
R. Shumaker (Ed.): Virtual Reality, HCII 2007, LNCS 4563, pp. 52–61, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Non-commercial Object-Base Scene Description

S.R. Gulliver, G. Ghinea, and K. Kaur

School of Information System, Computing and Mathematics
Brunel University, United Kingdom

{Stephen.Gulliver,George.Ghinea,Kulveer.Kaur}@brunel.ac.uk

Abstract. This paper investigates methods of describing two-dimensional and
three-dimensional scenes using eXtensible Mark-up Language (XML). It also
investigates the initial development of a non-commercial object-based scene
description language, for the effective capture of two- and three-dimensional
scenes. Design science research techniques were applied to determine the ideal
factors involved in effective scene capture. The solution facilitates the
description of 2D and 3D environments via interpretation of object
relationships; the implementation of the inheritance, functionality, interactions
and behaviour.

Keywords: XML, Scene description, hierarchy, functionality, behaviour.

1 Introduction

The process of creating virtual environments is diverse, but is traditionally achieved by
either describing object properties (coding / scripting), or by positioning predefined
objects into a blank virtual space (‘drag-and-drop’, a metaphor that allows the user to
pick up an object via the mouse pointer and move it to the desired location). There
have been a number of languages developed to create 2D and 3D scenes and virtual
environments. Sadly the languages possess problems of interoperability, reliability and
performance; the inability to incorporate effectively dynamic or interactive scenes
(Walczak, 2003); as well as limited or conflicting commercial support of rendering
within web browsers (Macdonald, et al., 2005). Modifications to previous standards
have been made, yet many of these problems still exist.

1.1 Scene Description Languages

Scene Description Languages aim to capture the physical world in a readable and
convenient way. The advent of the XML based technologies has delivered a number
of scene description languages with a range of advantages and disadvantages.

In 1994, first International Conference of the World Wide Web (WWW) was held
in Geneva (Carson, et, al., 1999). At this conference Mark Pesce, Tony Parisi, Tim
Berners-Lee, and David Ragget presented the concept of VRML. In the same year a
series of requirements was developed by the WWW and an open request for the
proposal was issued. As a result Silicon Graphics introduced the Open Inventor format,
which has been widely accepted. Silicon graphics engineer Gavin Bell developed the

 Non-commercial Object-Base Scene Description 53

working document for a VRML 1.0 specification and the first draft was presented in
October 1994 at the Second International World Wide Web Conference. The early
VRML just was static world, allowing for no interaction between the objects. The
extended version VRML 2.0 enhanced this with the support of JAVA, JavaScript,
sound, animation. The main technique used by VRML files for describing 3D world is
that of the hierarchical scene graph. Scene graph techniques were made popular by the
OpenInventor programmer toolkit from silicon graphics (Nadeau, 1999). As its name
suggests, a scene graph is a hierarchy of groups and shapes arranged in a tree structure.
Each of the parents and children within a scene graph are called nodes. These nodes
are used to construct 3D shapes, position the user’s viewpoint, aim a light source,
define animation paths, group shapes together and so forth. Scene graph parents
manage groups of children that my have children of their own. To create a complex
scene hierarchy, the children can be members of other scene graphs. The child node
inherits the properties of the parent node, known as simple inheritance.

The Extensible 3D language (X3D), was proposed by the Web3D consortium in
2001. X3D defines a three-dimensional run time environment and a mechanism to
deliver 3D content on the web; thus extending VRML with some new graphics
features (Bullard, 2003). New features included: Non Uniform Rational B-splines
(NURBs), Humanoid Animation, Multi-texturing, triangle primitives, 2D shapes
inside 3D shapes, advanced application programming interfaces, additional data
encoding formats, and a modular approach to implementation. Although adding
graphical realism, such improvements do not consider either the issues of dynamic
modelling and scene behaviour.

Walczak and Wojciech (2003) developed a high level language called X-VRML,
an XML based language that adds dynamic modelling capabilities to virtual scene
description standards such as VRML, X3D, MPEG-4. This language overcomes the
limitations of passive virtual reality systems by providing access to databases,
parameterisation, object-orientation and imperative programming techniques.
Parameterised virtual scene models are used to build database driven Virtual Reality
(VR) applications. The applications are able to generate virtual scene instances
according to the models, user queries, data retrieved from database, user preferences
and the current state of the application. X-VRML therefore allows a user to make
changes in the models structure at runtime, which facilitates scene behaviour and
interaction. The X-VRML language also permits designers to extend the language
with new features without affecting the previous designed application.

Hulquist et al. (2006) proposed an interesting and effective technique for
generating virtual environments (VEs) and describing scenes. Similar in nature to
many computer game world simulators, this technique describes scenes by allowing
the user to control the scene environment, for example: wet, sparse, tropical, cloudy,
light, mountains and undulating. The main benefit of this technique, although not
allowing description of object parameter, is that it allows large and complex virtual
environments matching certain user requirements to be created relatively quickly.

1.2 Adding Behaviour to the Scene

In our opinion, the success of 3D applications on the web depends upon the degree of
object behaviour and interactivity. Object behaviour could be the function, weight,

54 S.R. Gulliver, G. Ghinea, and K. Kaur

gravity, kinematics, etc. For a number of decades, the use of visual representation in
the process of building software has been studied and a number of high-level
languages have been developed. Virtual environments are used for a number of
applications including educational, industrial process, behavioural modifications and
games. At present, many tools have been developed in order to generate static
environments but a lot more could be done with respect to dynamic worlds.

Commonly behaviour is applied through short programs generally written in a
script language and then connected to the 3D objects in the visual file. For example,
Meyer and Conner (1995) have suggested language extensions that allow specifying
new types of VRML nodes as well as behaviour descriptions, which can be reused
and composite. They proposed a separator called prototyping nodes, which could
allow defining something without actually using it. Another behaviour system has
been described by Nadeau and Moreland (1995) that uses Perl scripts integrated with
VRML worlds. In this system behaviour is defined using another set of objects.
Example of this could be teapot, which includes a number of objects such as heating
its content like tea, etc.

An intelligent behaviour system was also developed by Del Bimbo, et al. (1994),
whereby an agent responds to events in a virtual environment using intelligent
decision-making. Similarly, Arjomandy and Smedley (2004) described a method of
adding behaviour to an object by using touch sensors and a scripting language.
Messages are passed between objects in order to create behaviour. An example of
this kind of behaviour was used in recent the film ‘Lord of the Rings’ to generate
soldiers used in battle scenes.

In work closer to ours, Dachselt and Rukzio (2002) introduced an XML based
framework for modelling 3D objects and developed a language called Behaviour3D.
Furthermore, Burrows and England (2005) suggested a language called BDL
(Behaviour Description Language). BDL proposed a view of behaviour and
developed software architecture, which provides the basis for implementing
behaviour at run time. The behaviour description language (BDL) described is based
on VRML and adds a number of features to support behavioural specification for
using it with their behaviour engine.

1.3 Interaction Added to the Objects in a Scene

Interactions are used to describe the dynamic operations of the user, objects and the
environment. Interactions define how a user interacts with the environment, with the
objects and shows how objects interact with each other.

Hendricks, et al. (2003) produced a Meta authoring tool, which allows both
beginner and advanced users to create virtual reality applications. This allows the
migration from non-programmer to experienced programmer. According to
Hendricks, et al. (2003) there are two ways of implementing behaviour and
interaction in the virtual application:

• Behaviour Based Interaction: The behaviour-based interactions of objects occur
according to attributes of the objects themselves, providing them a level of
autonomous behaviour. For example, the behaviour of a water toy is to float on the
water. The interaction of this toy with any other liquid will be the same as it is with
the water due to its floating nature.

 Non-commercial Object-Base Scene Description 55

• Event-Based Interaction: The event-based interaction takes place when the
occurrence of an event is caused by user intervention or any change in the
environment. For example, turning the light bulb on and off by pressing the switch.
A user interacts with the object switch and it interacts with other object light bulb.

In addition, Walczak and Wojciechowski (2005) have suggested a method for
creating interactive presentation dynamically for virtual environments. A non-
programmer can create objects and their actual presentation employing a user-friendly
content management application. The process of creating a presentation consists of (a)
creating a presentation space, (b) selecting objects, (c) selecting a presentation
template and (d) setting values of object and template parameters. The same
presentation space can be presented differently by the use of multiple presentation
template instances associated with different presentation domains.

The emphasis of our work is to consider both scene hierarchy, yet also the concepts
of behaviour and interactivity. An office, for example, is defined by the effective
placement of objects, such as a keyboard, a CPU, a mouse, a table, a desk and a chair.
The table may be made up of other objects: drawers, legs, etc. This table is physically
linked in some way to other objects in the environment, such as the floor, the
keyboard, the monitor, etc. In addition, certain objects have definable functionality
allowing interaction (both with the user, but also with other objects). Each object has a
physical appearance, location and orientation, as well as possibly having considerable
functional potential (often similar in nature to other instances of its type).

2 Initial Development

2.1 Examples and Assumptions

A design science approach was used in our work. Accordingly simple real world
scene examples were used to establish the important factors involved in the effective
capture of 2D and 3D scenes. Abduction processing was used to define the following
design objectives:

1. The final solution should be able to define both 2- and 3-Dimensional scenes using
a XML- based description.

2. A visual representation of hierarchy and interactivity is required to support non-
technical users.

3. Each object should be able to inherit the properties of other objects.
4. The design should be able to add functionality to an object.
5. The design should be able to define behaviour on the basis of properties.
6. The concept of interaction should be clearly defined.

Assumptions that were made when undertaking this research include:

1. The physical properties of an object (such as shape, appearance, translation, etc)
may be derived via the current X3D language.

2. There is a predefined, yet variable, set of relationship tags that will be used to
describe the scene. For example, ‘on the top’, ‘on the right hand side’, ‘touches’,
etc. Such tags could be defined by the user as required.

56 S.R. Gulliver, G. Ghinea, and K. Kaur

3. The concept of adding functionality will be described using UML flowcharts. Class
diagrams are functionally implemented in object-orientated programming code.

Incorporation and collaboration of current visual object-based external standards
facilitates acceptance, whilst limiting the need for technical programming skills.

2.2 Capturing Hierarchy Dependencies

In our solution, hierarchical dependencies is visually represented by relational
dependencies of objects (see Figure 1). For example: the Table has two draws.

S c e n e

C h a i r

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

T a b l e

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

D r a w e r

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()
A d d I t e m ()
R e m o v e I t e m ()

B o o k

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

D e s k t o p

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

K e y b o a r d

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

S h e l f

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

0 . . *

1

0 . . *

C u p

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()
1 . . *

0 . . *

1 . . *

0 . . *

0 . . *

0 . . *

1 . . *

1 . . *

1 . . *

1 . . *

1 . . *

0 . . *

0 . . *

B o o k 1

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

B o o k 2

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

S h e l f 2

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

S h e l f 1

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

C h a i r 1

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

C h a i r 2

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

M o v e ()

D r a w e r 2

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

A d d I t e m ()
R e m o v e I t e m ()
D r a g ()

D r a w e r 1

S h a p e
S i z e
M a t e r i a l
T r a n s f o r m a t i o n
O r i e n t a t i o n

A d d I t e m ()
R e m o v e I t e m ()
D r a g ()

Fig. 1. Office objects defined within the scene hierarchy

2.3 Capturing Functional Dependencies

In our solution, function dependencies is visually represented by adding associated
links between objects. For example: Drawer 1 On top of Drawer 2.

We made the assumption that there is a predefined, yet variable, set of relationship
tags that will be used to describe the scene. Every relationship has a meaning that aids
the description of interactivity. Although the list of link definitions is potentially
unlimited, in our worked example interactions were restricted to: On the top of
(ObjA, ObjB); Opposite to (ObjA, ObjB); In the RHS (ObjA, ObjB); In the LHS
(ObjA, ObjB); Next to the (ObjA, ObjB); Touches (ObjA, ObjB). This is then visually
represented using visual connections between object instances (see Figure 2).

 Non-commercial Object-Base Scene Description 57

ObjA

Attributes

Functions

ObjB

Attributes

Functions

ObjC

Attributes

Functions

Next to

On the top of

ObjD

Attributes

Functions

Touches

On the top ofTouches

Next to

On the top of Touches

Fig. 2. Visual demonstration of object functional dependencies

Parameter information can be incorporated by manipulating the interactions. In our
example, distance was added as the total length measured between two points
(currently unit independent). Distance, as a parameter, can be used to calculate
coordinates of the objects on the basis of the relationships that exist among objects. If

Picture Frame 1 Picture Frame 2 Picture Frame 3

Ball 1

Ball 2

Pyramid

Wooden
 Box

Fig. 3. Two-Dimensional Scene of a child’s room

58 S.R. Gulliver, G. Ghinea, and K. Kaur

the objects used in the scene are cake (ObjA) and a party hat (ObjB). The
relationships between these objects are “ObjA may be to the RHS of ObjB”, “ObjA is
next to ObjB” The distance between these two objects is given as 5. Interesting, as
more interactions, both functional and parameter information, is defined between
objects, more specific information can be determined concerning both the physical
and functional dependencies in the model.

To explicate a scene, a simple layout has been chosen for description (see
Figure 3). This scene is a room, which has got a number of things such as three
picture frames, two balls, one pyramid and a wooden box (see Figure 3). The system
requires coordinates for one of the object. User is supposed to describe the scene on
the basis of relationship exists among these various objects. The scene is depicted
using two dimensions of the objects

B all2

Shape
S ize
Material
Transform ation
O rien tation

Move()

P ictu re_Fram e3

Shape
S ize
Material
Transform ation
O rien tation

P ictu re_Fram e

Shape
Size
Material
Transform ation
Orientation

Move()

P ictu re_Fram e1

S hape
S ize
M aterial
Transform ation
O rien tation

B all

Shape
S ize
Material
Transform ation
Orientation

Move()

P icture_Fram e2

Shape
S ize
Material
Transform ation
Orientation

P yram id

Shape
S ize
Material
Transform ation
O rientation

Move()

Ball1

Shape
S ize
Material
Transform ation
O rientation

Move()

W ooden Box

Shape
S ize
Material
Transform ation
Orientation

Move()

Scene

Floor

S hape
S ize
M ateria l
Transform ation
O rien tation

A dd Item ()
Rem oveItem ()

Next to Next to

Next to

Touches

Touches

O n the top of

Touches

Touches

O n the top of

Touches

O n the top of

In the LHS

In the RHS

In the LHS of

Fig. 4. Child’s Room: objects and their functional relationships

 Non-commercial Object-Base Scene Description 59

In our example (Figure 3), there is a ball on the floor; it is also touching the floor.
There is another ball, which looks similar to the ball on the floor but this ball is on the
top of a wooden box. The bottom of ball touches the wooden box. A pyramid is on
the top of box. It is placed in the right hand side of the second ball. The ball
touches this pyramid. Both of the objects are on the top of wooden box and touch the
box. There are three picture frames hanging on the wall. One of them is in the right
corner of the room; second picture frame is next to it. The distance between these two
frames is about 10m distances. The last picture frame is next to second picture frame
and the distance is about 8m.

Visual description of functional relationships between objects allows a user to describe
relationships in a scene in a natural form. Moreover, the user is not concerned with the co-
ordinates of the object to describe the scene. The scene that is described above in Figure
16 can be explained using simple sentences i.e. in natural way. For instance the scene is
described here in simple language as:

The relationship used for describing the scene is differentiated using bold fonts.
The objects used in the scene are listed below: Floor, Ball1, Ball2, Pyramid, Wooden
Box, Picture Frame1, Picture Frame2, Picture Frame3. The relationship include:
Next to (Picture1, Picture2); Next to (Picture3, Picture2); On the top of (Ball1,
Floor); Touches (Ball1, Floor); On the top of (Pyramid, Wooden Box); On the top
of (Ball2, Wooden Box); Touches (Ball2, Wooden Box); Touches (Ball2, Pyramid)
Part= “Right side”; Next to (Ball2, Pyramid); In the RHS (Pyramid, Ball2); In the
LHS (Ball2, Pyramid).

All the above relationships amongst objects was then represented in a visual way.
Figure 4 clearly presents all the objects and the relationships that exist among these
objects. All objects have a number of relationships with other objects. As shown in
the diagram, classes for all three frames; thus pictureframe1, pictureframe2 and
pictureframe3 are subclasses of the super class picture frame. According to the nature
of child class, these three child classes inherit the properties and function of the parent
class named picture frame. Ball1 and Ball2 also inherit the features of the parent class
named Ball. This will help to reduce the complexity of the program as only one class
will be needed to define and child classes will use inheritance methods in order to
appear and perform the same functions. The next section will discuss the coding part
for this scene.

3 XML File Structure

Each relationship is given an identity so that it can be used by each of the objects (see
Figure 4). All information about relationships and locations of objects was described.
A file link was used to describe the image appearance.

Shape / appearance of objects are described using current modelling languages;
size / scale, orientation and object material / texture was dynamically manipulated in
object parameters. Documentation of functionality and inheritance was achieved by
launching a java-based programming environment and using java functional
inheritance properties.

60 S.R. Gulliver, G. Ghinea, and K. Kaur

Object 2 – A wooden Box Reference to object

Fig. 5. ‘A child’s bedroom’ - automatically generated from visual interactivity relationships

4 Conclusion

A XML- based description is described, that supports: a visual representation of
hierarchy and interactivity; inheritance of properties from other objects; addition of
object functionality and behaviour on the basis of properties. Previous scene
description standards have been developed, yet they do not cover the multi-
dimensional requirements that appear key to the capture of a dynamic scene. By
incorporating multiple standards, external programming tools, we have taken positive
steps towards a more eclectic implementation solution, for use in scene description.

References

1. Arjomandy, S., Smedley, J.T.: Visual Specification of Behaviours in VRML Worlds. In:
Proceedings of the ninth international conference on 3D Web technology, Monterey,
California, USA, pp. 127–133 (2004)

2. Del Bimbo, A., Pala, P., Santini, S.: Visual image retrieval by elastic deformation of object
sketches. In: Proceedings of IEEE Symposium on Visual Languages, pp. 216–223 (1994)

3. Carson, S.G., Pulk, F.R., Carey, R.: Developing the VRML 97 International Standard.
IEEE Computer Graphics and Applications 19(2), 52–58 (1999)

4. Dachselt, R., Rukzio, E.: Behaviour3D: An XML based Framework for 3D Graphics
Behaviour. In: Proceeding of the Eighth international Conference on 3D Web Technology,
Saint Malo, France, 101–ff (2003)

5. Hendricks, Z., Marsden, G., Blake, E.: A Meta-Authoring Tool for Specifying Interactions
in Virtual Reality Environments. In: Proceedings of the 2nd international Conference on
Computer Graphics, Virtual Reality, Visualisation and interaction in Africa, Cape Town,
South Africa, pp. 171–180 (2003)

6. Hultquist, C., Gain, J., Cairns, D.: Affective Scene Generation. In: Proceedings of the 4th
international Conference on Computer Graphics, Virtual Reality, Visualisation and
interaction in Africa, Cape Town, South Africa, pp. 59–63 (2006)

7. Macdonald, J.A., Brailsford, F.D., Bagley, R.S.: Encapsulating and manipulating
Component object graphics (COGs) using SVG. In: Proceedings of the 2005 ACM
Symposium on Document Engineering, Bristol, UK, pp. 61–63 (2005)

 Non-commercial Object-Base Scene Description 61

8. Meyer, T., Conner, B.: Adding Behaviour to VRML. In: Proceedings of the First
Symposium on Virtual Reality Modeling Language, San Diego, California, USA, pp. 45–
51 (1995)

9. Nadeau, R.D.: Building Virtual Worlds with VRML. IEEE Computer Graphics and
Applications 19(2), 18–29 (1999)

10. Nadeau, R.D., Moreland, L.J.: The Virtual Behaviour System. A behaviour Language
Protocol for VRML. In: Proceedings of the First Symposium on Virtual Reality Modeling
Language, San Diego, California, USA, pp. 53–61 (1995)

11. Walczak, K., Cellary, W.: Building database Applications of Virtual Reality with X-
VRML, Tempe, Arizona, USA, pp. 111–120 (2002)

12. Walczak, K., Wojceichowski, R.: Dynamic Creation of interactive mixed reality
presentations. In: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, Monterey, California, USA, pp. 167–176 (2005)

	Introduction
	Scene Description Languages
	Adding Behaviour to the Scene
	Interaction Added to the Objects in a Scene

	Initial Development
	Examples and Assumptions
	Capturing Hierarchy Dependencies
	Capturing Functional Dependencies

	XML File Structure
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

