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Abstract. In many industries, the share of software components provided by
third-party suppliers is steadily increasing. As the suppliers seek to secure their
intellectual property (IP) rights, the customer usually has no direct access to the
suppliers’ source code, and is able to enforce the use of verification tools only
by legal requirements. In turn, the supplier has no means to convince the cus-
tomer about successful verification without revealing the source code. This pa-
per presents a new approach to resolve the conflict between the IP interests of
the supplier and the quality interests of the customer. We introduce a protocol
in which a dedicated server (called the “amanat”) is controlled by both parties:
the customer controls the verification task performed by the amanat, while the
supplier controls the communication channels of the amanat to ensure that the
amanat does not leak information about the source code. We argue that the proto-
col is both practically useful and mathematically sound. As the protocol is based
on well-known (and relatively lightweight) cryptographic primitives, it allows
a straightforward implementation on top of existing verification tool chains. To
substantiate our security claims, we establish the correctness of the protocol by
cryptographic reduction proofs.

1 Introduction

In the classical verification scenario, the software author and the verification engineer
share a common interest to verify a piece of software; the author provides the source
code to be analyzed, whereon the verification engineer communicates the verification
verdict. Both parties are mutually trusted, i.e., the verification engineer trusts that he
has verified production code, and the author trusts that the verification engineer will not
use the source code for unintended purposes.

Industrial production of software-intensive technology however often employs sup-
ply chains which render this simple scenario obsolete. Complex products are being
increasingly assembled from multiple components whose development is outsourced
to supplying companies. Typical examples of outsourced software components com-
prise embedded controller software in automobiles and consumer electronics [1,2] as
well as Windows device drivers [3]. Although the suppliers may well use verification
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Fig. 1. A High-Level View of the Amanat Protocol

techniques for internal use, they are usually not willing to reveal their source code,
as the intellectual property (IP) contained in the source code is a major asset for their
company.

This setting constitutes a principal conflict between the supplier Sup who owns the
source code, and the customer Cus who purchases o n l y the executable. While both
parties share a basic interest in producing high quality software, it is in the customer’s
interest to have the source code inspected, and in the supplier’s interest to protect the
source code. More formally, this amounts to the following basic requirements:

(a) Conformance. The customer must be able to validate that the purchased executable
was compiled from successfully verified source code.

(b) Secrecy. The supplier must be able to validate that no information about the source
code other than the verification result is revealed to the customer.

The main technical contribution of this paper is a new cryptographic verification proto-
col tailored for IP-aware verification. Our protocol is based on standard cryptographic
primitives, and provably satisfies both the above requirements with little overhead in
the system configuration. Notably, the proposed scheme applies not only to automated
verification in a model checking style, but also encompasses a wide range of validation
techniques, both automated and semi-manual.

Our solution centers around the notion of an amanat. This terminology is derived
from the historic judicial notion of amanats, i.e., noble prisoners who were kept hostage
as part of a contract. Intuitively, our protocol applies a similar principle: The amanat is
a trusted expert of the customer who settles down in the production plant of the supplier
and executes whatever verification job the customer has entrusted on him. The supplier
accepts this procedure because (i) all of the amanat’s communications are subject to the
censorship of the supplier, and, (ii) the amanat will never return to the customer again.
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It is evident that clauses (i) and (ii) above make it impossible for a human inspector to
act as the amanat; instead, our protocol will utilize a dedicated server Ama for this task.
The protocol guarantees that Ama is simultaneously controlled by both parties: Cus
controls the verification task performed by Ama, while Sup controls the communication
channels of Ama. To convince Cus about conformance, the verification tool executed on
Ama produces a cryptographic certificate which proves that the purchased executable
is derived from the same source file as the verification verdict.

To achieve this goal, we use public key cryptography; the amanat uses the secret
private key of the customer, and signs outgoing information with this secret key such
that no additional information can be hidden in the signature. This enables the supplier
to inspect (and possibly block) all outgoing information, and simultaneously enables
the customer to validate that the certificate indeed stems from the amanat. Thus, the
amanat protocol achieves the two requirements above. Figure 1 presents a high-level
illustration of the protocol.

Verification by Model Checking and Beyond. Motivated by discussions with indus-
trial companies, our primary intention for the protocol was to facilitate software model
checking across IP boundaries in a B2B setting where the supplier and the customer
are businesses. Our guiding examples for this B2B setting have been Windows device
drivers and automotive controller software, for which our protocols are practically fea-
sible with state-of-the-art technology.

Software model checking is now able to verify important properties of simply struc-
tured code [4,5,6]. Most notably, SLAM/SDV is a fully automatic tool for a narrow
application area, and we expect to see more such tools. Note that SDV has built-in spec-
ifications because the device drivers access and implement a clearly defined API. Other
tools such as Terminator [7] and Slayer [8] do not require specifications as they are built
to verify specific critical properties – termination and memory-safety, respectively. Au-
tomotive software is similar to device drivers in that it also accesses standardized APIs.

For less standardized software and more specific properties, it may be necessary for
the customer and the supplier to negotiate about the formulation of the specification
without revealing the source code. In the course of this negotiation, the supplier can
decide to reveal a blueprint of the software, and the amanat can certify the accuracy of
the blueprint by a mutually agreed algorithm.

The example of blueprints shows that the amanat protocol is not restricted to model
checking, because the amanat can run any verification/validation tool whose output
does not compromise the secrecy of the source code. For example, in future work and
applications, Ama can:

1. apply static analysis tools such as ASTREE [9] and TVLA [10].
2. check the correctness of a manual proof provided by Sup, e.g., in PVS, ISABELLE,

Coq or another prover [11].
3. evaluate worst case execution times experimentally [12] or statically [13].
4. generate white box test cases, and execute them.
5. validate that the source code comes with a set of test cases which satisfies previ-

ously agreed coverage criteria.
6. check that the source code is syntactically safe, e.g. using LINT.
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7. compute numerical quality and quantity measures which are agreed between Sup
and Cus, e.g. nesting depth, LOC, etc.

8. compare two versions of the source code, and quantify the difference between them;
this is important in situations where Sup claims charges for a reimplementation.

9. check if third party IP is included in the source code, e.g. libraries etc.
10. ensure that certain algorithms are (not) used.
11. check that the source is well documented.
12. ensure a certain senior programmer has put his name on the source code.
13. validate the development steps by analyzing the CVS or SVN tree.
14. ensure compatibility of the source code with language standards.

We note that in all scenarios the code supplier bears the burden of proof: either the
supplier has to write the source code in such a way that it is accepted by Ama as is, or
the supplier has to provide auxiliary information (e.g. proofs, command line options,
abstraction functions, test cases, etc.) which help the amanat in the verification without
affecting correctness.

Security of the Amanat Protocol. In Section 4, we present a cryptographic proof for
the secrecy and conformance of the amanat verification protocol. Stronger than term-
based proofs in the Dolev-Yao model, these proofs assure that under standard crypto-
graphic assumptions, randomized polynomial time attacks against the protocol (which
may involve e.g. guessing the private keys) can succeed only with negligible probabil-
ity [14]. The practical security of the protocol is also ensured by the simplicity of our
protocol: As the protocol is based on well-known cryptographic encryption and signing
schemes, it can be readily implemented.

The IP boundary between the supplier and the customer makes is inevitable that the
amanat owns a secret unknown to the supplier, namely the private key of the customer;
this secret enables the amanat to prove its identity to the customer and to compute
the certificate. Consequently, the cryptographic proofs need to assume a system con-
figuration where Ama can neither be reverse-engineered, nor closely monitored by the
supplier. Thus, from the point of view of the supplier, Ama is a black box with input
and output channels. For secrecy, the supplier requires ownership of Ama to make sure
it will not return to the customer after verification. There are two natural scenarios to
realize this hardware configuration:

A Ama is physically located at the site of a trusted third party. All communication
channels of Ama are hardwired to go through a second server, the communication
filter of the supplier, cf. Figure 1.

While scenario A involves a trusted third party, its role is limited to providing physical
security for the servers. Thus, the third party does not need any expertise beyond server
hosting. For the supplier, scenario A has the disadvantage that the encrypted source
code has to be sent to the third party, and thus, to leave the supplier site.

B Ama is physically located at the site of the supplier, but in a sealed location or
box whose integrity is assured through (i) regular checks by the customer, (ii) a
third party, (iii) a traditional alarm system, or (iv) the use of sealed hardware. All
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communication channels of Ama are hardwired to the communication filter of the
supplier.

In scenarios B(ii) and B(iii), the third party again plays a very limited role in that it only
ensures physical integrity of the amanat. We believe that in our B2B settings, scenario
B is realistic. We do not require custom-made hardware, but just a sealed location at the
supplier’s site, e.g. a locked room. Off-the-shelf hardware ensures that neither party can
evade the protocol by radio transmission etc. In the B2B setting, it is realistic that before
final deployment of a new controller software (but after the verification), the integrity
of the seal is checked. Thus, there is no business incentive for the supplier to break the
seal.

The supplier has total control over the information leaving the production site. Thus,
it can also prevent attempts by the amanat to leak information by sending messages at
specific time points. Because the supplier can read all outgoing messages, there is also
a convincing argument for the supplier’s non-technical management that no sensitive
information is leaking. In our opinion, this simplicity of the amanat protocol is a major
advantage for practical application.

Organization of the Paper. In Section 2, we survey related work and discuss alterna-
tive approaches to the amanat protocol. The protocol is described in detail in Section 3,
and the correctness is addressed in Section 4. The paper is concluded in Section 5.

2 Related Work and Alternative Solutions

The last years have seen renewed activity in the analysis of executables from the verifi-
cation and programming languages community. Despite remarkable advances (see e.g.
[15,16,17,18]), the computer-aided analysis of executables remains a hard problem; nat-
ural applications are reverse engineering, automatic detection of low level errors such
as memory violations, as well as malicious code detection [19,20]. The technical diffi-
culties in the direct analysis of executables are often exacerbated by code obfuscation
to prevent reverse engineering, or, in the case of malware, recognition of the malicious
code. Although dynamic analysis [21] and black box testing [22,23] are relatively im-
mune to obfuscation, they only give a limited assurance of system correctness.

The current paper is orthogonal to executable analysis. We consider a scenario where
the software author is willing to assert the quality of the source code by formal methods,
but not willing or able to make the source code available to the customer. It is evident
that the visibility of the source code to the amanat and the cooperation of the software
author/supplier significantly increase the leverage of formal methods.

Proof-Carrying Code [24] is able to generate certificates directly from binaries, but
only for a restricted class of safety policies. It is evident that a proof for a non-trivial
system property will for all practical purposes explain the internal logic of the binary.
Thus, publishing this proof is tantamount to losing intellectual property.

The current paper takes an engineer’s view on computer security. The results of the
paper are quite specific to verification, as it exploits the conceptual difference between
the source code and the executable. While we are aware of advanced methods such as
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secure multiparty computation [25] and zero-knowledge proofs [26], we believe that
they are not practicable for our problem. To implement secure multiparty computation,
it would be necessary to convert significant parts of the model checking tool chain into
a Boolean circuit which is not a realistic option. To apply zero-knowledge proofs, one
would require the verification tools to produce highly structured and detailed formal
proofs. Except for the provers in item 2 of the list in Section 1, it is impractical to
obtain such proofs by state of the art technology. More generally, we believe that any
advanced method for which secrecy is not intuitively clear to the supplier will be hard
to establish in practice. Thus, we are convinced that the conceptual simplicity of our
protocol is an asset for practical applicability.

3 The Amanat Protocol

The amanat protocol aims to resolve the conflict between the code customer Cus who
wants to verify the source code, and the code supplier Sup who needs to protect its IP.
To this end, the amanat Ama computes a certificate which contains enough information
to assure the correctness of the program. On the other hand, to secure the IP of Sup,
the certificate must not reveal any information beyond the intentionally communicated
correctness properties.

3.1 Requirements and Tool Landscape

To make the protocol requirements more precise, we fix some notation and assumptions
about the tool landscape. Note that all tools are available to all involved parties.

The compiler Compiler takes an input source and computes an executable exec =
Compiler(source). Note that Compiler does not take any other input. In practice, this
means that source can be thought of as a directory tree containing a make file, and
Compiler stands for the tool chain composed of the make command, the compiler, the
linker etc.

The verification tool Verifier also takes the input source and computes two verifica-
tion verdicts, logSup and logCus. Here, logSup is the “internal” verdict for the supplier
which may contain, for example, detailed IP-critical information such as counterexam-
ples or witnesses for certain properties. The second output logCus in contrast contains
only uncritical verification verdicts about which Sup and Cus have agreed beforehand.
Similar as for the compiler, we assume that Verifier does not take any other input pa-
rameters. In particular, this means that the specifications are part of source, i.e., they are
agreed between the parties and output into logCus together with the verification result.
Moreover, all auxiliary information necessary for a successful run of Verifier– com-
mand line parameters, code annotations, abstraction functions etc. – are provided by
Sup as part of source.

Before we formally describe the cryptographic primitives for signing and verifying
messages, we note that the underlying algorithms are not deterministic but randomized.
This randomization is a countermeasure to attacks against naive implementations of
RSA and other schemes which exploit algebraically related messages, see for exam-
ple [27]. In most applications, the randomization is not important for the protocol, as
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each participant can locally generate random values. In our protocol however, we have
to make sure that the signatures generated by Ama do not contain hidden information
for Cus. The way for Ama to leak information to Cus would be to replace the ran-
dom bits by specifically chosen bits which describe (part of) the source code, similar
to steganography [28]. Then, Cus could try to reconstruct the bits from the received
message. To exclude this possibility, our protocol will enforce Ama to commit its ran-
dom bits before it sees the source code. Thus, in our description of the cryptographic
primitives, we have to treat the random values explicitly.

We also note that in our discussions of randomized algorithms, we usually describe
the behavior of the algorithm as it occurs in all but a negligible fraction of the executions
of the algorithm [29].

– All parties employ the same asymmetric encryption and signing scheme [30] which
is based upon RSA [31] and SHA [32]. Given a key pair 〈Kpri, Kpub〉 and a mes-
sage m, we write c = Kpub(m) for the encryption of m with key Kpub yielding
the cipher text c. Similarly, m = Kpri(c) denotes the decryption of the cipher text
c with key Kpri resulting again in the original message m. Furthermore, we write
s = csign(Kpri, m, R) for the signature s of a message m signed with key Kpri

and generated with random seed R. If a signature s is valid and has been generated
with seed R, then cverify(Kpub, m, s, R) will succeed and fail otherwise. In situa-
tions where the random seed is of no concern, we can also use cverify(Kpub, m, s)
which succeeds if s is a valid signature. 1 The algorithms for encryption, decryption,
signature generation and signature verification are assumed to require polynomial
time with respect to the length of their inputs.

– Communication Channels. We assume that the channels between Sup, Cus and
Ama are secure, i.e., the protocol is not concerned with eavesdropping on these
channels. Moreover, all ingoing and outgoing information for Ama is controlled by
Sup, i.e., Sup can manipulate all data exchanged between Ama and Cus.

Having fixed the environment and the notation, we can paraphrase the requirements
in a more precise manner:

1. Conformance enables Cus to validate that exec and logCus have been produced from
the same source.

2. Secrecy prevents Cus from extracting, by any tractable process, any IP of Sup ex-
cept exec and logCus.

We note that some of the possible verification tasks discussed in Section 1 – in par-
ticular 7, 10, 11, 12 – are concerned with non-functional properties of the source code
which do not affect the executable produced by the compiler. The conformance prop-
erty proves to the customer that at the time of compilation, a source with the required
properties did exist. Thus, in the case of a legal conflict, a court can require the supplier
to provide a source code which (i) compiles into the purchased executable, and (ii) pro-
duces the same verification output logCus. There is no mathematical guarantee however,
that the revealed code will be identical to the original code. This stronger property can
be achieved by requiring Verifier to compute a hash of source, and output it into logCus.

1 The existence of the 4-parameter variant of cverify is specific to the chosen scheme [30].
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3.2 Summary Description of the Protocol

Our protocol is based on the principle that Cus trusts Ama, and thus, Cus will believe
that a verification verdict logCus originating from Ama is conformant with a correspond-
ing binary exec. Therefore, Cus and Sup install Ama at Sup’s site such that Sup can use
Ama to generate trusted verification verdicts subsequently. On the other hand, Sup con-
trols all the communication to and from Ama and consequently Sup is able to prohibit
the communication of any piece of information beyond the verification verdict, i.e., Sup
can enforce the secrecy of its IP. To ensure that Sup does not alter the verdict of Ama,
Ama signs the verdicts with a key which is only known to Ama and Cus but not to Sup.
Also, to ensure that the tools Compiler and Verifier given to Ama are untampered, Sup
must provide certificates which guarantee that these tools have been approved by Cus.

A protocol based on this simple idea does indeed ensure the conformance property,
but a naive implementation with common cryptographic primitives may fail to guaran-
tee the secrecy property: As argued above, the certificates generated by Ama involve
random seeds, and Sup cannot check that these random seeds do not carry hidden in-
formation. In our protocol, to prohibit such hidden transmission of information, Ama is
not allowed to generate the required random seeds after it has accessed source. Instead,
Ama generates a large supply of random seeds before it has access to source, and sends
them to Sup. In this way, Ama commits to the random seeds, because later, Sup will
check that Ama actually uses the random values which it has sent before. Thus, Ama is
not able to encode any information about source into these seeds.

The only remaining problem is that Sup is not allowed to know the random seeds in
advance, since it could use this knowledge to compromise the cryptographic security
of the certificates computed by Ama. Thus, Ama encrypts the random seeds before
transmitting them to Sup. Each random seed is encrypted with a specific key, and each
time a random seed is used by Ama, the corresponding key is revealed to Sup.

3.3 Detailed Protocol Description

Our protocol consists of three phases, namely the installation, the session initialization,
and the certification.

Installation Phase. Cus initializes Ama with a master key pair 〈Km
Cus,K

m
Pub〉 which will

be used later to exchange a session key pair. Then, Ama is transported to and installed
at Sup’s site. All further communication between Ama and Cus will be controlled by
Sup.

I1 Master Key Generation [ Cus ]
Cus generates the master keys 〈Km

Cus,K
m
Pub〉 and initializes Ama with 〈Km

Cus,K
m
Pub〉.

I2 Installation of the Amanat [ Sup, Cus ]
Ama is installed at Sup’s site and Sup receives Km

Pub.

Session Initialization Phase. After installation, Sup and Cus must agree on a specific
Verifier and Compiler. Once Verifier and Compiler have been fixed, the session initial-
ization phase starts: First, Cus generates a new pair of session keys 〈KCus,KPub〉 and
sends them to Ama via Sup. Then, the new session keys are used to produce certificates
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certVerifier and certCompiler for Verifier and Compiler, respectively. Sup checks the con-
tents of the certificates and uses them, if they are indeed valid certificates for Verifier
and Compiler, to setup Ama with Verifier and Compiler. Ama in turn accepts Verifier
and Compiler if their certificates are valid.

In the last step of the initialization, Ama generates a supply of random seeds
R1, . . . , Rt for t subsequent executions of the certification phase. It also generates a se-
quence of key pairs 〈KR1

Cus,KR1
Pub〉, . . . , 〈KRt

Cus,KRt
Pub〉 for each random seed Ri.

Ama finally encrypts each random seed to obtain and send KRi
Pub(Ri) to Sup. Ama

and Sup both keep a variable round which is initialized to 0 and will be incremented by
1 for each execution of the certification phase.

S1 Session Key Generation [ Cus, Sup ]
Cus generates the session keys 〈KCus,KPub〉 and sends Km

Pub(KCus) and KPub to
Sup. Sup forwards Km

Pub(KCus) andKPub unchanged to Ama.
S2 Generation of the Tool Certificates [ Cus ]

Cus computes the certificates
– certVerifier = csign(KCus, Verifier) and
– certCompiler = csign(KCus, Compiler).

Cus sends both certificates to Sup.
S3 Supplier Validation of the Tool Certificates [ Sup ]

Sup checks the contents of the certificates, i.e., Sup checks that
– cverify(KPub, Verifier, certVerifier) and
– cverify(KPub, Compiler, certCompiler) succeed.

If one of the checks fails, Sup aborts the protocol.
S4 Amanat Tool Transmission [ Sup ]

Sup sends to Ama both Verifier and Compiler as well as the certificates certVerifier

and certCompiler.
S5 Amanat Validation of the Tool Certificates [ Ama ]

Ama checks whether Verifier and Compiler are properly certified, i.e., it checks
whether

– cverify(KPub, Verifier, certVerifier) and
– cverify(KPub, Compiler, certCompiler) succeed.

If this is not the case, then Ama refuses to process any further input.
S6 Amanat Random Seed Generation [ Ama ]

Ama generates
– a series of random seeds R1, . . . , Rt together with a series of corresponding

key pairs 〈KR1
Cus,KR1

Pub〉, . . . , 〈KRt
Cus,KRt

Pub〉,
– encrypts the random seeds with the corresponding keys KRi

Pub(Ri) for i =
1, . . . , t, and

– initializes round counter round = 0.
Ama then sends all KRi

Pub(Ri) and KRi
Pub for i = 1, . . . , t to Sup.

Certification Phase. Ama is now ready for the certification phase, i.e., it will accept
source and produce a certified verdict on source which can be forwarded to Cus and
whose trustworthy origin can be checked by Cus.

During certification, Ama runs Verifier and Compiler on source, generates a certifi-
cate cert for the output logCus dedicated to Cus. The certificate is based upon the random
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seed Rround which Ama committed to use in this round of the certification protocol dur-
ing the session initialization phase. Ama sends the certificate cert, the outputs logSup

and logCus, and the key KRround
Cus to Sup.

To validate secrecy, Sup computes the random seed Rround =
KRround

Cus (KRPub(Rround)) which Ama supposedly used for the generation of cert. Then
Sup checks that the certificate cert is indeed a valid certificate and is based upon the
random seed Rround. If this is the case, i.e., the certificate is valid and is generated based
on the predetermined random seed, then Ama cannot hide any unintended information
in the certificates. If the checks fails, Sup aborts the protocol. Depending on the output
of the Verifier, Sup decides whether to forward the results to Cus or whether to abort
the certification phase. Finally, Cus checks conformance of output logCus using cert.

C1 Source Code Transmission [ Sup ]
Sup sends source to Ama.

C2 Source Code Verification by the Amanat [ Ama ]
Ama computes

– the verdict 〈logSup, logCus〉 = Verifier(source) of Verifier on source,
– the binary exec = Compiler(source),
– increments the round counter round, and
– computes cert = csign(KCus, 〈exec, logCus〉 , Rround).

Ama sends exec, logSup, logCus, cert, and KRround
Cus to Sup.

C3 Secrecy Validation [ Sup ]
Upon receiving exec, logSup, logCus, cert, and KRround

Cus , Sup
– decrypts the random seed Rround = KRround

Cus (KRround
Pub (Rround)), and

– verifies that cverify(KPub, 〈exec, logCus〉 , cert, Rround) succeeds.
If the checks fails, Sup concludes that the secrecy requirement was violated, and
refuses to further work with Ama.

Otherwise, Sup evaluates logCus and logSup and decides whether to deliver the
binary exec, logCus, and cert to Cus in step C4 or whether to abort the protocol.

C4 Conformance Validation [ Cus ]
Upon receiving exec, logCus, and cert, Cus verifies that
cverify(KPub, 〈exec, logCus〉 , cert) succeeds.
If the checks fails, Cus concludes that the conformance requirement was vio-
lated, and refuses to further work with Sup.

Otherwise Cus evaluates the contents of logCus and decides whether the verifi-
cation verdict supports the purchase of the product exec.

4 Protocol Correctness

In this section, we prove conformance and secrecy of our protocol using standard cryp-
tographic assumptions. Following [14], we assume that the public-key encryption is se-
mantically secure and that the used signature scheme is secure against adaptive chosen
message attacks, such as the RSA-based scheme proposed in [30]. We briefly introduce
these security properties:

Semantic security means that whatever can be learnt from the ciphertext within prob-
abilistic polynomial time, can be computed, again within probabilistic polynomial time,
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from the length of the plaintext alone. Formally, semantic security means that each
probabilistic polynomial time algorithm which takes as arguments a security parame-
ter, a public key, a number of messages encrypted with this key, the respective messages
lengths, and any further partial information on the messages, can be replaced by another
probabilistic polynomial time algorithm which only receives the security parameter, the
message lengths, and the partial information on the messages [14]. In other words, no
probabilistic polynomial time algorithm can extract any information from a set of en-
crypted messages.

An adaptive chosen message attack is an attack against a signature scheme, where
the attacker has access to an oracle which can sign arbitrary messages, and uses this
ability to sign some new message without consulting the oracle. More formally, a sign-
ing oracle S[KCus] with private key KCus is a function which takes a message m and
returns a signature s = csign(KCus, m, R) for a uniformly and randomly chosen random
seed R. An attack is a forging algorithm F which (i) knows the public key KPub and
(ii) has access to the signing oracle S[KCus], where KCus is the private key correspond-
ing to KPub. The algorithm F is allowed to query S[KCus] for an arbitrary number of
signatures. F can adaptively choose the messages to be signed, i.e., each newly chosen
message can depend on the outcome of the previous queries. At the end of the com-
putation, a successful attack F must output a message m and a signature s such that
cverify(KPub, m, s) succeeds, although m has never been sent to S[KCus]. A signature
scheme is secure against adaptive chosen message attacks, if there is no probabilistic
polynomial time algorithm F which has a non-negligible success probability.

We can now precisely state the main theorems.

Theorem 1 (Conformance). If the protocol terminates (in Step C4 of the certification
phase) with the customer Cus accepting the binary exec and the output file logCus, then
exec and logCus must be produced from the same source in all but a negligible fraction
of the protocol executions (under standard cryptographic assumptions).

Proof Sketch. Towards a contradiction, we assume that with non-negligible probability,
Sup can forge a certificate which is accepted by Cus in step C4. Thus, Sup computes
a certificate cert for a pair 〈exec, logCus〉 which has not been signed by Ama but is
accepted by Cus. Using semantic security, we show that such a malicious instance MSup
of Sup gives rise to a forging algorithm F which implements a successful adaptive
chosen message attack. This implies that the underlying signature scheme is not secure
against adaptive chosen message attacks—which is a contradiction. ��
We present a more extensive proof of Theorem 1 in [33]. We now turn to secrecy, which,
not surprisingly, is quite straight forward to prove.

Theorem 2 (Secrecy). By the execution of the protocol, Cus cannot extract any piece
of information on the source source which is not contained in exec and logCus.

Proof. During the execution of the protocol, Cus receives the binary exec, the output
file logCus, and the certificate cert. The certificate cert = csign(KCus, 〈exec, logCus〉, Ri)
can be generated from exec, logCus, the key KCus, and the underlying random seed
Ri. Cus generates KCus itself and obtains access to exec and to logCus. Thus the only
additional information communicated from Ama to Sup is the underlying random seed
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Ri. But this random seed Ri has been fixed by Ama before having access to source,
and consequently Ama cannot encode any information on the source source which is
not contained in exec and logCus into the certificate. ��

5 Conclusion

We have introduced the amanat protocol which facilitates software verification without
violating IP rights on the source code. The intended scenario for our protocol is a B2B
setting with a small numbers of customers, e.g. controller software and device drivers.

We also envision wider applications of our protocol in a B2C setting, i.e., for
commercial-off-the-shelf software. In this case, the customer party of the amanat proto-
col will not be enacted by an end customer, but by a certification agency which provides
commercial verification services. A detailed exploration of this scenario will be part of
future work.

Acknowledgments. We are thankful to Josh Berdine and Byron Cook for discussions
on the device driver scenario and to Andreas Holzer and Stefan Kugele for comments
on early draft of the paper.
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