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Abstract. While software developers for desktop applications can rely on 
mouse and keyboard as standard input devices, developers of virtual reality 
(VR) and augmented reality (AR) applications usually have to deal with a large 
variety of individual interaction devices. Existing device abstraction layers 
provide a solution to this problem, but are usually limited to a specific set or 
type of input devices. In this paper we introduce DEVAL – an approach to a 
device abstraction layer for VR and AR applications. DEVAL is based on a 
device hierarchy that is not limited to input devices, but naturally extends to 
output devices. 

Keywords: Device Abstraction, Input Devices, Output Devices, Virtual 
Reality, Augmented Reality. 

1   Introduction 

Multiple input and output (I/O) devices are essential parts of VR and AR applications. 
They allow users to interact with the environment, modifying its state and properties 
and perceiving the results of the interactions. For VR/AR applications, a large variety 
of heterogeneous interaction devices exists. Among them are several tracking systems 
[9], 3D pointing and mouse-related devices, projection and personal display  
systems, tactile and force-feedback gloves, optical gesture and mimic recognition 
systems, speech recognition and synthesis systems as well as less common, 
application specific sensors and actuators [2].  

There are several ways to integrate an interaction device into a VR/AR application. 
An application can directly connect to a device by sending data to or receiving data 
from an I/O device using the hardware drivers provided. While this approach offers a 
high degree of control over device-specific functionality, it couples the application 
tightly to the I/O device limiting its portability to different hard- and software setups. 
Additionally, it puts a huge workload to the developer, who would have to deal with 
an individual interface for each device. Thus, it is common practice for VR/AR 
applications to decouple the application from specific interaction devices via device 
abstraction layers.  
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Device abstraction layers describe sets of devices in abstract device classes. 
Typically, devices are standardized and structured based on the data types they 
provide or require (e.g. 3-DOF (degrees of freedom) vs. 6-DOF trackers). 
Applications that integrate devices via device abstraction layers do not need to be 
modified if a device is exchanged by a device of the same device type. Ideally, the 
application even does not need to be restarted but can seamlessly switch at run-time 
between different I/O devices. 

In this paper we present our approach of a device abstraction layer for VR/AR 
input and output devices extending beyond existing device abstraction layers. Our 
intention was to include not only common groups of VR/AR interaction devices such 
as 6-DOF trackers or a space mouse, but also to look at devices that are less 
frequently considered by device abstraction layers such as temperature sensors or 
gesture recognition systems, since these devices play a role in upcoming mobile and 
context-aware VR/AR applications. The result is a general device abstraction layer, 
that is clearly defined and that can therefore be easily extended by new device types. 

The proposed device abstraction layer defines device classes and structures them 
hierarchically. Devices in this hierarchy inherit the properties and characteristics of 
their parent classes. One benefit is that applications requiring specific device type 
functionality may use any device of the corresponding class hierarchy sub-tree. 
Additionally, characteristics of device subclasses are not hidden, but can be accessed 
by the application if required. 

Another contribution towards more flexible and less device-dependent VR/AR 
applications are adapters that can be used to transform and filter the data of input and 
output data.  

The paper is structured as follows: Section 2 describes work related to device 
abstraction layers in the field of VR/AR and in the desktop computer domain.  
Section 3 gives an overview of the device abstraction layer proposed in this paper and 
points out our initial objectives. Section 4 deals with input devices and explains the 
different groups of input devices with their characteristics. Section 5 deals with output 
devices, respectively. Section 6 explains the concept of adapters. Section 7 concludes 
the paper and points out possible future directions. 

2   Related Work 

The requirement to support a wide range of input and output devices is not limited to 
VR and AR environments. However, within those environments such support is 
critical, as interaction devices represent an essential part of the user interface and 
interaction techniques are often employing non-standard interaction devices. In this 
section, we will focus on related work in the area of VR and AR frameworks, but we 
will also highlight some fundamental similarities to other environments or libraries 
providing a flexible support of I/O devices. 

OpenTracker  [8] provides an object-oriented approach to access input devices, and 
to fuse, to filter, or to transform their input. While the approach in general is 
applicable to arbitrary devices, it has a clear focus on tracking devices. Using an 
XML configuration it allows a flexible combination and processing of tracker data 
flows by defining a behavior graph, where nodes generate output upon one or several 
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inputs from sources or other nodes. Combiners and adaptors used in our approach 
provide a more flexible but also more complex approach to combine or separate data 
streams. In contrast to our approach, OpenTracker-based applications do not use a 
unified API, but rather access the appropriate nodes directly as no inheritance of 
devices is used. Similar to our approach devices may be accessed using a server push, 
a polling, or a fixed frequency approach. Other similarities are the cross-platform 
approach and the support of decoupled simulation. 

Gadgeteer  [3]  is a device management system. Similar to our approach, 
applications may access individual devices through rather generic device types, 
allowing for replacing the device without any modifications to the actual application. 
Other similarities include the cross-platform support, the ability to deal with device 
failure, and the possible distribution of the input devices across several computers. In 
contrast to our approach where the device class hierarchy uses simple generalized 
devices as a basis and inherits or composes more complex ones from those, Gadgeteer 
sub-divides input devices according to their data type (analog, digital, position, etc.). 
While this approach allows easy replacements of one device of a particular data type 
by another one of the same type, it does not take advantage of the possible relation 
between devices by inheritance. 

Additionally, both approaches -OpenTracker and Gadgeteer- are limited to pure 
input devices. Contrary, our approach extends to ouput devices, allowing supporting 
combined input/output devices. Further, our approach fully integrates streaming 
devices, not supported by those two approaches. 

VRPN  [10]  implements a network-transparent interface between application 
programs and physical devices and allows for a dynamic discovery of interaction 
devices. VRPN is an open-source project and the current version supports a wide 
variety of input as well as output devices. In contrast to our approach the device 
hierarchy is rather broad, limiting the exchangeability of devices required by a 
VR/AR application. 

Microsoft provides two device abstraction layer APIs as part of DirectX, which are 
related to this work. DirectShow  [7] is an abstraction layer for streaming media such 
as video and audio. It allows accessing a wide variety of different devices to be 
handled equally, no matter if the source is an internet stream, a file or direct input 
from a device. The second abstraction layer of DirectX for mouse, keyboard and 
joystick (including force feedback) devices is the DirectInput API. It is basically to 
allow direct access to these devices by bypassing the Windows messaging 
mechanisms. The API provides functionalities like iterating through the available 
devices and acquiring the state of a device. Our approach is quite similar to the 
DirectInput API, by using the Broker of the Morgan framework; an application can 
iterate through the devices of a specified type and access them directly. Our approach 
also goes beyond this abstraction since each device may have an extended interface of 
its own to provide additional functionality. 

3   The Device Concept – An Overview 

The common understanding of a device is that it is a piece of hardware attached to a 
computer. While such a definition is quite intuitive, it is not very precise and even 
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restrictive when it comes to a general description and classification of arbitrary input 
and output devices. Thus, in this paper, we define devices as follows: 

A device is a combination of a hardware component and 
a software component, sending or receiving data. The 
software component may contain a driver, a library, or 
a software development kit.           

Including software in this definition provides a useful generalization as for 
computer devices software actually is an integral component as it would not be 
possible to access the hardware otherwise. However, in many cases the software even 
provides the characteristic functionality of a device. A typical example of such a 
device is a speech recognizer. While capturing of the sound of course requires some 
piece of hardware (at least a microphone), the more important part is actually the 
software, which recognizes the speech and translates it into some input, which can be 
further processed by the application. 

The goal of our approach was to provide a general taxonomy covering all 
(input/output) devices used in VR and AR environments. A realization based on this 
classification should enable application developers to realize VR and AR applications 
faster and more efficient, providing a significant higher flexibility regarding the 
devices actually used. The main requirements for achieving these goals were: 

• The approach should allow any new device or device type, not already part of the 
classification to naturally extend it, without requiring any changes to the original 
taxonomy (i.e. it should be obvious how and where a new device fits into the 
existing hierarchy). 

• Where devices can be sub-divided into logical sub-units or may only be used in 
part, this should be reflected by the device hierarchy. 

• Users should be able to replace one device by another of similar functionality or 
even a set of other devices at runtime (i.e. the application developer does not need 
to be aware of the particular device). 

• It should be possible to connect devices to any machine in the system, running an 
arbitrary operating system. 

Our approach has been realized as part of our Morgan VR/AR framework [6] [1] 
development. Consequently CORBA is used as the general communication 
mechanism. This results not only in a device hierarchy, but also in an appropriate 
inheritance of the corresponding interfaces. Developers are free to choose a rather 
general interface of an abstract base class, allowing any other device inherited from 
this interface to be used alternatively, or to apply a specific interface, potentially 
offering some device-specific features, but restricting exchangeability. Typically, all 
devices actually used within a specific setup are configured using a configuration file. 
A propriety text based description exists in addition to an XML-based description. 
Independent of this configuration, new devices may be added or replaced at run-time. 

In our approach all devices are derived from one device base class, providing 
general interfaces required for input as well as for output devices. This includes 
setting or querying a device label and querying the operational state of a device, or 
specific device features (the latter using a universal XML-based query format). 
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In the following sections the details of our approach regarding the concepts and 
realization of input and output devices will be described in detail. 

4   Input Devices 

Input devices represent the most prominent subgroup in the device hierarchy. This is 
also reflected by the fact that most existing device abstraction layers are actually 
restricted to this particular group of devices. Input devices cover the whole range of 
devices used for interaction or for providing sensor information. Although, the 
definition of an input device may seem obvious, we define it for completeness based 
on our definition of devices. 

An input device is a device, sending data into the 
system, based upon input from reality. 

In general, new input data will be provided by such a device either at specific 
intervals or in an unpredictable manner. System components interested in input data 
from the device may either query the current state of the device on a regular basis or 
at the particular time when the specific data is required, or the device may send the 
input data upon availability of new data. The first alternative may lead to unnecessary 
communication resulting in higher latencies due to the round-trips necessary. 
However, especially components, which do not need regular updates can significantly 
reduce the update rate by deciding themselves if and when they actually need an 
update of the current status. This especially applies to applications executed in an 
environment depending on a low bandwidth connection or temporary disconnections 
such as smartphones. The second alternative requires the device to keep a list of 
interested components and to forward the input data whenever new information is 
available. This minimizes unnecessary data communication and makes it easier for 
the interested components to receive the data. However, devices using a rather small 
bandwidth connection might be flooded by too many updates. In our approach we 
support both alternatives, giving the application developer the freedom to choose the 
most appropriate one. Hence, system components or applications may subscribe 
themselves at the input device and will receive state changes regularly using the 
publish-subscribe pattern [3]. Additionally, the current state can be queried without 
the need of a subscription. 

In order to reduce the communication load, subscribers may also choose rather to 
specify a maximum or a minimum update rate resulting in a minimum or a maximum 
period between two subsequent updates transmitted. This however, is only applicable 
to specific devices (see Section 4.2). Using queries rather than the device push 
mechanism implies another important difference: The queryable state of an input 
device is the information available at the time of the query, e.g. the current tracked 
location of an object for a tracking device. However, depending on the individual 
device, the input data may not result in a state change. One example is a speech 
(command) recognition device. While the command recognized will be transmitted to 
components subscribed; it will not become part of the queryable state and thus cannot 
be accessed by this mechanism. 
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We distinguish two major subcategories of input devices: Discrete Input Devices 
e.g. a keyboard (see Section 4.1) and Continuous Input Devices e.g. a 6-DOF tracker 
(see Section 4.2). See Fig. 1 for an overview of the input device hierarchy.  

 

Fig. 1. The hierarchy for input devices. Interfaces for common device classes are inherited by 
derived device classes. 

4.1   Discrete Input Devices 

Some input devices generate input data from a finite set of values. Often those values 
are non-numerical, but rather enumerable, e.g. a light switch may either be on or off or 
a button may be pressed or released. However, the cardinality of the set of values is 
not restricted to two. Imagine for instance the input selector of an amplifier. It may 
have six different states {tape, cd, aux, dvd, microphone, tuner}. We define such 
devices as Discrete Input Devices: 

A discrete input device is an input device, providing 
decisive input data values from a finite set of discrete 
values. 

The following devices are currently supported as part of this hierarchy, i.e. the 
classes representing these devices are derived from the abstract class Discrete-
InputDevice (compare Fig. 1): Button, GestureRecognizer and SpeechRecognizer. 
Button may be e.g. a mouse button or a keyboard button with the states pressed and 
released. The gesture and speech recognizer are able to recognize a finite set of hand 
and finger gestures or spoken commands, respectively. The latter two devices actually 
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do not have a state, which represents the current gesture or word, but they issue an event 
after recognizing it. 

4.2   Continuous Input Devices 

In contrast to Discrete Input Devices, Continuous Input Devices are characterized by 
continuous input values continuously issued during the usage of the device. The input 
data may be any value within a certain range of numerical values. The volume knob 
of an amplifier for instance may have a state within the range [0…100]. Hence we 
define Continuous Input Device as follows: 

A continuous input device is an input device, 
continuously providing input data values within a 
certain (continuous) range. 

The data type of continuous input devices may be any continuous data type. 
Examples include but are not limited to integer and floating point numbers, 3D 
vectors, n x n matrices, etc. The state of a temperature sensor may be a value within 
the range [-20°C…40°C] or the input from a slider may result in integer values within 
the range [0…3]. The data values provided by continuous input devices have a limited 
decisiveness, as intermediate values are typically not decisive and may be omitted 
(e.g. to reduce network traffic). Continuous input devices allow transformations and 
filtering on their data, which is not possible for discrete input devices. 

As mentioned above, in our approach subscribers may choose a maximum update 
frequency. However, restricting the update frequency usually is only useful for 
Continuous Input Devices as skipping of a state change in a Discrete Input Device 
will quite frequently render the transmitted data useless. Beside the maximum update 
frequency, continuous input devices provide the possibility to specify a desired update 
frequency. As many of these devices can be sampled or can be configured to deliver 
events at an application dependent frequency (at least within a certain range), this 
allows to access a specific device in an optimized manner. An application rendering a 
3D scene at a fixed frame rate for example, may choose this frequency for a specific 
input device to achieve a steady execution. However, the desired frequency of course 
must not exceed the maximum update frequency (if specified). 

The most important sub-hierarchy of continuous input devices are sensor devices:  

A sensor device is a continuous input devices estimating 
or measuring a real property and allowing for 
calibration (in order to provide the desired input) 

The measurement of the property will influence the current state of a Sensor. A 
typical example for a Sensor device (which is not a Tracker – see below) is a 
thermometer. Sensors have to be calibrated in order to work properly. However, this 
does not necessarily have be done by the developer or user, but could have been done 
by the manufacturer of the device. Nevertheless the software (interface) should allow 
for a re-calibration or re-adjustment. This is not true for the other continuous input 
devices, such as the mouse motion device. The mouse motion device provides 
(depending on the used driver) relative position information about the mouse’s 
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movement, but it does not have an absolute position, since it can be picked up and 
placed somewhere else without changing its state. 

Trackers are a subclass of Sensor Devices, which estimate the position or 
orientation of a real object in 1-3 degrees of freedom (DOF) – a 6 DOF tracker is in 
our hierarchy a combination of a 3 DOF position and a 3 DOF orientation tracker. 
They are essential for all kind of VR and AR systems as they require to track the 
user’s location allowing to render the appropriate viewpoint dependent view as well 
as realizing 3D input such as wands, 3D pointers, or tangible interfaces. All trackers 
share the same common interface, allowing for setting a transformation matrix 
containing the individual calibration data. Thus, we define tracking devices (trackers) 
as follows: 

A tracking device is a sensor device whose measured 
property is a position or orientation (1-3 DOF each) 

As already mentioned, tracking devices, which combine position and orientation 
tracking derive from the appropriate classes, e.g. a GPS tracker derives from 1 DOF 
position tracker (altitude) and 2 DOF orientation tracker (a direction vector 
representing longitude and latitude). 

Since all devices also provide their data through their derived interfaces, one of the 
major advantages of this hierarchy is that it allows direct subscription to the interfaces 
of the actually desired or required device. For instance, a subscriber may only be 
interested in 3 DOF position data of an object; it will only receive this information 
and does not have to care whether the object is maybe tracked by a 6 DOF tracker. 

5   Output Devices 

Output devices represent the second large sub-hierarchy of devices. They are able to 
represent or to emit information. Again, we define it for completeness based on our 
definition of devices as follows: 

An output device is a device, receiving data from the 
system, affecting its output to reality. 

It either puts the device into a new state or it invokes the device to emit this 
information, e.g. the state of a relay is set or a speech synthesizer emits the words. 
Similar to input devices, the state of the output devices can be defined as the 
information currently represented by the device at the current time. Accordingly, the 
state is not necessarily identical to the latest output data sent to the device. Similar to 
input devices, the state of output devices is queryable. 

In general, the sub-hierarchy of the output device resembles that of input devices. 
This also extends to the individual data types and data values. Actually, for many 
input devices a corresponding output device exists. While for instance a 3-DOF 
position tracker provides location information, a 3-DOF positioner (output device) 
allows positioning an object within a specified 3D coordinate system. 

According to the sub-hierarchy for input devices, we also distinguish between 
discrete output devices and continuous output devices. An example for a discrete 
output device is a switch, which may represent two or more states, e.g. {on, off} or 
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{low, medium, high}. Examples for continuous output devices are relays, positioners 
and rotators. A concrete example of a positioner and a rotator is the CyberForce, a 
force feedback device, which is able to control the position of the hand and the angle 
of each joint. An industrial robot is another example. 

6   Adapters 

Adapters [3] represent a powerful software design pattern [4], which can be used in 
this hierarchy as a software component for converting between different interfaces. 
Adapters allow for using a device in a different way and/or with a different interface 
than the one originally provided. Thus, an adapter makes a device behaving like a 
different one. In order to achieve this, an adapter inherits from the destination 
interface and from the subscriber of the source interface, adapting the input interface 
to the desired output interface. 

For example, an application uses a 3-DOF position subscription to a 6 DOF 
tracking device to update its camera position, e.g. using an ARToolkit [5] based 6-
DOF tracking. In order to be able to use a GPS tracker instead, an adapter can be used 
to convert the information of the GPS tracker (2D orientation and 1D position) into a 
3 DOF position tracking device and publish this data through the interface of a 6 DOF 
tracker (see Fig. 2). This enables the application to subscribe to the GPS tracker 
adapter. Thus, the two devices may be exchanged without any modification to the 
application. 

 

Fig. 2. Inheritance diagram for the GPS tracker to 6 DOF tracker adapter 

Since adapters are not limited to one input device, they can also be used to 
combine the data of several devices and provide them through one interface. The GPS 
tracker adapter could e.g. also subscribe to a 3 DOF orientation tracker, e.g. an 
Intersense InertiaCube, in order to provide the full 6 DOF information of the user. 

Filters represent another major application area of adapters. We use for instance 
adapters to provide interpolation and extrapolation filters to input data. Inheriting the 
original interface of the input device, this allows adding filter chains between a device 
and the actual application, without the need to change the application. 

7   Conclusions and Future Work 

In this paper we presented DEVAL, our approach to a device abstraction layer, 
developed to provide a universal device hierarchy for VR and AR applications. Our 
goal was to provide an approach which would not only classify existing devices, but 
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also easily extend to any new devices in the future. Using inheritance not only for the 
device classes, but also for the networked interfaces allows users to use devices which 
did not even exist at the time the application was developed. Further, our approach 
provides the application developer with the full flexibility on how to receive the input 
data from a device. We introduced the major subcategories of input devices within 
our device abstraction layer: discrete input devices, continuous input devices, sensor 
devices, and tracking devices. We further showed how our approach naturally extends 
to output devices. We finally showed how adapters can be used to convert and 
combine input data from several devices, or to apply filters. 

In our future work we intend providing support for streaming input and output 
devices as well as for alternative network distribution channels beside CORBA. 
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