
Context-Bounded Analysis of Multithreaded Programs
with Dynamic Linked Structures
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Abstract. Bounded context switch reachability analysis is a useful and efficient
approach for detecting bugs in multithreaded programs. In this paper, we address
the application of this approach to the analysis of multithreaded programs with
procedure calls and dynamic linked structures. We define a program semantics
based on concurrent pushdown systems with visible heaps as stack symbols. A
visible heap is the part of the heap reachable from global and local variables.
We use pushdown analysis techniques to define an algorithm that explores the
entire configuration space reachable under given bounds on the number of context
switches and the size of visible heaps.

1 Introduction

Automated analysis of software systems is a challenging problem. The behavior of
these systems is usually complex and hard to predict due to aspects such as concur-
rency and memory management. Reasoning about these behaviors requires considering
potentially infinite sets of configurations which makes verification problems undecid-
able in general. Therefore, approaches based on approximate analysis are needed. While
over-approximations are useful for proving properties, under-approximations are useful
for finding bugs. In this paper, we propose algorithmic (automata-based) techniques for
under-approximate analysis of multithreaded programs that manipulate dynamic linked
structures.

A simple way to get an under-approximate analysis is to bound the depth of the
explored state space and use finite-state model checking techniques. This approach is
interesting only if bugs appear after a small number of computation steps (e.g., [6]),
which is unlikely to be the case for multithreaded programs. In such a program, pro-
cesses interact through shared memory and are executed in alternation according to a
schedule. Concurrency bugs appear only after a number of context switches, i.e, points
in the execution where the active process is stopped and another one is resumed. Be-
tween context switches, a process may execute an unbounded number of computation
steps. Therefore, a natural approach for under-approximate analysis of multithreaded
program is to perform a (precise) analysis for a bounded number of context switches [9].
It has been demonstrated that this is indeed efficient for detecting bugs in multithread
programs since they appear in many cases after a small number of context switches [7].
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However, bounding the number of context-switches does not allow the use of finite-
state model checkers since each process may be infinite-state, and unbounded computa-
tions are possible between context switches. For example, in concurrent programs with
procedure calls, each process may have an unbounded stack. In [9,2], automata-based
techniques for symbolic analysis of pushdown systems have been used in order to define
bounded context switch analysis of programs with finite data domains. In this paper, we
consider the more general case of concurrent programs (with procedure calls) which
can create shared objects and manipulate references to them.

In the spirit of under-approximate analysis, we could bound the heap size and reduce
this verification problem to the case with finite data domains. This simple approach is
unlikely to be effective at getting good state-space coverage for real programs, in which
many heap-allocated objects are used either as local variables or for passing parameters
to a called procedure. For such programs, it is better to bound only the visible heap, i.e.,
the part of the heap that is reachable from the global variables and the local variables
of the running procedure in the active process. Indeed, a program’s global heap might
be unbounded in spite of its visible heap being bounded due to unbounded nesting of
procedure calls.

It is nontrivial to obtain an algorithm for reachability analysis of multithreaded pro-
grams based on bounding the number of context switches and the size of the visible
heap. In [10,11,8], the idea of visible heaps was used for interprocedural analysis of
sequential programs; these techniques are based on procedure summarization and can-
not be used for multithreaded programs since the (infinite) sets of stack configurations
reached by processes must be stored at each context switch. Moreover, [10,11] consider
abstract semantics, whereas we must consider an exact - sound and complete - seman-
tics. Nevertheless, the idea of visible heaps can be used to define a program semantics
where the heap is manipulated implicitly and not as a shared global structure: each pro-
cedure executed by some process manipulates a local heap structure which is a copy of
its visible heap. Such an approach leads to a program model based on stack machines
where locally visible heaps constitute the (potentially infinite) stack alphabet. To simu-
late correctly the “real” heap, our algorithm synchronizes the local views of procedures
and processes at each procedure call or return and at each context switch. We prove that
our new semantics is correct and use it to define an automata-based symbolic reachabil-
ity analysis algorithm for bounded context switches and bounded visible heap. For lack
of space, the proofs of our theorems are omitted here. They can be found in [3].

The contribution of our paper, although theoretical, has important practical applica-
tions. Since our algorithm constructs the set of reachable stack configurations, it allows
the verification of reachability queries that require stack inspection. This expressiveness
is important for specifying various resource-usage scenarios, e.g., user-space buffers
are accessed by an operating system kernel only within the scope of an appropriate ex-
ception handler, or certain operations on security-critical objects are invoked only if a
certain privileged procedure is present on the call stack. Our algorithm allows the veri-
fication of such expressive queries for multithreaded programs upto the context-switch
and visible heap bounds and for single-threaded programs upto the visible heap bound.
Of course, our algorithm can be used iteratively by systematically increasing the bounds
in each iteration.
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2 Multithreaded Programs with Dynamic Memory

We consider programs with multiple threads and procedure calls, which can dynami-
cally create objects and manipulate pointers on these objects. A sequential program is
given as a collection of control flow graphs, one graph for each of its procedures, de-
fined by a set of control nodes N, and a set of transitions between these nodes labeled
with actions and tests on the memory heap. We assume that the control flow graph of
each procedure p has a unique initial control location np

init and a unique termination
location np

end reachable after executing a return action. A multithread program consists
of a parallel composition of a fixed number of sequential programs sharing the heap.

Let A be a countable (infinite) domain of memory addresses (pointers), and assume
that A contains a special element ⊥ representing the null address and a special ele-
ment � representing an undefined address. Then, consider a class of objects where
each object contains n successor fields s1, . . . ,sn ranging over the pointer domain A. Let
S = {s1, . . . ,sn}. (We omit aspects related to data manipulation. Data values over finite
data domains can of course be encoded in the successor fields.)

We assume that a program has a set of global pointer variables G ranging over A.
These variables are shared by all parallel threads, and all procedures. Moreover, we
consider that each procedure has a set of local pointer variables (also ranging over A).
We assume w.l.o.g. that all the procedures have the same set of local variables L. Given
a (global/local) pointer variable v and a successor field s ∈ S, we denote by v.s the
pointer stored in the field s of the object pointed by v. This notation can be extended
to sequences of successor fields σ ∈ S∗ in the obvious manner. When σ is the empty
sequence, we consider that v.σ is identical to v.

Programs can perform the following operations on heaps: v.σ := v′.σ′ (pointer as-
signment), v.σ := null (pointer annihilation), and v.σ := new (object creation), where
v,v′ are pointer variables, and σ ∈ S ∪ {ε}, σ′ ∈ S∗. They can also perform the fol-
lowing tests: v.σ#v′.σ′ with # ∈ {=, 	=} (equality/disequality test). In addition, they
can perform the following actions: call(p,v1.σ1, . . . ,vm.σm) (procedure call with pa-
rameters), and return (termination of a procedure call), where p is a procedure name,
v1, . . . ,vm are pointer variables, and σ1, . . . ,σm ∈ S∗. The effect of executing a state-
ment call(p,v1.σ1, . . . ,vm.σm) is to call the procedure p after initialization of its local
variables �1, . . . , �m with the pointer values v1.σ1, . . . ,vm.σm respectively where the vari-
ables v1, . . . ,vm are either global variables or local variables of the calling procedure.

3 Program Semantics

Heaps as labeled graphs: A global heap is a finite directed graph where vertices
correspond to memory addresses, edges are labeled by elements of S, and each element
of G appears as a label of some vertex. Formally, a global heap is a tuple GH = (A,Δ,Γ)
where (1) A is a finite subset of A containing ⊥ and �, (2) Δ : S → (A → A) associates
with each s ∈ S a successor mapping, and (3) Γ : G → A associates with a global variable
g an object address. We assume that ∀s ∈ S. Δ(s)(⊥) = � and Δ(s)(�) = �, and ∀a ∈ A,
Δ(s)(a) is defined.
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Given σ = si1 · · · sim ∈ S∗, we denote by Δ(σ) the mapping Δ(sim)◦ · · · ◦Δ(si1). When
σ is the empty sequence, we consider that Δ(σ) is the identity mapping over A. Then,
we define the reachability mapping to be ReachΔ =

�
σ∈S∗ Δ(σ).

Then, we consider that a heap is a global heap augmented by a mapping associating
with each local variable an address. Formally, a heap is a pair H = (GH,Λ), where
GH = (A,Δ,Γ) is a global heap and Λ : L → A.

Programs as concurrent heap pushdown systems: We associate with multithreaded
programs concurrent stack machines which act on a (global) shared heap. The behavior
of such concurrent stack machines is as follows: at each moment, there is one process
which is running and has access to the heap through the global variables (shared by all
processes), and its own local variables. Notice that due to nested procedure calls, the
heap may be accessible from the local variables of the currently running procedure, and
also from the local environments (of the pending procedure executions) stored in the
stack of the process. While this process is running, all the other parallel processes are in
an idle mode. When a context switch occurs, the active process is interrupted and some
other one is resumed, becoming the new active process.

Let us sketch here the construction of the models associated with programs (details
can be found in [3]). Let Σ be the (infinite) set of all pairs 〈n,Λ〉, where n ∈ N and
Λ ∈ [L → A]. We associate with each sequential program (given by a control flow graph)
a heap pushdown system (H-PDS) which is a stack machine whose control states are
global heaps, and whose stack alphabet is Σ: The semantics of basic operations and tests
is defined by a transition relation op−−→ between heaps, and procedure calls and returns
are modeled as usual by push and pop operations on the stack. Then, we associate with
a multithreaded program with m parallel threads an m-dim concurrent heap pushdown
system (CH-PDS). Control states of such a model are pairs (i,GH), where i ∈ [1,m] is
the index of the active process, and GH is a global heap. A configuration of a CH-PDS
is a tuple ((i,GH), [u1, . . . ,um]) where u1, . . . ,um ∈ Σ∗ are the local configurations of
each of the threads, i.e., the contents of their stacks. A transition relation ⇒ is defined
between configurations: computations steps are either local to a process (the process i
in the global state (i,GH)), or correspond to a context switch (i.e., substitution of i by
some j 	= i in the global state (i,GH)).

Bounded heap depth programs: Let k ≥ 1. Let c = ((i,GH), [u1, . . . ,um]) be a con-
figuration, where GH = (A,Δ,Γ). Then, c is k-bounded iff for every 〈n,Λ〉 appearing
in any ui, for any i ∈ {1, . . . ,m}, we have |ReachΔ(Γ(G) ∪ Λ(L))| ≤ k. A program is
k-bounded for a set of initial configurations C iff every ⇒-reachable configuration from
C is k-bounded. A program has bounded heap depth if it is k-bounded for some k ≥ 1.

Notice that a heap with a bounded depth may have an unbounded size. Indeed, due
to unbounded nesting of procedure calls, it is possible to have an unbounded stack of
environments each of them pointing to a different but bounded part of the heap.

4 Program Semantics Based on Locally Visible Heaps

We define in this section a program semantics in terms of concurrent pushdown systems.
The difference with the CH-PDS based semantics of the previous section is that the
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heap is not manipulated explicitly as a global shared structure, but rather implicitly:
each procedure executed by some process manipulates a local heap structure which is a
copy of the reachable part of the heap from its local and global variables. Therefore, we
can associate with programs stack machines where locally visible heaps constitute the
stack alphabet. However, to simulate correctly operations on the “real” heap, procedures
and processes must exchange (pass/update) their local informations about the heap at
each procedure call/return and context switch. These manipulations of the local heaps
are quite delicate. Let us give an informal description of the main ideas behind them.

Consider first the case of a sequential program. At each procedure call, the caller
passes to the callee a copy of a part of its local heap. At the return of the call, the callee
gives back its new local heap, the last one before termination, to the caller which updates
accordingly its own local heap (which corresponds to its view of the heap just before
the call). To perform correctly these caller/callee communications, a relation between
vertices in different copies of a same piece of the “real” heap must be maintained,
relating vertices which are copies of each other, representing the same address in the
heap. Moreover, since pointer manipulation may disconnect some vertices from the
visible part of a procedure during its execution, the deletion of these vertices from the
local structure can be problematic since these vertices may still be relevant for further
executions of procedures in the call stack. To handle this problem, we introduce a notion
of cut points: when a heap is passed from the caller to the callee, cut points represent
the first vertices in the visible part by the callee which are reachable from the caller or
from other procedures in the call stack. Then, during the execution of the procedure,
a vertex can be removed from the locally visible heap only if it becomes unreachable
from the local variables, the global variables, and the cut points.

In the case of parallel programs, an additional but similar mechanism has to be intro-
duced for passing/updating locally visible heaps at context switches. Intuitively, parallel
processes synchronize their views of the heap at each context switch. The active process
passes its local heap to all of the other processes which can update accordingly their lo-
cal heaps (corresponding to the configuration at the previous context switch), taking
into account the modifications on the heap performed by the active process while they
were idle. For that, the active process maintains in its control state, which is a global
state for all its procedures, a relation between its current local heap and its initial local
heap corresponding to the configuration at the last context switch, allowing to deter-
mine for each vertex in the (old) local heaps whether it has a copy in the (new) local
heap returned by the active process. Also, to deal with vertex deletion, it is necessary
to extend the use of cut points by considering the reachable vertices from the stacks of
each process. In fact, each process needs to distinguish his own cut points from the ones
of the other processes.

We prove that the new semantics is correct (sound and complete) w.r.t. the original
semantics (in section 3) in the sense that they define bisimilar transition systems. An
important property allowing to prove this fact is that isomorphism between locally vis-
ible heaps preserves bisimilarity (i.e., substitution of isomorphic local heaps does not
modify behaviors). This holds because the performed operations and tests on the heaps
do not refer to the precise values of the addresses. (Notice that there is an infinite num-
ber of isomorphic heaps of a same size since the address domain is infinite). Then, we
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consider a normalization operation for visible heaps which associates to each of them
an equivalent heap modulo isomorphism, and we prove that the semantics based on
normalized visible heaps is also correct w.r.t. the original semantics. Our normalization
operation matches all the isomorphic visible heaps to a finite number of representatives.
(We do not have a unique representative due to the presence of cut points.) Therefore,
for sequential programs, our pushdown model construction terminates for bounded heap
depth programs. For concurrent programs, the construction terminates for a finite num-
ber of a context switches, given a bound on the heap depth.

4.1 Locally Visible Heaps

A cut heap is a tuple CH = (A,Δ,Γ,Λ,
−→
C ) where (A,Δ,Γ,Λ) is a heap and

−→
C ∈ (2A)m

is a vector of sets of cut points. For each i ∈ {1, . . . ,m},
−→
C (i) is the set of cut points

reachable from the local environments (of the pending procedure executions) stored in
the stack of the process i. Then, a visible heap is a cut heap such that A = ReachΔ(Γ(G)∪
Λ(L)∪�m

i=1
−→
C (i)∪{⊥}), i.e., it is a cut heap without garbage. We define an operation

of garbage elimination allowing to obtain a visible heap from a cut heap: given a cut
heap CH = (A,Δ,Γ,Λ,

−→
C ), the visible heap Clean(CH) is given by (A′,Δ′,Γ,Λ,

−→
C )

where A′ = A ∩ ReachΔ(Γ(G) ∪ Λ(L) ∪�m
i=1

−→
C (i)∪ {⊥}) and ∀s ∈ S. Δ′(s) = Δ(s)∩

[A′ → A′], i.e., the restriction of Δ(s) to A′.
We define an equivalence relation � between visible heaps which is essentially graph

isomorphism modulo renaming of vertices. Let VH1 = (A1,Δ1,Γ1,Λ1,
−→
C1) and VH2 =

(A2,Δ2,Γ2,Λ2,
−→
C2) be two visible heaps and let β : A1 → A2 be a bijection s.t. β(�) = �

and β(⊥) =⊥. Then, VH1 �β VH2 iff (i) ∀s ∈ S. ∀a ∈ A1. β(Δ1(s)(a)) = Δ2(s)(β(a)),
(ii) ∀v ∈ G. Γ2(v) = β(Γ1(v)), and ∀v ∈ L. Λ2(v) = β(Λ1(v)), and (iii) ∀i ∈ [1,m],
−→
C2(i) = {β(c) : c ∈ −→

C1(i)}. Then, VH1 � VH2 if there is a β s.t. VH1 �β VH2.

4.2 Sequential Programs as Pushdown Systems

Let us define an environment to be a tuple e = 〈n,VH,π〉 where n ∈ N, VH is a visible
heap, and π ⊆ A×A is an injective function (π relates vertices in the heap of the caller
procedure with vertices in the current visible heap VH). Let V be the set of all envi-
ronments. Then, we associate with each sequential process a visible heap pushdown
system (VH-PDS) which is a stack machine whose stack alphabet is V and whose con-
trol states are injective functions from A to A. These functions are used to maintain a
link between the current visible heap of the running sequential process and its initial
visible heap since its last activation (at the initial configuration of the system or at the
last context switch). This information is needed at the next context switch for updating
the visible heaps of the idle processes. (Informations in control states can be omitted in
the case of a purely sequential program.) Now, let i be the index of a sequential process.
We define the (infinite) set of transition rules Ri of the stack machine associated with
process i by means of the three inference rules given hereafter.

Basic operations and test: We extend the relation
op−−→ defined on heaps (see section

3) to a relation on visible heaps (which also informs about the correspondence between
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vertices in the original and final heaps). Let VH1 = (H1,
−→
C1), and VH2 = (H2,

−→
C2) be

two visible heaps. For every function π : A×A, we have VH1
op−−→π VH2 iff there exists

a heap H ′
2 s.t. H1

op−−→H ′
2 and Clean(H ′

2,
−→
C1) �π V H2. Then:

n1
op−−→n2 V H1

op−−→π VH2

(Π,〈n1,V H1,π1〉) ↪→ (Π ◦ π,〈n2,VH2,π1 ◦ π〉) ∈ Ri
HeapOp

Procedure calls: Let i ∈ [1,m] be the index of the active sequential process, let VH1 =
(A1,Δ1,Γ1,Λ1,

−→
C1) be the visible heap of the caller procedure, and let v1.σ1, . . . ,vk.σk

be the effective parameters which must be assigned respectively to the local variables
�1, . . . , �k of the called procedure (considered as its formal parameters). The visible heap
passed to the callee procedure (of the process i) is obtained as follows: (1) construct first
the cut heap CutPassi(VH1) which is a copy of VH1, where local variables of the callee
procedure are assigned with their new values, and local variables of the caller procedure
are memorized as cut points, (2) then determine the new vector of sets of cut points:
cut points of processes j 	= i stay unchanged, cut points of the process i are the first
addresses reachable from cut points of CutPassi(VH1) in the sub-heap corresponding
to reachable addresses from the new local variables, the global variables, and the cut
points of all processes, (3) finally remove the garbage of CutPassi(V H1) according to
the new set of cut points.

Let us define formally the operation CutPassi. Let VH = (A,Δ,Γ,Λ,
−→
C ) be a visi-

ble heap. Then, CutPassi(VH, [�1,v1.σ1], . . . , [�k,vk.σk]) is the cut heap (A,Δ,Γ,Λ′,
−→
C′)

where (1) ∀ j ∈ [1,k],Λ′(� j) = Δ(σ j)((Λ∪Γ)(v j)) and Λ′(�) = � for all other variables

� ∈ L, (2) ∀ j ∈ [1,m], j 	= i, we have
−→
C′( j) =

−→
C ( j), and (3)

−→
C′(i) =

−→
C (i)∪Λ(L).

We give now the formal definition of the visible heap passed by the caller to the
callee. Consider CH = (A,Δ,Γ,Λ,

−→
C ) to be any cut heap. Let A′ = ReachΔ(Γ(G) ∪

Λ(L) ∪� j 	=i
−→
C ( j)) (the set A′ is the visible part of the heap from local and global

variables and from cut points in
−→
C ( j), for j 	= i), and let Δ′ be the restriction of Δ to

vertices in A′. Then, let Visiblei(CH) = Clean(A,Δ,Γ,Λ,
−→
C′) where, for every j ∈ [1,m]

s.t. j 	= i,
−→
C′( j) =

−→
C ( j), and

−→
C′(i) = (A′ ∩ReachΔ(

−→
C (i)))\Δ′(S)(ReachΔ(

−→
C (i))). The

set
−→
C′(i) contains the first vertices in A′ which are Δ-reachable from

−→
C (i). The cleaning

operation removes all vertices which are Δ-reachable only from
−→
C (i), i.e., the set of

vertices in Visiblei(CH) is precisely A′.
Finally, given a visible heap VH, we define Passi(VH, p,v1.σ1, . . . ,vk.σk) to be

the set of pairs (VHπ,π) such that Visiblei(CutPassi(VH, [�1,v1.σ1], . . . , [�k,vk.σk])) �π
VHπ. The injective relation π allows to relate addresses in the visible heap of the caller
with addresses in the new visible heap. It is used to update the heap of the caller after
termination of the callee procedure. Then, we consider the inference rule:

n1
call(p,v1.σ1,...,vk.σk)−−−−−−−−−−−→n2

(VH2,π2) ∈ Passi(VH1, p,v1.σ1, . . . ,vk.σk)

(Π,〈n1,V H1,π1〉) ↪→ (Π ◦ π2,〈np
init ,V H2,π2〉〈n2,VH1,π1〉) ∈ Ri

Call
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Procedure returns: Given the current visible heap VH2 of the terminating procedure
and the visible heap VH1 of the caller procedure stored in the stack, we define an oper-
ation updating VH1 according to the effect of the procedure call on the heap.

Let π2 ⊆ A1 × A2 be an injective relation giving the correspondence between the
vertices of VH1 and V H2 (i.e., if (a1,a2) ∈ π and (a′

1,a2) ∈ π, then a1 = a′
1). We suppose

that A1 ∩A2 = {�, ⊥} (otherwise, instead of V H2 and π2, consider a new visible heap
VH ′

2 and π2 ◦ π for some π s.t. VH2 �π VH ′
2).

Then, let B1 = {a ∈ A1 : 	 ∃a′ ∈ A2. (a,a′) ∈ π2}, let B2 = {a ∈ A1 : ∃a′ ∈ A2. (a,a′) ∈
π2}, and let B3 = {a′ ∈ A2 : 	 ∃a ∈ A1. (a,a′) ∈ π2}.

Intuitively, B1 is the set of vertices in A1 such that either they were not reachable
in the initial visible heap passed to the called procedure, and therefore they should be
restored in the heap of the caller procedure after the call return, or they became invisible
during the call execution due to garbage deletion and therefore they should not appear in
the heap after the call return since they were not reachable from cut points. (We explain
below how to get rid of the vertices in this second category). Vertices in B2 are those
which were present before the call, and which are still present after termination of the
call. Finally, B3 is the set of the created vertices during the call.

It can be easily seen that these three sets are disjoint. Moreover, we have B3 ∪
π2(B2) = A2. Let us consider the bijection β : A2 → B2 ∪ B3 defined in the obvious
way (for every a ∈ A2, if a ∈ B3 then β(a) = a, otherwise β(a) = π2

−1(a)).
Let (A′

1,Δ
′
1,Γ

′
1,Λ

′
1,

−→
C′

1) be the cut heap such that (1) A′
1 = B1 ∪ B2 ∪ B3, (2) ∀g ∈

G. Γ′
1(g) = β(Γ2(g)), (3) ∀� ∈ L, Λ′

1(�) = Λ1(�), (4)
−→
C1

′(i) =
−→
C1(i) and ∀ j 	= i,

−→
C′

1( j) =
β(

−→
C2( j)), and (5) ∀s ∈ S, (i) ∀a ∈ B1. Δ′

1(s)(a) = Δ1(s)(a), (ii) ∀a ∈ B2. Δ′
1(s)(a) =

β(Δ2(s)(π2(a))), and (iii) ∀a ∈ B3. Δ′
1(s)(a) = β(Δ2(s)(a)).

Then, we define Update-seqi(V H1,VH2,π2) to be the set of all pairs (VHπ,π) such

that Clean(A′
1,Δ

′
1,Γ

′
1,Λ

′
1,

−→
C′

1) �π VHπ.
Notice that (1) the cleaning operation removes the vertices of A1 which were garbage

collected during the procedure call, and (2) for every V H ′
2, and every β s.t. VH2 �β VH ′

2,
Update-seqi(V H1,V H2,π2) = Update-seqi(V H1,VH ′

2,π2 ◦ β).
Then, we consider the inference rule:

n return−−−−→nend (VH ′
1,π

′) ∈ Update-seqi(VH1,VH2,π2)
(Π,〈n,V H2,π2〉〈n′,VH1,π1〉) ↪→ (Π ◦ π′,〈n′,V H ′

1,π1 ◦ π′〉) ∈ Ri
Return

4.3 Multithreaded Programs as Concurrent Pushdown Systems

We associate with a multithreaded program with m parallel threads an m-dim concurrent
visible heap pushdown system (CVH-PDS). The stack alphabet is V, and the (infinite)
set of control states is S = {(i,

−→
Π) : i ∈ [1,m],

−→
Π = (

−→
Π(1), . . . ,

−→
Π(m)),

−→
Π( j) : A−→A}.

We define hereafter the set of transition rules R of the model.

Local transitions: Transitions of each sequential process are obviously transitions of
the whole system. For every i ∈ [1,m], let Ri be the set of transition rules associated
with the process of index i (defined in the previous subsection). Then, we have:
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(Πi,wi)↪→(Π′
i,w

′
i)∈Ri

−→
Π(i)=Πi

−→
Π′(i)=Π′

i ∀ j 	=i. w j∈V and
−→
Π( j)=

−→
Π′( j)

((i,
−→
Π), [w1, . . . ,wi, . . . ,wm]) ↪→ ((i,

−→
Π′), [w1, . . . ,w′

i, . . . ,wm]) ∈ R
Local

Context switches: Finally, consider the case of a context switch. Assume that process
i was the last active process and let VHi = (Ai,Δi,Γi,Λi,

−→
Ci ) be its last visible heap.

At the context switch, process i communicates to all the other ones (which were idle)
informations about the new heap configuration. For that, the part which is shared by all
processes is extracted from VHi and passed to them. Then, each process j 	= i updates
accordingly its old visible heap (which corresponds to the heap configuration at the
previous context switch) before the next active process starts its computation.

Formally, let us define Sharedi(V Hi) = Visiblei(CutPassi(VHi,∀� ∈ L. [�,�])), and

assume that Sharedi(VHi) = (A′
i,Δ′

i,Γ′
i,Λ′

i,
−→
C′

i ). Notice that we remove from Ai only

vertices that are reachable from local variables in L or from cut points in
−→
Ci (i), but

which are not reachable from global variables, nor from cut points of other threads.
These vertices are not visible from other threads and therefore they do not belong to

the shared part of the heap. The cut points in
−→
C′

i (i) allow to know which vertices in the
shared part are reachable from local variables in the stack of the current thread. The
removed vertices will be added to the heap when the current process will resume later.
This is done by an updating operation described below.

Let j ∈ [1,m], let VHj = (A j,Δ j,Γ j,Λ j,
−→
Cj) be the visible heap of the process j, and

suppose Π ⊆ A j × A′
i is an injective relation connecting vertices in VHj with vertices

in Sharedi(VHi). We suppose that Ai ∩A j = {�, ⊥} (otherwise, instead of V Hj and Π,
consider VH ′

j and Π ◦ π for some π s.t. V Hj �π VH ′
j).

Then, let B1 = {a ∈ A j : 	 ∃a′ ∈ A′
i. (a,a′) ∈ Π}, let B2 = {a ∈ A j : ∃a′ ∈ A′

i. (a,a′) ∈
Π}, and let B3 = {a′ ∈ A′

i : 	 ∃a ∈ A j. (a,a′) ∈ Π}. These sets are disjoint and we have
B3 ∪Π(B2) = A′

i. Then, consider the bijection β j : A′
i → B2 ∪B3 defined in the obvious

way (for every a ∈ A′
i, if a ∈ B3 then β j(a) = a, otherwise β j(a) = Π−1(a)).

We define the operation Update-par j, for j ∈ [1,m], which updates the local heap of

process j using the shared heap passed by process i. For j 	= i, let (A′
j,Δ′

j,Γ′
j,Λ′

j,
−→
C′

j)
be the cut heap s.t. (1) A′

j = B1 ∪ B2 ∪ B3, (2) ∀g ∈ G. Γ′
j(g) = β j(Γ′

i(g)), (3) ∀� ∈ L,

Λ′
j(�) = Λ j(�), (4)

−→
C′

j( j) =
−→
Cj( j), and ∀k 	= j,

−→
C′

j(k) = β j(
−→
C′

i (k)), and (5) ∀s ∈ S, (i)
∀a ∈ B1. Δ′

j(s)(a) = Δ j(s)(a), (ii) ∀a ∈ B2. Δ′
j(s)(a) = β j(Δ′

i(s)(Π(a))), and (iii) ∀a ∈
B3. Δ′

j(s)(a) = β j(Δ′
i(s)(a)). Then, Update-par j(VHj,VHi,Π) is defined to be the set of

all (V H ′
j,π,Π j) such that (1) Clean(A′

j,Δ′
j,Γ′

j,Λ′
j,

−→
C′

j) �π VH ′
j, and (2) Π j = π−1 ◦β−1

j .
Moreover, for every mapping Πi : A → A, we define Update-pari(V Hi,VHi,Πi) to be
the set of all (VH ′

i ,π,π−1) such that VHi �π V H ′
i . Then, we consider the inference rule:

i,k∈{1,...,m} i 	=k ∀ j∈{1,...,m}. w j=〈n j,V Hj,π j〉

∀ j∈{1,...,m}. (V H ′
j,π

′
j,Π j)∈Update-par j(V Hj,V Hi,

−→
Π( j)◦−→Π(i))

∀ j∈{1,...,m}. w′
j=〈n j,V H ′

j,π j◦π′
j〉

((i,
−→
Π), [w1, . . . ,wm]) ↪→ ((k,(Π1, . . . ,Πm)◦ Πk

−1), [w′
1, . . . ,w

′
m]) ∈ R

Switch

with the notational convention (Π1, . . . ,Πm)◦ Π = (Π1 ◦ Π, . . . ,Πm ◦ Π).
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4.4 Associated Transition System and Correctness of the Semantics

A configuration of a CVH-PDS is a tuple ((i,
−→
Π ), [v1, . . . ,vm]) ∈ S × [V∗]m where i ∈

[1,m] is the index of the active process, and v1, . . . ,vm ∈ V
∗ are the local configurations

of all the processes. Let C be the set of all configurations.
Given r = ((i1,

−→
Π1), [u1, . . . ,um]) ↪→ ((i2,

−→
Π2), [u′

1, . . . ,u
′
m]) ∈ R , let �→r⊆ C× C be

the relation s.t. b �→r b′ iff b = ((i1,
−→
Π1), [v1, . . . ,vm]), b′ = ((i2,

−→
Π2), [v′

1, . . . ,v
′
m]), and

∀k ∈ [1,m], ∃wk ∈ V
∗ s.t. vk = ukwk and v′

k = u′
kwk.

Let �→loc (resp. �→sw) be the union of all relations �→r where r is a Local rule (resp.
Switch rule), and let �→ be the union of all the relations �→r, for r ∈ R . Then, we consider
the relation � = �→∗

loc ◦ �→sw. For each K ≥ 1, the relation �K (Kth power of �)
corresponds to �→-reachability with K −1 context switches (or K consecutive contexts).

We extend the equivalence relation � defined on visible heaps to environments in V:
we consider that 〈n1,VH1,π1〉 �β 〈n2,VH2,π2〉 iff (1) n1 = n2, and (2) β is a bijection
from A1 to A2 such that VH1 �β VH2 and π2 = π1 ◦ β. Given two environments e1, e2,
we write e1 � e2 iff there exists β such that e1 �β e2. We extend this equivalence relation
to sequences of environments in the obvious manner (e1 · · ·e j � e′

1 · · ·e′
k iff j = k and

for every i ∈ [1, j], ei � e′
i).

Finally, we extend � to configurations: let b = ((i,
−→
Π), [e1α1, . . .emαm]) and b′ =

(( j,
−→
Π′), [e′

1α′
1, . . . ,e

′
mα′

m]) be two configurations. Then, b � b′ iff (1) i = j, (2) ∀k ∈
[1,m], αk � α′

k, and (3) ∃πk : A → A s.t. e′
k �πk ek and

−→
Π′(k)◦ πk =

−→
Π(k).

Proposition 1. For every configurations b0,b,b′, if b0 �→∗ b and b′ � b, then b0 �→∗ b′.

We prove that given a multithreaded program, its associated CH-PDS and CVH-PDS
are bisimilar. For that, we exhibit a bisimulation relation between configurations of the
two systems. Intuitively, this relation maps a configuration of the CVH-PDS to a config-
uration of the CH-PDS by applying the updating operations through the configuration.
(Indeed, visible heaps stored in the stacks of the CVH-PDS model are not up to date
since they correspond to views of the heap at the moment of their memorization.)

Theorem 1. The relations ⇒ and �→ define bisimilar transition systems.

4.5 Program Semantics Based on Normalized Visible Heaps

Normalized visible heaps: Visible heaps in normal form are obtained by numbering
nodes according to a depth-first traversal of the heap, for a given ordering of global and
local variables, and the fixed order on the successor fields {s1, . . . ,sn}.

Let us consider a bijection η : L ∪ G → [1, |L ∪ G|]. Then, given an environment
〈n,VH,π〉 with VH = (A,Δ,Γ,Λ), we define the class [[〈n,VH,π〉]]η to be the set of all
environments 〈n,VH ′,π ◦ β〉 with VH ′ = (A′,Δ′,Γ′,Λ′) s.t. (1) VH �β VH ′, (2) A′ =
[1, |A|], and (3) in the graph (V,Δ′

V ) where V = ReachΔ′(Λ′(L)∪Γ′(G)) and Δ′
V = Δ′ ∩

[S → (V → V )], vertices correspond to the depth-first-traversal induced by the order η
on root nodes (and the fixed order on successor fields labeling the edges of the graph).

Notice that, if all vertices in VH are reachable from L ∪ G, then [[〈n,VH,π〉]]η con-
tains a single element. Otherwise, there must be cut points (and may be other vertices
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reachable from them) which are not reachable from L ∪ G. In that case, [[〈n,VH,π〉]]η
contains environments (with identical reachable parts from L∪G) corresponding to dif-
ferent permutations of the vertices reachable from cut points but not from L∪G.

Proposition 2. For every η, the set [[〈n,VH,π〉]]η is finite (if VH is finite).

Concurrent pushdown systems on normalized visible heaps: Let us fix η. We define
a program semantics where visible heaps are considered modulo the η-equivalence.
Let Vη be the set of all [[e]]η, for e ∈ V. We consider the set of transition rules Rη
corresponding to the restriction of the set R to the alphabet Vη:

Rη = {((i,
−→
Π), [α1, . . . ,αm]) ↪→ (( j,

−→
Π′), [α′

1, . . . ,α′
m]) ∈ R | ∀ j, α j,α′

j ∈ Vη
∗}.

Let Cη be the set of all configurations ((i,
−→
Π), [α1, . . . ,αm]) such that ∀ j, α j ∈ Vη

∗.
Then, let �→r,η be the restriction of the transition relation �→r to configurations in Cη.
Let �→η be the union of the relations �→r,η for all transition rules r. The relations �→loc,η,
�→sw,η, and �η are also defined as previously in terms of the restricted relations �→r,η.

Theorem 2. The relations �→ and �→η define bisimilar transition systems.

5 Reachability Analysis

Bounded visible heap depth programs: Let k ∈ N. A visible heap V H=(A,Δ,Γ,Λ,C)
is k-bounded if (1) |ReachΔ(Λ(L)∪Γ(G))| ≤ k, and (2) ∀i ∈ [1,m]. |ReachΔ(C(i))| ≤ k.
Notice that k-boundedness does not imply that |A| ≤ k since there may exist vertices
which are reachable from cut points but not from local/global variables. A sequence
〈n1,V H1,π1〉 . . . 〈n j,VHj,π j〉 ∈ V

∗ is k-bounded iff ∀i ∈ [1, j], VHi is k-bounded. A

configuration ((i,
−→
Π), [α1, . . . ,αm]) is k-bounded iff ∀ j ∈ [1,m], α j is k-bounded.

Theorem 3. Given k ≥ 1, for every k-bounded ⇒-computation in the CH-PDS model
of a program there is a bisimilar k-bounded �→-computation in its CVH-PDS model.

Bounded heap depth reachability analysis of sequential programs: We extend to
VH-PDS the automata-based construction of post∗/pre∗ images for pushdown systems
(see, e.g., [1,5,4]). We assume in the sequel that visible heaps are in normal form ac-
cording to some fixed ordering η on local and global variables. Sets of configurations
are recognized by finite-state automata over the alphabet of normalized environments
called Conf-automata. More precisely, initial states in these automata correspond to
mappings Π, and edges are labeled by elements of Vη. Then, a configuration (Π,α) is
accepted by the automaton if starting from the initial state Π there is an accepting run
for the sequence α ∈ V

∗
η.

Given k ≥ 1, and a regular set of k-bounded (local) configurations recognized by a
Conf-automaton A , we apply a saturation based algorithm Closureη(A ,k) which con-
structs a sequence of Conf-automata with increasing languages, each of them being
obtained from the previous one using one of the transition rules of the pushdown sys-
tem. The difference here with the existing constructions for pushdown systems is that
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the stack alphabet of the built automata may increase at each step. Therefore, we restrict
the construction to the k-bounded environments. Then, by Proposition 2, the algorithm
terminates and produces a finite Conf-automaton representing all (forward/backward)
reachable configuration by k-bounded �→η-computations, which is a subset of the set of
all reachable configurations from L(A) (by Theorems 1 and 2), and which contains the
set of all reachable configurations by k-bounded ⇒-computations (by Theorem 3).

Reachability analysis of concurrent programs: Let us first introduce some defini-
tions and notations: A special Conf-automaton is a Conf-automaton for which there
exists a pair (Π,e) such that, for every local configuration (Π′,α) ∈ L(A), Π′ = Π and
there exists α′ ∈ V

∗
η such that α = eα′, i.e., all words accepted by A start with (Π,e).

The pair (Π,e) is then denoted ̂A . An aggregate is a tuple (A1, . . . ,Am) of special Conf-
automata. Such an aggregate defines the set of global configurations L(A1, . . . ,Am) =
{((i,

−→
Π), [α1, . . . ,αm]) : i ∈ [1,m],∀ j ∈ [1,m]. (

−→
Π( j),α j) ∈ L(A j)}. A finite set of ag-

gregates defines the union of the languages defined by all its elements.
Given a Conf-automaton A and (Π,e) with e ∈ Vη, let A(Π,e) be an automaton rec-

ognizing the language L(A)∩(Π×eVη
∗). Clearly, A(Π,e) is a special automaton. Given

(Π,e) and a special automaton A , we denote by (Π,e)� A the special automaton rec-
ognizing the language {(Π,eα) | (Π′,e′α) ∈ L(A)}, i.e., the language of A where the
first symbol of every word is replaced by e and the initial state is replaced by Π.

We consider w.l.o.g. that the reachability analysis starts from a single initial con-
figuration where the heap is empty and all pointer variables are equal to null: For
each i ∈ [1,m], let A i

/0 be the special automaton recognizing the (singleton) language
{(Id{�,⊥},〈ni

init ,VH/0, Id{�,⊥}〉)}, where ni
init is the entry node of the main procedure of

process i, and VH/0 = ({�,⊥},Δ�,Γ⊥,Λ⊥,
−→
/0 ) with Δ� being the function mapping �

to each address for all successor fields, Γ⊥ (resp. Λ⊥) being the functions mapping ⊥
to each global (resp. local) variable, and

−→
/0 being the vector of functions mapping an

empty set of cut points to each process.
Finally, given h1, . . . ,hm such that for every � ∈ [1,m], h� = (

−→
Π(�),e�), and given

i, j ∈ [1,m], i 	= j, we denote by Updatei, j(h1, . . . ,hm) the set of tuples (h′
1, . . . ,h

′
m)

such that: (1) for every � ∈ [1,m], h′
� = (

−→
Π′(�),e′

�), and (2) ((i,
−→
Π ), [e1, . . . ,em]) ↪→sw

(( j,
−→
Π′), [e′

1, . . . ,e
′
m]), where ↪→sw refers to the Switch inference rule (see section 4.3).

We are now ready to present our bounded reachability analysis algorithm. The algo-
rithm is given in Figure 1. The input is a CVH-PDS, the bound on context switches K,
and the bound on the size of visible heaps k. The algorithm computes (in Reach) the
set of all reachable configurations by k-bounded �η

K-computations: A set of tasks is
maintained in a structure todo. A task is a triple (�, i,A) where � is the number of con-
text switches done so far, i is the index of the process chosen to be active, and A is an
aggregate. Initially, todo contains the initial configuration of the program with all pos-
sible starting active process (lines 2-3). Then, the treatment of a task is as follows: if �
has already reached K then A is added to Reach (lines 6-7). Otherwise, the set of reach-
able k-bounded configurations from A by process i is computed (line 9), and then new
tasks are produced corresponding to all possible context switches from i to some other
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Input: An m-dim CVH-PDS, and two integers K,k ≥ 1
Output: The set of reachable configurations by k-bounded �K

η -computations.

1 Reach ← /0;
2 for all i ∈ {1, . . . ,m}
3 todo ← {(0, i,A1

/0 , . . . ,Am
/0 )};

4 while todo 	= /0 do
5 pop (level, i,A1, . . . ,Am) from todo with minimal level;
6 if level = K then
7 Reach ← Reach∪{(A1, . . . ,Am)};
8 else
9 let Bi = Closureη(Ai,k) in

10 for all (Π,e′
i) such that L(B(Π,e′

i)
i ) 	= /0

11 for all j ∈ {1, . . . ,m} such that j 	= i

12 for all (h1, . . . ,hm) ∈ Updatei, j(̂A1, . . . ,(Π,e′
i), . . . , ̂Am)

13 todo ← (level +1, j,h1 �A1, . . . ,hi �B(Π,e′
i)

i , . . . ,hm �Am);
14 return Reach

Fig. 1. Algorithm for bounded context-switch/heap depth reachability on CVH-PDS

process j (lines 10-13). For that, a case splitting is performed according to all possible
visible heaps reached by process i (line 10), corresponding to head environments of its
possible stacks. Then, the local heaps of all processes are updated, and tasks (where �
is incremented) are defined for all possible next active processes j 	= i (lines 11-12) and
added to todo (line 13).
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