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Abstract. This paper presents an approach to providing designers with the 
means to detect Human-Computer Interaction (HCI) vulnerabilities without 
requiring extensive HCI expertise. The goal of the approach is to provide 
timely, useful analysis results early in the design process, when modifications 
are less expensive.  The twin challenges of providing timely and useful analysis 
results led to the development and evaluation of computational analyses, 
integrated into a software prototyping toolset. The toolset, referred to as the 
Automation Design and Evaluation Prototyping Toolset (ADEPT) was 
constructed to enable the rapid development of an executable specification for 
automation behavior and user interaction. The term executable specification 
refers to the concept of a testable prototype whose purpose is to support 
development of a more accurate and complete requirements specification. 

Keywords: automation design, automation surprise analysis. 

1   Introduction 

This paper presents an approach to providing designers with the means to detect 
Human-Computer Interaction (HCI) vulnerabilities without requiring extensive HCI 
expertise. The goal of the approach is to provide timely, useful analysis results early 
in the design process, when modifications are less expensive. The approach consists 
of the development of computational Human-Automation Interaction (HAI) 
vulnerability analyses, integrated into a software prototyping toolset. The toolset, 
referred to as the Automation Design and Evaluation Prototyping Toolset (ADEPT) 
was constructed to enable the rapid development of an executable specification for 
automation behavior and user interaction. The term executable specification refers to 
the concept of a testable prototype whose purpose is to support development of a 
more accurate and complete requirements specification. 

The paper specifically focuses on the evaluation of the HAI vulnerability analyses’ 
operational validity. Operational validity refers to the effectiveness of the analyses in 
predicting actual difficulties in operation. The evaluation was performed by 
comparing vulnerability predictions from the tool to performance of participants 
operating two device prototypes created in ADEPT. 
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The metrics for determining whether or not an identified automation vulnerability 
causes difficulty in performance were defined as (1) failures in completing realistic 
tasks within a given amount of time, and (2) difficulty in predicting future automation 
behavior.  The vulnerability analyses were designed to identify vulnerabilities known 
to cause difficulty in operation [1,2,3,4]. 

The vulnerability analyses include: 

• Moded Inputs 
• Armed Behaviors 
• Automatic Behaviors 
• Inhibited Inputs 
• Similar Feedback 

Moded Inputs Analysis 
Moded Inputs are user interface objects (e.g., buttons, knobs, etc.) that may result in 
different device behaviors when an action is taken upon them (e.g., pressed, rotated, 
etc.). Moded Inputs may make it difficult to predict future automation behavior. A 
moded input is defined formally in ADEPT as a ‘user action which, depending on the 
mode of the device, can lead to more than one device behavior’. 

An example of a Moded Input in the study is a multi-function remote control that 
can control a television or a video recorder.  Depending on the “mode” of the remote 
control, the power button on the remote control will turn the television or recorder on 
or off. 

The vulnerability associated with moded inputs is most commonly referred to as 
“mode confusion” [3,5,6,7]. This difficulty is compounded if sufficient feedback is 
not provided. 

Armed Behavior Analysis 
Armed Behaviors are device behaviors that require more than just a user interface 
action for engagement. Armed behaviors are particularly troublesome because a delay 
usually exists between the user interface action and the time at which all of the 
conditions for engagement are satisfied.   

An example from aviation is the Korean Airlines 007. Although the true cause of 
this accident may never be known, a probable explanation for this accident is that 
the crew had “armed” the inertial navigation system, but it did not meet all the 
necessary conditions for engagement. The crew did not notice that the aircraft was 
proceeding off-course when they transgressed Russian airspace and were shot  
down [8]. 

Automatic Behavior Analysis 
Automatic Behaviors are device behaviors that engage independent of user input. 
Automatic Behaviors are similar to armed behaviors from a HAI standpoint. The 
difference between the two is that armed behaviors require a user interface action to 
initiate the automation behavior, while automatic behaviors do not. When coupled  
 



 Automatic Detection of Interaction Vulnerabilities in an Executable Specification 489 

with inadequate feedback, these behaviors have been referred to as “strong and 
silent” [4]. 

An example of an automatic behavior is airspeed envelope protection in certain 
aircraft that automatically engages and increases engine thrust if the airspeed drops 
below a specific airspeed threshold.   

Inhibited Inputs Analysis 
An Inhibited Input vulnerability is a user interface input action that does not result in 
a behavior change. Similar to Moded Inputs, Inhibited Inputs make it difficult to 
predict what the device will do after a user action. Although the vulnerabilities related 
to inhibited inputs are indirect, they greatly affect the user’s understanding of 
automation behavior. As such, it is difficult to find incident and accident reports for 
which inhibited inputs are a contributing factor, however it has been documented in 
controlled studies that inhibited inputs create confusion.   

Examples of inhibited inputs in the video recorder example used in the study, occur 
while the recorder is in the record mode, which disables all buttons except for the stop 
and power buttons. 

Vakil (1998, 2000) and Javaux (1998) have identified an inhibited input 
vulnerability as the source of the confusion that can occur when a flight crew attempts 
to engage a new mode while Approach Mode is active on some modern commercial 
aircraft. 

Similar Feedback Analysis 
A Similar Feedback vulnerability is present when the same interface objects are used 
to display the information content for more than one device behavior. In addition to 
being identified as a vulnerability [9,10].  Similar Feedback vulnerabilities compound 
other automation surprise vulnerabilities. Feary et. al (1998) examined experienced 
pilots’ knowledge of aircraft automation behaviors, and demonstrated a lack of pilot 
knowledge resulting from similar annunciations. The pilots in that study also showed 
significant improvements in automation behavior prediction when they were given 
feedback that matched the autopilot behavior. 

In the aircraft involved in the Korean Airlines 007 accident, the display of the 
inertial navigation mode was the same whether the system was “armed” or 
“engaged”.  This made it difficult for the pilots to determine the actual automation 
behavior. 

2   Method 

The operational validity evaluation was conducted on two device prototypes. The first 
device—a video recorder remote control (Figure 1)—was chosen as an example of a 
“walk-up and use” device (i.e., a person familiar with the goals for using the device 
should not require special training).  
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Fig. 1. Remote Control Prototype 

The second device—an autopilot for a modern transport category aircraft (Figure 2)—
was chosen as an example of a more complex device that does require specific training. 
The autopilot was chosen to present a challenge to the capabilities of the analyses: the 
design and training requirements for autopilots are very stringent due the safety critical 
nature of the commercial aviation. 

 

Fig. 2. The autopilot prototype 
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Participants  
Eighteen pilots participated in the evaluation. The pilots ranged in age from 20–46, 
and each held at least a current private pilot’s license.  All pilots had a minimum of 
200 hours of flight experience. The participants were also screened so as to have no 
formal Human-Automation Interaction training or expertise.  

Procedure 
The evaluation was conducted by analyzing the two devices in ADEPT, running 
domain expert participants through a representative series of tasks on the two device 
prototypes, and then comparing the results. The evaluation used two measures to 
evaluate the analyses’ prediction ability: task performance, and automation behavior 
prediction performance.  

An accurate prediction of task performance is the ultimate goal of the development 
of the automation vulnerability analyses, however it would be very optimistic to think 
that the automation surprise vulnerability analyses alone would be accurate predictors 
of task completion performance.  There are many variables that affect the ability of a 
user to complete a task and only a small number of those variables are considered in 
the analyses.  

To focus the evaluation of the analyses on automation surprise vulnerabilities, an 
additional measure referred to as automation behavior prediction performance was 
also evaluated. Performance on this measure was obtained by asking the participants 
to select the next automation behavior from a list of potential future behaviors. 

Data from the tasks was collected in two ways. First, the experimenter collected 
task performance data on an evaluation form.  The same experimenter (the author) 
collected data for all 15 participants. A more detailed backup of the data was collected 
through a data logging facility built into the prototype. Before each task, the 
experimenter activated the data logging facility, which kept a record of the 
participants’ actions, automation behaviors and state values, and times. 

3   Results 

The results of the evaluation showed that the analyses predictions did not show 
significant correlation to the users’ performance on the tasks, the predictions were a 
significantly correlated to the participants’ ability to determine future automation 
behavior..  As described earlier this result can be explained by the influence of 
additional complexity in predictions of task performance, including the perceptual 
quality of the interface feedback, the familiarity with the task, and the ability to use 
heuristics (i.e. process of elimination).  

Task Completion Analysis Results 
Task completion performance was determined by the ability of the participant to 
complete the each task within thirty seconds, although none of the participants failed 
any task because to time limit constraints. The tasks were ranked in order of predicted 
difficulty, defined as the number if identified vulnerabilities present. Figure 3 shows 
the results of the participants’ task completion performance compared with the task 
difficulty predicted by the analyses. 
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Fig. 3. Analysis Task Completion Results (note that two tasks contained 10 vulnerabilities, and 
five tasks contained 13 vulnerabilities) 

A spearman rank correlation coefficient was computed and showed that the 
predictions for the remote control tasks were significantly correlated with user 
performance (rs=0.97, p<.02, n=15). Although the analyses’ predictions for the 
autopilot tasks were not as accurate, the results show a weak trend of prediction 
versus user performance (rs=0.53, p<.1, n=18). 

Automation Behavior Prediction Analysis Results 
There were only two remote control behavior prediction questions. Both of these were 
related to which device the (video recorder or television) would be affected by a 
button press on the remote control. 

The participants were asked six autopilot behavior prediction questions.  Two of 
the six autopilot automation behavior prediction questions asked were not used for the 
evaluation. The questions, with only one vulnerability each, were not counted in the 
analysis for two reasons: the experiment prototype was determined to not have 
enough fidelity for the participants to reasonably be expected to answer the questions 
correctly; and both questions were related to airspeed envelope protection.  The 
automation behavior questions evaluation required that the simulation be paused 
immediately before the engagement of the automation behavior, and given the rapid 
onset of airspeed envelope protection, it was not always possible for the experimenter 
to pause the simulation before envelope protection engaged. 

Three of the remaining four questions required responses in terms of the future 
behavior of the autopilot. The fourth question (three vulnerabilities) asked the 
participant to predict a mode change, which involved computing an altitude value. 
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This value was judged to be answered correctly if the participant responded within 
100 feet of the correct value.   

Similar to the results of the remote control, the analyses were an accurate predictor 
of which automation behavior prediction questions participants would have difficulty 
with.  Figure 4 shows the results of the participants’ performance in response to the 
automation behavior prediction questions. 

Automation Behavior Prediction Results
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Fig. 4. Automation behavior prediction results (note that the two autopilot questions with two 
vulnerabilities each are marked by only one point) 

Figure 4 shows that the analyses accurately predicted the difficulty of the remote 
control behavior questions.  A spearman rank correlation coefficient was computed 
for the autopilot behavior questions and showed that the predictions were also 
correlated with user performance. (rs=0.95, p<.05, n=18). 

4   Discussion 

Although the automation vulnerabilities identified by the analyses were poor 
predictors of task difficulty, the analyses were accurate predictors of the difficulty the 
participants faced when answering the automation behavior prediction questions. Like 
the results from the remote control evaluation, this is particularly encouraging, as this 
is the measure that focuses most upon potential Human-Automation Interaction 
difficulties. 

It is also possible that the analyses’ prediction of task difficulty may be better than 
it initially appears. A problem that became apparent during the experiment is that the 
button on the Lateral Target Selector knob is easily recognized when implemented in 
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a 3-dimensional hardware, but difficult to distinguish in the 2 dimensional software 
representation. As a result, even though it was described in the training, the 
participants incurred many extra actions looking for the lateral target selector knob on 
the first task. 

There are a number of possible explanations for the analyses task performance 
results. 

The most likely explanation for the inaccuracy of the analyses predictions is that 
the means of rating the vulnerabilities is immature. The analyses are not currently 
intended to provide ratings, however, ratings are needed evaluate the quality of the 
identified vulnerabilities The analyses are intended to be useful for detailed design 
work, and to identify areas that should be examined further. The results suggest that 
single vulnerabilities appear to be good predictors of difficulty versus no 
vulnerabilities, but are currently less useful for comparing two tasks with multiple 
vulnerabilities. 

Closely related to this point, is the absence of weighting of the different 
vulnerabilities. It is extremely unlikely that all vulnerabilities would have the same 
effect on user performance. Prior to the study various methods were investigated for 
weighting the ratings of the vulnerabilities, however no empirical method for 
assessing the impact of the different vulnerabilities was identified.  During the study it 
was observed that some vulnerabilities appeared to have a greater impact on task 
performance than others. Additionally, the results of the remote control study suggest 
the effect that differentiating the vulnerabilities could have improved the performance 
of the analyses predictions. 

An example of the possible effects of weighting was alluded to earlier when 
describing the “Armed Behavior” vulnerability. The HAI vulnerability is affected by 
the length of time between user action and engagement (i.e. if the armed behavior 
engages immediately after the user action, there is not much of an HAI vulnerability). 
However, as described earlier, the analysis only identified the existence of an armed 
behavior, not the amount of time beween arming and angagement.   

This may provide an explanation for the inaccuracy in the prediction the 
anomalous autopilot task (shown as the fourth autopilot task from the left in figure 4).  
This was an off-nominal task, and it is possible that off-nominal tasks and the 
associated behaviors may cause more difficulty than some of the other vulnerabilities. 
The remote control results suggest that the weighting may be important, as the 
analyses provided better results when identifying singular vulnerabilities, however 
further testing is needed.   

Second, the analyses do not evaluate the “look and feel” of the interface. This 
absence is intentional, as the focus of these analyses is to examine what types of 
analyses can be formalized, and added as a supplement to traditional interface 
analysis, but has been proven to be a good indicator of usability difficulties. For 
example, the affordances work  [13] and label following work [14] indicates that 
participants are likely to select interface objects which have labels which closely 
match the task description, even if they have been trained in the functions of the 
objects.  

Third, the analyses do not account for sequence dependency or task context. The 
different patterns in data for the analysis of the automation behavior prediction 
questions and data for the analysis of the task steps seem to support this. This was 
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accounted for in the vulnerability point scoring by scoring all of the possible 
vulnerabilities regardless of sequence, however, the accuracy of the analysis 
predictions would likely increase if a more systematic method of analyzing the 
different possible sequences. 

Fourth, the results for the prediction of automation behavior tasks suggest that the 
lack of evaluation of the monitoring behaviors may have impacted accuracy of the 
task predictions.  The task decomposition accounts for monitoring behaviors and the 
vulnerabilities associated with the monitoring behaviors, however the experiments did 
not evaluate the effects of the vulnerabilities attached to the monitoring behaviors for 
the operational tasks evaluated. In contrast, the vulnerabilities associated with the 
monitoring behaviors could be the focus of an automation behavior prediction 
question, as illustrated by the first question in the autopilot evaluation which asked 
the participant to predict the when an armed behavior would engage.  

Fifth, the autopilot results may have also been disrupted/exaggerated by a lack of 
aural and vestibular feedback. Participants who initially made in incorrect action but 
corrected the action before completing the task were scored as completing the task. A 
good example of this is the anomalous autopilot task shown in figure 4 (fourth task 
from the left). It is possible that with additional aural and vestibular feedback, the 
participants would have corrected their actions. Similar to the fourth point, the results 
of the automation behavior prediction questions support this, as the directed questions 
focus on automation knowledge rather than feedback, and monitoring skills. 

Sixth, unlike the remote control, the autopilot is a device that is expected to require 
some amount of training to use. Training is provided specifically to mitigate the errors 
caused by a complex environment, a complex device, and/or a complex interface. 
Since the analyses make predictions based on the complexity of the device and 
interface, training may mitigate the impact of the predictions, and quality or 
comprehensiveness of the training may lead to differences in performance on certain 
tasks. For example a majority of training using autopilots for transport category 
aircraft is spent developing skills for responding to emergency or abnormal situations. 
As such the certain functions of the autopilot will receive more practice than others 
[11,15,16]. 

Seventh, it is possible multiple vulnerabilities may interact with each other to 
impact the predictions. For example, the autopilot contained inhibited behaviors, 
which, may impact the understanding of the user, and affect the way the user interacts 
with the device [11,15,16]. In fact the only autopilot input used by the participants 
that was not inhibited at some time during the evaluation was the Vertical Speed 
button, which would engage whenever the participant pressed the button. However it 
would not always engage the participant’s desired mode. Again, the automation 
behavior prediction question data supports this by focusing on automation 
understanding, whereas the educated guesses by the participant may obscure the level 
of automation understanding when using task data alone. 

Although the analyses predictions do not appear to accurately predict the difficulty 
of tasks for the autopilot for the reasons discussed above, the analyses did appear to 
accurately predict the difficulty of questions about the automation, and this is a 
significant finding towards the formalization of usability metrics from an automation 
behavior based perspective, compared to existing interface based usability techniques. 
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