
C. Stephanidis (Ed.): Universal Access in HCI, Part I, HCII 2007, LNCS 4554, pp. 497–506, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DEVAL – A Device Abstraction Layer for VR/AR

Jan Ohlenburg, Wolfgang Broll, and Irma Lindt

Collaborative Virtual and Augmented Environments Department

Fraunhofer FIT
Schloss Birlinghoven,
53754 Sankt Augustin

{jan.ohlenburg,wolfgang.broll,irma.lindt}@fit.fraunhofer.de

Abstract. While software developers for desktop applications can rely on
mouse and keyboard as standard input devices, developers of virtual reality
(VR) and augmented reality (AR) applications usually have to deal with a large
variety of individual interaction devices. Existing device abstraction layers
provide a solution to this problem, but are usually limited to a specific set or
type of input devices. In this paper we introduce DEVAL – an approach to a
device abstraction layer for VR and AR applications. DEVAL is based on a
device hierarchy that is not limited to input devices, but naturally extends to
output devices.

Keywords: Device Abstraction, Input Devices, Output Devices, Virtual
Reality, Augmented Reality.

1 Introduction

Multiple input and output (I/O) devices are essential parts of VR and AR applications.
They allow users to interact with the environment, modifying its state and properties
and perceiving the results of the interactions. For VR/AR applications, a large variety
of heterogeneous interaction devices exists. Among them are several tracking systems
[9], 3D pointing and mouse-related devices, projection and personal display
systems, tactile and force-feedback gloves, optical gesture and mimic recognition
systems, speech recognition and synthesis systems as well as less common,
application specific sensors and actuators [2].

There are several ways to integrate an interaction device into a VR/AR application.
An application can directly connect to a device by sending data to or receiving data
from an I/O device using the hardware drivers provided. While this approach offers a
high degree of control over device-specific functionality, it couples the application
tightly to the I/O device limiting its portability to different hard- and software setups.
Additionally, it puts a huge workload to the developer, who would have to deal with
an individual interface for each device. Thus, it is common practice for VR/AR
applications to decouple the application from specific interaction devices via device
abstraction layers.

498 J. Ohlenburg, W. Broll, and I. Lindt

Device abstraction layers describe sets of devices in abstract device classes.
Typically, devices are standardized and structured based on the data types they
provide or require (e.g. 3-DOF (degrees of freedom) vs. 6-DOF trackers).
Applications that integrate devices via device abstraction layers do not need to be
modified if a device is exchanged by a device of the same device type. Ideally, the
application even does not need to be restarted but can seamlessly switch at run-time
between different I/O devices.

In this paper we present our approach of a device abstraction layer for VR/AR
input and output devices extending beyond existing device abstraction layers. Our
intention was to include not only common groups of VR/AR interaction devices such
as 6-DOF trackers or a space mouse, but also to look at devices that are less
frequently considered by device abstraction layers such as temperature sensors or
gesture recognition systems, since these devices play a role in upcoming mobile and
context-aware VR/AR applications. The result is a general device abstraction layer,
that is clearly defined and that can therefore be easily extended by new device types.

The proposed device abstraction layer defines device classes and structures them
hierarchically. Devices in this hierarchy inherit the properties and characteristics of
their parent classes. One benefit is that applications requiring specific device type
functionality may use any device of the corresponding class hierarchy sub-tree.
Additionally, characteristics of device subclasses are not hidden, but can be accessed
by the application if required.

Another contribution towards more flexible and less device-dependent VR/AR
applications are adapters that can be used to transform and filter the data of input and
output data.

The paper is structured as follows: Section 2 describes work related to device
abstraction layers in the field of VR/AR and in the desktop computer domain.
Section 3 gives an overview of the device abstraction layer proposed in this paper and
points out our initial objectives. Section 4 deals with input devices and explains the
different groups of input devices with their characteristics. Section 5 deals with output
devices, respectively. Section 6 explains the concept of adapters. Section 7 concludes
the paper and points out possible future directions.

2 Related Work

The requirement to support a wide range of input and output devices is not limited to
VR and AR environments. However, within those environments such support is
critical, as interaction devices represent an essential part of the user interface and
interaction techniques are often employing non-standard interaction devices. In this
section, we will focus on related work in the area of VR and AR frameworks, but we
will also highlight some fundamental similarities to other environments or libraries
providing a flexible support of I/O devices.

OpenTracker [8] provides an object-oriented approach to access input devices, and
to fuse, to filter, or to transform their input. While the approach in general is
applicable to arbitrary devices, it has a clear focus on tracking devices. Using an
XML configuration it allows a flexible combination and processing of tracker data
flows by defining a behavior graph, where nodes generate output upon one or several

 DEVAL – A Device Abstraction Layer for VR/AR 499

inputs from sources or other nodes. Combiners and adaptors used in our approach
provide a more flexible but also more complex approach to combine or separate data
streams. In contrast to our approach, OpenTracker-based applications do not use a
unified API, but rather access the appropriate nodes directly as no inheritance of
devices is used. Similar to our approach devices may be accessed using a server push,
a polling, or a fixed frequency approach. Other similarities are the cross-platform
approach and the support of decoupled simulation.

Gadgeteer [3] is a device management system. Similar to our approach,
applications may access individual devices through rather generic device types,
allowing for replacing the device without any modifications to the actual application.
Other similarities include the cross-platform support, the ability to deal with device
failure, and the possible distribution of the input devices across several computers. In
contrast to our approach where the device class hierarchy uses simple generalized
devices as a basis and inherits or composes more complex ones from those, Gadgeteer
sub-divides input devices according to their data type (analog, digital, position, etc.).
While this approach allows easy replacements of one device of a particular data type
by another one of the same type, it does not take advantage of the possible relation
between devices by inheritance.

Additionally, both approaches -OpenTracker and Gadgeteer- are limited to pure
input devices. Contrary, our approach extends to ouput devices, allowing supporting
combined input/output devices. Further, our approach fully integrates streaming
devices, not supported by those two approaches.

VRPN [10] implements a network-transparent interface between application
programs and physical devices and allows for a dynamic discovery of interaction
devices. VRPN is an open-source project and the current version supports a wide
variety of input as well as output devices. In contrast to our approach the device
hierarchy is rather broad, limiting the exchangeability of devices required by a
VR/AR application.

Microsoft provides two device abstraction layer APIs as part of DirectX, which are
related to this work. DirectShow [7] is an abstraction layer for streaming media such
as video and audio. It allows accessing a wide variety of different devices to be
handled equally, no matter if the source is an internet stream, a file or direct input
from a device. The second abstraction layer of DirectX for mouse, keyboard and
joystick (including force feedback) devices is the DirectInput API. It is basically to
allow direct access to these devices by bypassing the Windows messaging
mechanisms. The API provides functionalities like iterating through the available
devices and acquiring the state of a device. Our approach is quite similar to the
DirectInput API, by using the Broker of the Morgan framework; an application can
iterate through the devices of a specified type and access them directly. Our approach
also goes beyond this abstraction since each device may have an extended interface of
its own to provide additional functionality.

3 The Device Concept – An Overview

The common understanding of a device is that it is a piece of hardware attached to a
computer. While such a definition is quite intuitive, it is not very precise and even

500 J. Ohlenburg, W. Broll, and I. Lindt

restrictive when it comes to a general description and classification of arbitrary input
and output devices. Thus, in this paper, we define devices as follows:

A device is a combination of a hardware component and
a software component, sending or receiving data. The
software component may contain a driver, a library, or
a software development kit.

Including software in this definition provides a useful generalization as for
computer devices software actually is an integral component as it would not be
possible to access the hardware otherwise. However, in many cases the software even
provides the characteristic functionality of a device. A typical example of such a
device is a speech recognizer. While capturing of the sound of course requires some
piece of hardware (at least a microphone), the more important part is actually the
software, which recognizes the speech and translates it into some input, which can be
further processed by the application.

The goal of our approach was to provide a general taxonomy covering all
(input/output) devices used in VR and AR environments. A realization based on this
classification should enable application developers to realize VR and AR applications
faster and more efficient, providing a significant higher flexibility regarding the
devices actually used. The main requirements for achieving these goals were:

• The approach should allow any new device or device type, not already part of the
classification to naturally extend it, without requiring any changes to the original
taxonomy (i.e. it should be obvious how and where a new device fits into the
existing hierarchy).

• Where devices can be sub-divided into logical sub-units or may only be used in
part, this should be reflected by the device hierarchy.

• Users should be able to replace one device by another of similar functionality or
even a set of other devices at runtime (i.e. the application developer does not need
to be aware of the particular device).

• It should be possible to connect devices to any machine in the system, running an
arbitrary operating system.

Our approach has been realized as part of our Morgan VR/AR framework [6] [1]
development. Consequently CORBA is used as the general communication
mechanism. This results not only in a device hierarchy, but also in an appropriate
inheritance of the corresponding interfaces. Developers are free to choose a rather
general interface of an abstract base class, allowing any other device inherited from
this interface to be used alternatively, or to apply a specific interface, potentially
offering some device-specific features, but restricting exchangeability. Typically, all
devices actually used within a specific setup are configured using a configuration file.
A propriety text based description exists in addition to an XML-based description.
Independent of this configuration, new devices may be added or replaced at run-time.

In our approach all devices are derived from one device base class, providing
general interfaces required for input as well as for output devices. This includes
setting or querying a device label and querying the operational state of a device, or
specific device features (the latter using a universal XML-based query format).

 DEVAL – A Device Abstraction Layer for VR/AR 501

In the following sections the details of our approach regarding the concepts and
realization of input and output devices will be described in detail.

4 Input Devices

Input devices represent the most prominent subgroup in the device hierarchy. This is
also reflected by the fact that most existing device abstraction layers are actually
restricted to this particular group of devices. Input devices cover the whole range of
devices used for interaction or for providing sensor information. Although, the
definition of an input device may seem obvious, we define it for completeness based
on our definition of devices.

An input device is a device, sending data into the
system, based upon input from reality.

In general, new input data will be provided by such a device either at specific
intervals or in an unpredictable manner. System components interested in input data
from the device may either query the current state of the device on a regular basis or
at the particular time when the specific data is required, or the device may send the
input data upon availability of new data. The first alternative may lead to unnecessary
communication resulting in higher latencies due to the round-trips necessary.
However, especially components, which do not need regular updates can significantly
reduce the update rate by deciding themselves if and when they actually need an
update of the current status. This especially applies to applications executed in an
environment depending on a low bandwidth connection or temporary disconnections
such as smartphones. The second alternative requires the device to keep a list of
interested components and to forward the input data whenever new information is
available. This minimizes unnecessary data communication and makes it easier for
the interested components to receive the data. However, devices using a rather small
bandwidth connection might be flooded by too many updates. In our approach we
support both alternatives, giving the application developer the freedom to choose the
most appropriate one. Hence, system components or applications may subscribe
themselves at the input device and will receive state changes regularly using the
publish-subscribe pattern [3]. Additionally, the current state can be queried without
the need of a subscription.

In order to reduce the communication load, subscribers may also choose rather to
specify a maximum or a minimum update rate resulting in a minimum or a maximum
period between two subsequent updates transmitted. This however, is only applicable
to specific devices (see Section 4.2). Using queries rather than the device push
mechanism implies another important difference: The queryable state of an input
device is the information available at the time of the query, e.g. the current tracked
location of an object for a tracking device. However, depending on the individual
device, the input data may not result in a state change. One example is a speech
(command) recognition device. While the command recognized will be transmitted to
components subscribed; it will not become part of the queryable state and thus cannot
be accessed by this mechanism.

502 J. Ohlenburg, W. Broll, and I. Lindt

We distinguish two major subcategories of input devices: Discrete Input Devices
e.g. a keyboard (see Section 4.1) and Continuous Input Devices e.g. a 6-DOF tracker
(see Section 4.2). See Fig. 1 for an overview of the input device hierarchy.

Fig. 1. The hierarchy for input devices. Interfaces for common device classes are inherited by
derived device classes.

4.1 Discrete Input Devices

Some input devices generate input data from a finite set of values. Often those values
are non-numerical, but rather enumerable, e.g. a light switch may either be on or off or
a button may be pressed or released. However, the cardinality of the set of values is
not restricted to two. Imagine for instance the input selector of an amplifier. It may
have six different states {tape, cd, aux, dvd, microphone, tuner}. We define such
devices as Discrete Input Devices:

A discrete input device is an input device, providing
decisive input data values from a finite set of discrete
values.

The following devices are currently supported as part of this hierarchy, i.e. the
classes representing these devices are derived from the abstract class Discrete-
InputDevice (compare Fig. 1): Button, GestureRecognizer and SpeechRecognizer.
Button may be e.g. a mouse button or a keyboard button with the states pressed and
released. The gesture and speech recognizer are able to recognize a finite set of hand
and finger gestures or spoken commands, respectively. The latter two devices actually

 DEVAL – A Device Abstraction Layer for VR/AR 503

do not have a state, which represents the current gesture or word, but they issue an event
after recognizing it.

4.2 Continuous Input Devices

In contrast to Discrete Input Devices, Continuous Input Devices are characterized by
continuous input values continuously issued during the usage of the device. The input
data may be any value within a certain range of numerical values. The volume knob
of an amplifier for instance may have a state within the range [0…100]. Hence we
define Continuous Input Device as follows:

A continuous input device is an input device,
continuously providing input data values within a
certain (continuous) range.

The data type of continuous input devices may be any continuous data type.
Examples include but are not limited to integer and floating point numbers, 3D
vectors, n x n matrices, etc. The state of a temperature sensor may be a value within
the range [-20°C…40°C] or the input from a slider may result in integer values within
the range [0…3]. The data values provided by continuous input devices have a limited
decisiveness, as intermediate values are typically not decisive and may be omitted
(e.g. to reduce network traffic). Continuous input devices allow transformations and
filtering on their data, which is not possible for discrete input devices.

As mentioned above, in our approach subscribers may choose a maximum update
frequency. However, restricting the update frequency usually is only useful for
Continuous Input Devices as skipping of a state change in a Discrete Input Device
will quite frequently render the transmitted data useless. Beside the maximum update
frequency, continuous input devices provide the possibility to specify a desired update
frequency. As many of these devices can be sampled or can be configured to deliver
events at an application dependent frequency (at least within a certain range), this
allows to access a specific device in an optimized manner. An application rendering a
3D scene at a fixed frame rate for example, may choose this frequency for a specific
input device to achieve a steady execution. However, the desired frequency of course
must not exceed the maximum update frequency (if specified).

The most important sub-hierarchy of continuous input devices are sensor devices:

A sensor device is a continuous input devices estimating
or measuring a real property and allowing for
calibration (in order to provide the desired input)

The measurement of the property will influence the current state of a Sensor. A
typical example for a Sensor device (which is not a Tracker – see below) is a
thermometer. Sensors have to be calibrated in order to work properly. However, this
does not necessarily have be done by the developer or user, but could have been done
by the manufacturer of the device. Nevertheless the software (interface) should allow
for a re-calibration or re-adjustment. This is not true for the other continuous input
devices, such as the mouse motion device. The mouse motion device provides
(depending on the used driver) relative position information about the mouse’s

504 J. Ohlenburg, W. Broll, and I. Lindt

movement, but it does not have an absolute position, since it can be picked up and
placed somewhere else without changing its state.

Trackers are a subclass of Sensor Devices, which estimate the position or
orientation of a real object in 1-3 degrees of freedom (DOF) – a 6 DOF tracker is in
our hierarchy a combination of a 3 DOF position and a 3 DOF orientation tracker.
They are essential for all kind of VR and AR systems as they require to track the
user’s location allowing to render the appropriate viewpoint dependent view as well
as realizing 3D input such as wands, 3D pointers, or tangible interfaces. All trackers
share the same common interface, allowing for setting a transformation matrix
containing the individual calibration data. Thus, we define tracking devices (trackers)
as follows:

A tracking device is a sensor device whose measured
property is a position or orientation (1-3 DOF each)

As already mentioned, tracking devices, which combine position and orientation
tracking derive from the appropriate classes, e.g. a GPS tracker derives from 1 DOF
position tracker (altitude) and 2 DOF orientation tracker (a direction vector
representing longitude and latitude).

Since all devices also provide their data through their derived interfaces, one of the
major advantages of this hierarchy is that it allows direct subscription to the interfaces
of the actually desired or required device. For instance, a subscriber may only be
interested in 3 DOF position data of an object; it will only receive this information
and does not have to care whether the object is maybe tracked by a 6 DOF tracker.

5 Output Devices

Output devices represent the second large sub-hierarchy of devices. They are able to
represent or to emit information. Again, we define it for completeness based on our
definition of devices as follows:

An output device is a device, receiving data from the
system, affecting its output to reality.

It either puts the device into a new state or it invokes the device to emit this
information, e.g. the state of a relay is set or a speech synthesizer emits the words.
Similar to input devices, the state of the output devices can be defined as the
information currently represented by the device at the current time. Accordingly, the
state is not necessarily identical to the latest output data sent to the device. Similar to
input devices, the state of output devices is queryable.

In general, the sub-hierarchy of the output device resembles that of input devices.
This also extends to the individual data types and data values. Actually, for many
input devices a corresponding output device exists. While for instance a 3-DOF
position tracker provides location information, a 3-DOF positioner (output device)
allows positioning an object within a specified 3D coordinate system.

According to the sub-hierarchy for input devices, we also distinguish between
discrete output devices and continuous output devices. An example for a discrete
output device is a switch, which may represent two or more states, e.g. {on, off} or

 DEVAL – A Device Abstraction Layer for VR/AR 505

{low, medium, high}. Examples for continuous output devices are relays, positioners
and rotators. A concrete example of a positioner and a rotator is the CyberForce, a
force feedback device, which is able to control the position of the hand and the angle
of each joint. An industrial robot is another example.

6 Adapters

Adapters [3] represent a powerful software design pattern [4], which can be used in
this hierarchy as a software component for converting between different interfaces.
Adapters allow for using a device in a different way and/or with a different interface
than the one originally provided. Thus, an adapter makes a device behaving like a
different one. In order to achieve this, an adapter inherits from the destination
interface and from the subscriber of the source interface, adapting the input interface
to the desired output interface.

For example, an application uses a 3-DOF position subscription to a 6 DOF
tracking device to update its camera position, e.g. using an ARToolkit [5] based 6-
DOF tracking. In order to be able to use a GPS tracker instead, an adapter can be used
to convert the information of the GPS tracker (2D orientation and 1D position) into a
3 DOF position tracking device and publish this data through the interface of a 6 DOF
tracker (see Fig. 2). This enables the application to subscribe to the GPS tracker
adapter. Thus, the two devices may be exchanged without any modification to the
application.

Fig. 2. Inheritance diagram for the GPS tracker to 6 DOF tracker adapter

Since adapters are not limited to one input device, they can also be used to
combine the data of several devices and provide them through one interface. The GPS
tracker adapter could e.g. also subscribe to a 3 DOF orientation tracker, e.g. an
Intersense InertiaCube, in order to provide the full 6 DOF information of the user.

Filters represent another major application area of adapters. We use for instance
adapters to provide interpolation and extrapolation filters to input data. Inheriting the
original interface of the input device, this allows adding filter chains between a device
and the actual application, without the need to change the application.

7 Conclusions and Future Work

In this paper we presented DEVAL, our approach to a device abstraction layer,
developed to provide a universal device hierarchy for VR and AR applications. Our
goal was to provide an approach which would not only classify existing devices, but

506 J. Ohlenburg, W. Broll, and I. Lindt

also easily extend to any new devices in the future. Using inheritance not only for the
device classes, but also for the networked interfaces allows users to use devices which
did not even exist at the time the application was developed. Further, our approach
provides the application developer with the full flexibility on how to receive the input
data from a device. We introduced the major subcategories of input devices within
our device abstraction layer: discrete input devices, continuous input devices, sensor
devices, and tracking devices. We further showed how our approach naturally extends
to output devices. We finally showed how adapters can be used to convert and
combine input data from several devices, or to apply filters.

In our future work we intend providing support for streaming input and output
devices as well as for alternative network distribution channels beside CORBA.

Acknowledgments. Parts of the work described in this paper were performed within
the IPerG project and the IPCity project. IPerG and IPCity are partially funded by the
European Commission in FP6 (FP6-2003-IST-3-004457 and FP6-2004-IST-4-27571).

References

1. Broll, W., Lindt, I., Ohlenburg, J., Herbst, I., Wittkämper, M., Novotny, T.: An
Infrastructure for Realizing Custom-Tailored Augmented Reality User Interfaces. IEEE
Transactions on Visualization and Computer Graphics, IEEE Educational Activities
Department, Piscataway, NJ, USA 11(6), 722–733 (2005)

2. Burdea, G., Coiffet, P.: Virtual reality technology. In: Wiley-Interscience (2004)
3. Gadgeteer,: Virtual Reality Applications Center, Iowa State University, Ames, IA (2005),

http://www.vrjuggler.org/gadgeteer
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
5. Kato, H., Billinghurst, M., Blanding, B., May, R.: ARToolkit. In: Technical Report.

Hiroshima City University (1999)
6. Ohlenburg, J., Herbst, I., Lindt, I., Fröhlich, T., Broll, W.: The MORGAN Framework:

Enabling Dynamic Multi-User AR and VR Projects. In: Proc. of the ACM Symposium on
Virtual Reality Software and Technology (VRST 2004), pp. 166–169. ACM Press, New
York (2004)

7. Pesce, M.D.: Programming Microsoft DirectShow for Digital Video and Television.
Microsoft Press, Redmond (2003)

8. Reitmayr, G., Schmalstieg, D.: An open software architecture for virtual reality interaction.
In: Proc. of the ACM Symposium on Virtual Reality Software and Technology (VRST
2001), pp. 47–54. ACM Press, New York (2001)

9. Rolland, J.P., Baillot, Y., Goon, A.A.: A Survey of Tracking Technology for Virtual
Environments. In: Fundamentals of Wearable Computers and Augmented Reality Chapter
3, pp. 67–112 (2001)

10. Taylor, R., Hudson, T., Seeger, A., Weber, H., Juliano, J., Helser, A.: VRPN: A Device-
Independent, Network-Transparent VR Peripheral System. In: Proc. of the ACM
Symposium on Virtual Reality Software and Technology (VRST 2001), pp. 55–61. ACM
Press, New York (2001)

	Introduction
	Related Work
	The Device Concept – An Overview
	Input Devices
	Discrete Input Devices
	Continuous Input Devices

	Output Devices
	Adapters
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

