances of SPADE

Example Time Space

BlueTooth v1 1623mn28s 50 MB
BlueTooth v2 1216mn28s 46 MB

ConcVector vl 7s 3.4 MB
ConcVector v2 14s 14.8 MB
Lock/unlock 8s 3.6MB

The BlueTooth v1 is the SPAD model of the BlueTooth driver program used by Win-
dows NT and given in [QW04]. We were able to find a bug in this program. To find this
error, the authors needed to guess the number of driver’s requests for which the
error occurs, and then run their tool; whereas with SPADE, the verification was done in a
completely automatic manner, since we did not have to guess the number of requests for
which the error occurs because our tool can deal with dynamic creation of processes.

The BlueTooth v2 is a corrected version of BlueTooth v1 proposed by the authors
of [QWO4]. SPADE finds an error in this version as well. This bug was already found in

CCK™06]. Again, to be able to find the bug, the authors of needed to guess
the number of requests that causes the bug before running their tool, whereas SPADE
did not need to perform this guess.

ConcVector is a SPAD model of a multithreaded program using concurrently meth-
ods of the class java.util.Vector from the Java Standard Collection Framework.
The program’s threads create and remove the elements of a Vector object. Wand and
Stoller reported a high-level data race that occurs on such programs because

SPADE: Verification of Multithreaded Dynamic and Recursive Programs 257

the constructor of the Vector class is not atomic. SPADE found this bug for a program
with an unbounded number of threads (ConcVector v1). Version v2 fixes the bug by
taking an atomic implementation of the constructor. SPADE was able to prove that this
version is correct.

The Lock/unlock example is a system that handles an arbitrary number of concurrent
insertions on a binary search tree. The algorithm was proposed in [KL80], and can be
applied to handle simultaneous insertions (done by several users) into a database, or to
reduce the time necessary for a single insertion. We considered a buggy version of the
algorithm where one or several processes do not adhere to the required lock and unlock
policy. This version was considered in [CCKT06], where the bug was found only for
systems where the number of concurrent processes is less or equal to 7. With SPADE,
we were able to check this buggy program for arbitrary number of concurrent insertion
processes.

References

BRO1. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of inter-
faces. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, Springer,
Heidelberg (2001)

CCG™03. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: International Conference on Software Engineering (ICSE), pp.
385-395 (2003)

CCG*104. Chaki, S., Clarke, E., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T., Veith, H.:
An expressive framework for state/event systems. Technical report, Carnegie Mellon
University (2004)

CCK*106. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: TACAS (2006)

GTOl. Genet, T., Viet Triem Tong, V.: Reachability analysis of term rewriting systems
with timbuk. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 695-706. Springer, Heidelberg (2001)

HJMSO02. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Symposium
on Principles of Programming Languages, pp. 5870 (2002)

KL80. Kung, H.T., Lehman, P.L.: Concurrent manipulation of binary search trees. ACM
Trans. Database Syst. 5(3), 354-382 (1980)

QROS. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, Springer, Heidel-
berg (2005)

QRRO4. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: POPL 04: ACM Principles of Programming Languages, pp. 245-255
(2004)

QWO04. Qadeer, S., Wu, D.: Kiss: Keep it simple and sequential. In: PLDI 04: Programming
Language Design and Implementation, pp. 14-24 (2004)

Tou05. Touili, T.: Dealing with communication for dynamic multithreaded recursive pro-
grams. In: 1st VISSAS workshop, Invited Paper (2005)

WS03. Wang, L., Stoller, S.D.: Run-time analysis for atomicity. In: Proceedings of the Third
Workshop on Runtime Verification (RV). Electronic Notes in Theoretical Computer
Science, vol. 89(2), Elsevier, Amsterdam, Netherlands (2003)

	Introduction
	The Underlying Techniques
	The Spade Tool
	Summary of the Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

