
D. Schuler (Ed.): Online Communities and Social Comput., HCII 2007, LNCS 4564, pp. 86–95, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Computing Social Networks for Information Sharing:
A Case-Based Approach

Rushed Kanawati1 and Maria Malek2

1 LIPN – CNRS UMR 7030, 99 Av. J.B. Batiste F-93430 Villetaneuse
rushed.kanawati@lipn.univ-paris13.fr

2 LAPI – EISTI, 11 Av. du Parc F-95011 Cergy
maria.malek@eisti

Abstract. In this paper we describe a peer-to-peer approach that ails at allowing
a group of like-minded people to share relevant documents in an implicit way.
We suppose that user save their documents in a local user-defined hierarchy. the
association between documents and hierarchy nodes (or folders) is used by a
supervised hybrid neural-CBR classifier in order to learn the user classification
strategy. This strategy is then used to compute correlations between local fold-
ers and remote ones allowing to recommend documents without having a
shared hierarchy. Another CBR system is used to memorize how good queries
are answered by peer agents allowing to learn a dynamic community of peer
agents to be associated with each local folder.

Keywords: Collaborative Document Sharing. Peer To Peer, Case-based reason-
ing; Community identification.

1 Introduction

Social networks based information searching and dissemination approaches have
gained recently an increasing attention as a promising approach to handle the problem
of information searching on the Internet. The idea is to provide a computer-mediated
support that allow organized group of like-minded people to share their experiences in
information searching. Actually, it is reasonable to expect enhancing the outcome of a
personal information searching process by providing the user with some access to
searching experiences of other like-minded users [4, 7]. Useful experiences include:
a) relevant founded documents, b) interesting information sources as well as c) usage
information indicating how to better use existing searching tools. In this work we fo-
cus on the problem of documents sharing among an organized group of like-minded
people. Examples are shared bookmark systems [10, 11, 12, 13], and collaborative
bibliographical data management systems [2, 6, 9]. The problem here is to recom-
mend users that are interested in some topic T with documents that are effectively
relevant to T by exploring the set of judgments made by the group's members about
the relevancy of documents to interest topics. Relevancy judgment can be made
explicitly by users or inferred, in an implicit way, by observing user's actions.

 Computing Social Networks for Information Sharing: A Case-Based Approach 87

Interests topics are usually organized in a hierarchy. The goal is to ease document
indexing and recall processes. Hierarchies can either be user-defined as it is the case
of individual web bookmarking tools, or system-defined such as the case of using
some domain ontology to index the documents. According to the sharing degree of
the interests topic' hierarchy among the users we classify document sharing ap-
proaches into three classes:

1. Class 1: Systems where users share the same topic hierarchy with the
same interpretation of each topic. Most existing systems fall into this
class. Such systems have often a centralized architecture [1, 3]. Users reg-
ister, in an implicit or in an explicit way, relevancy judgment into a
central repository. The problem here is to compute (or to predict) how
relevant would be a document d for a user u knowing the relevancy of this
document to other users [3].

2. Class 2: Systems where users share the same hierarchy of interest' topics
but each has her/his own interpretation of topics. A document is judged
relevant to a topic T by one user may be judged relevant to other topics
(related to T) by others. In addition to the problem of predicting document
relevancy for each user, systems belonging to this class should also handle
the problem of heterogeneity of topics interpretation [9]

3. Class 3: Systems where each user manages her/his own topic' hierarchy.
This class can be seen as a generalization of the previous one. In addition
to the above mentioned problems, systems from this class should find a
mapping between the different topics hierarchies used by different users.

In this paper we describe a collaborative case-based reasoning (CBR) approach
for implementing systems from the third class. The basic idea of the proposed ap-
proach is to associate with each user a CBR classifier that learns how the user classi-
fies documents relevant to her/his own hierarchy of interest topics. The use of a CBR
classifier is motivated by the incremental learning capacities that can handle dy-
namic changing in user's classification strategies. Mapping topics defined by user U1
to those defined by another user U2 is computed by classifying documents provided
by U1 using the classification knowledge (i.e. cases) related to U2. In other words
the similarity measure between two topics (defined by two different users) is itself
computed by a CBR system. This mapping function is used to infer, for each user
and for each topic, the most appropriate social network to fed the local topic with
relevant documents. The reminder of this paper is organized as follows: The docu-
ment recommendation approach is described in section 2. Subsection 2.1 gives a
general overview of the approach. Then the three main components of the approach :
Learning to classify, learning to recommend and community learning are describes
inn subsequent subsections. Ann example of applying the recommendation approach
for implementing a bookmark recommendation approach is given with first experi-
mental results are given in section 2.5. Related work are reported in section 3 and a
conclusion is given in section 4.

88 R. Kanawati and M. Malek

2 Our Approach

2.1 General Description

The goal of the proposed document sharing approach is to allow a group of like-
minded people to share their documents in an implicit way [7]. Let U be the group of
users. U = {u1, u2,..., un} where n is the number the group members. The sharing sys-
tem functions as follows: each user ui manages her/his own document collection. We
assume that each user ui organizes his/her documents in a collection of folders Fui=
{fui

j}. The same document d can be saved to more than one local folder. Each user ui is
associated with a personal software assistant agent Aui. The role of this agent is to
learn to map, if possible, each local folder fui

j with folders managed by other users. In
other words the task of agent Aui is to learn a mapping function Mui : Fui → ∏j Fuj j ≠
i. Computing this mapping function requires computing a correlation measure be-
tween local and remote folders. A local folder fui

j will be mapped to highly correlated
remote folders. The huge number of available documents does not allow to use simple
folder correlation measure such as correlation(f1, f2) = ⎢f1 ∩ f2 ⎢/ ⎢f1 ∪ f2⎢since two
effectively highly correlated folders may have a low correlation degree computed by
such a function. A document similarity function could be used to cope with this prob-
lem. Correlation between two folders could be expressed by how much documents in
f1 are similar to those in f2. Another problem to cope with is that folders do not neces-
sarily express a class of documents. Folders are basically defined by users as a docu-
ment organization entity. Different users apply different document classification
criteria. Therefore using a mere document similarity function ay lead to poor folder
correlation detection. In our approach we propose to compute folder correlation as a
function of their usage similarity. More precisely, a correlation degree between folder
fui (created by user ui) and folder fuj (created by another user uj) is given by the ratio of
documents in folder fuj that would be classified in folder fui according to user ui classi-
fication scheme. Hence in order to compute the mapping function we first need to
model each user classification scheme. This is performed by using a incremental su-
pervised classifier. Classes to be recognized are defined by the set of folders created
by the user. The proposed classifier is described in next section. A collaboration pro-
tocol is described in section IV that allow each agent to compute correlation between
its local folders and remote ones. Documents added to remote folders that are highly
correlated to a local folder f will be recommended to be added to f. From the classifi-
cation learning point of view, each document recommendation will constitute either
as a positive example (if the recommendation is accepted by the user), or either as a
negative example (if the recommendation is rejected by the user). The classification
learning and the older correlation computation are described in the next two following
sections.

2.2 Learning to Classify

In order to learn the user document classification scheme, each personal agent imple-
ments an incremental hybrid neural/case-base reasoning classifier. This classifier
called PROBIS and initially proposed in [14] is based on the integration of a prototype-
based neural network and a flat memory devised into many groups, each of them is

 Computing Social Networks for Information Sharing: A Case-Based Approach 89

represented by a prototype. PROBIS contains two memory levels, the first level con-
tains prototypes and the second one contains examples. The first memory level is
composed of the hidden layer of the prototype-based neural network. A prototype is
characterized by:

1. The prototype’s center. This is given by the co-ordinates in the m-dimensional
space (each dimension corresponding to one parameter), these co-ordinates are
the center of the prototype.
2. The prototype’s influence region. This is determined, by the region of the
space containing all the examples represented by this prototype.
3. The class to which belongs the prototype. In our application the class is the
folder identifier in which the document is saved.

The second memory level is a simple flat memory in which examples are organised
into different zones of similar examples. These two levels are linked together, so that
a memory zone is associated with each prototype. The memory zone contains all ex-
amples belonging to this prototype. A special memory zone is reserved for atypical
examples. These are examples that do not belong to any prototype. Documents that
belongs to more than one folder will be typically saved in this memory zone. The
classifier system operates either in learning mode or in classification mode. The sys-
tem can switch from one mode to another at any moment. Before the first learning
phase, the system contains neither prototypes nor zones of examples. Examples for
training are placed initially in the atypical zone. Prototypes and associated zones are
then automatically constructed. An incremental prototype-based neural network is
used to construct the upper memory level. Particular and isolated examples are kept in
the atypical zone whereas typical examples are transferred to the relevant typical
zones. This memory organization helps to accelerate the classification task as well as
to increase the system’s generalization capabilities. In addition adding a new example
is a simple task, the example is added in the appropriate memory zone and the associ-
ated prototype is modified. The learning procedure is the following:

1) If the new example does not belong to any of the existing prototypes, a new pro-
totype is created (this operation is called assimilation). This operation is accomplished
by adding a new hidden unit to the neural network. The co-ordinates of this prototype
and the radius of the influence region is initialized to a maximal value (this is a sys-
tem parameter). A new memory zone is also created and linked to the prototype. The
new example is added to the new memory zone.

2) If the new example belongs to a prototype whose class value is the same as the
example, the example is added to the associated zone of the second level memory.
The prototype co-ordinates are modified according to the Grossberg learning law [5]
to fit better the new example (this operation is called accommodation). The vector
representing the prototype co-ordinates and memorized in the weights of the links
going from the input layer to this prototype is modified as follows:

Wpro(t+1)= Wpro(t)+g(t)*Sim (bi- Wpro(t))

where bi is the vector representing the document to classify, g(t) is a decreasing series
which tends to 0, and Sim is the document similarity function.

90 R. Kanawati and M. Malek

3) If the new example belongs to a prototype whose class value is not the same as
the example, the radius of this prototypes is decreased in order to exclude the new
example of this prototype (this operation is called differentiation). The new example
is introduced again to the neural network and the most similar prototype (if any) is
activated again and one of the three previous conditions is right.

2.3 Learning to Recommend

The goal of an assistant agent is to gather form peer agents documents that can be
relevant to be added to a local folder. Given a target local folder f, an agent applies the
following steps for computing documents relevant to f : First, the agent computes
summery of f. Actually, the summery is a keyword list containing the k-most frequent
keywords that are listed in descriptions of documents stored in f. Then the agent ap-
plies the community formation algorithm, described in section 2.4, in order to get the
list of peer agents that are likely to provide most relevant documents. A recommenda-
tion request is sent to each member of the computed community. A recommendation
request contains the following informations: the sender agent identifier, the target
folder identifier, the folder summery and the list of document descriptions of docu-
ments in f. Selected peer agents respond to a recommendation request by sending
back : a list of relevant folder's identifiers and a list of recommended agents. Local
folders whose correlation degree with the received folder is above a given threshold t
are said to relevant to the recommendation request. The correlation between folder f
and a local folder g is given by:

correlation(f,g) = |di in f : Class(di) = g | / |f|

Where Class(x) is a function giving the predicted class, according to the local
classifier, of document di. With each sent folder, the agent associate the computed
correlation degree.

The list of recommended agents is computed by applying the local community
formation algorithm (see section 2.4) using the received folder summery. This facility
allow to propagate among agents of the system the expertise of the different agents.
Notice that either of the both answer lists (recommended folders end agents) can be
empty. Upon receiving answers for the selected peer agents, the initiator agent used
the lists of relevant folders with their correlation degrees for updating a local folder
correlation matrix (FCM). The FCM is a m X n matrix where m is the number of fold-
ers in the local repository and n the number of peer agents known to the agent. An
entry FCM[i, j] is a set of couples <fjk ,corij> where fjk is a folder identifier maintained
by user uj and corij is the correlation degree between the folder fjk and the folder fik

maintained by local agent.
The FCM matrix is used by an assistant agent in order to determine which remote

folders are highly correlated to a given local folder f. A folder request message is then
sent for agents that have the selected remote folders. Upon receiving a folder request
message, an agent send back all documents contained in the requested folders. The
initiator agent merges the list of received documents (in case it requests downloading
more than one remote folder) and the top K-documents will be presented to the asso-
ciated user when accessing the local folder f. K is a user defined parameter that allow
the user to limit the number of new documents to be recommended at once when

 Computing Social Networks for Information Sharing: A Case-Based Approach 91

accessing a local folder. This two step document recommendation computation proc-
ess aims at reducing the network traffic by transmitting over the networks only docu-
ments to be effectively recommended to the user.

Received lists of recommended agents are used by the community formation mod-
ule, described in the next section, in order to complete its information about the peer
community associated to a given local folder. The user evaluates the recommended
documents by simply accepting or refusing each of these documents. Recommenda-
tions provided by a given agent are evaluated using the classical precision and recall
criteria defined as follows:

Precision (summery, ai) = | accepted recommendations provided by ai | /
| recommended documents |

Recall (summery, ai) = | accepted recommendations provided by ai |
 | accepted recommended documents |

The user feed back is used, on one hand, to update the the local agent classification
knowledge as described in section 2.2. On another hand, it is used to evaluate the rec-
ommendations provided by peer agents. This evaluation is used by the community
computation module, as described in the next section.

2.4 Community Computation

In order to avoid sending recommendation requests to all known peer agents, we pro-
vide each assistant agent with learning capability that allow to compute for each local
folder a set of peer agents that are most likely to provide relevant documents. We call
these agents, the folder community.

We use a second CBR reasoner in order to compute folder's communities. A source
case is classically composed of a problem part and a solution part []. In this sub-
system, the problem part is given by a keyword list that summarize a folder content
while the solution part is composed of the list of peer agents identifiers. With each
agent identifier is associated a the highest correlation degree obtained from this agent
and, if it exists, the user evaluation of the recommendations provided by this remote
agent answering a recommendation request using the folder summery provided in the
problem part.

Initially, the case base is empty. As a consequence, the local agent will send the
recommendation request to all known agents. Upon receiving recommendations and a
the user feedback, a new source case can be added to the case base. The recommenda-
tion evaluation criteria are used to compute a trust degree in the concerned remote
agent. The trust degree is defined as the product of the computed precision and recall.
Notice that only agents that have answered a folder request message (see previous
section) can be evaluated. All other agents that have answered a recommendation re-
quest message will be assigned a neutral trust degree (i.e. 0.25 on a scale from 0 to 1,
that to say that both precision and recall are equal to 0.5).

Before sending a new recommendation request with a target folder f, the agent
computes the new summery of f. The summery of a folder changes in function of the
actual set of documents that are stored in f but also in function of the summery of
other local folders. the case retrieval phase computes the similarity between the new

92 R. Kanawati and M. Malek

folder summery and the problem part of each stored case. Cases with similarity
measure above a given threshold tr will be retrieved. Each retrieved case provides a
set of agents to contact. The obtained lists of agents are then merged and the result list
is sorted in function of the trust degree. The top K-agent (where K is another system
parameter) will form the folder community.

2.5 Application: Collaborative Bookmarking

In oder to illustrate our document recommendation approach, we have applied the
proposed approach in the context a collaborative bookmark management system. In
this application a document is represented by a bookmark. A bookmark is described
by a couple : 1) the address of the indexed web site (i.e. the site URL) and 2) by a set
of keywords that summarize the content of the indexed page. Hence the similarity
between two bookmarks is defined as a weighted sum of two basic similarities de-
fined overs URL and keyword lists.

sim(b1, b2) = α URLSim(b1.url, b2.url) + (1-α) ContSim(b1.Cont, b2.cont)

Where 0<α<1 is weight of the address similarity. The address similarity URLSim
function is defined as follows:

URLsim(a,b) = 0 if a and b have different web servers.
URLSim(a,b) = 1- h(a.FP, MSCA(a.FP,b.FP) +

 h(b.FP,MSCA(a.FP,b.FP) /h(a.FP,root) +h(b.FP,root)

Where the function h() returns the number of links between two nodes in the docu-
ments tree and MSCA() returns the most specific common ancestor of two nodes in a
tree. This similarity measure is based on the hypothesis that two documents that are
placed in the same directory on the same server are similar to each other. More the
directory is deep in the server hierarchy more the documents are related to each other.

The content similarity function is defined by : ContSim(u,v) = | u Ո v | / | u Ս v | .
In order to validate our approach we have applied the following experimentation

protocol. We start by forming a synthetic collection of bookmarks. The total number
of bookmarks is 300. These bookmarks are grouped in 30 folders. The mean number
of bookmarks per folder is 10. Starting from this bookmark collection we randomly
generated ten other collections by modifying each by up to 35%. Two types of opera-
tions are possible in order to modify a folder: 1) delete a bookmark from the entire
collection ,2) move a bookmark to another folder. Notice that we assume that a
bookmark may not belongs to two different folders at the same time. The generated
bookmark collections verify, by construction, this property. The modification per-
centage (i.e. 35%) ensures a suitable overlapping between the different collections of
bookmarks. The system performances are evaluated by two criteria:

• The learning ratio that measures for each classifier the precision of good classifi
cations of examples belonging to the learning set (i.e. local bookmarks used to
build the classifier)

 Computing Social Networks for Information Sharing: A Case-Based Approach 93

• The generalization ratio that measures the precision of recommending a bookmark
of the right folder. The right folder of a bookmark is the original folder where the
bookmark was in the initial collection.

A set of ten different experiences has been conducted. The average obtained learn-
ing ratio is 93,3% and the average generalization ratio 86,2%. While these figures are
encouraging, we should admit that these will not be the same is real world settings
where overlapping ration among bookmark folders is far below the artificial overlap-
ping threshold we have imposed in our experimental work.

3 Related Work

A number of document sharing and recommendation systems are proposed in the sci-
entific literature. Most of existing systems fall in the first two classes defined in
section 1.

Pharos [1] and KnoweldgePump [3] provide users with the possibility to share a
centralized document repository. The repository hierarchy is defined by a system ad-
ministrator. Both systems provide also customization service in order to recommend
users with documents that are more interesting for them in given folder. Recommen-
dation computation is made by applying a collaborative filtering mechanism that is
base on matching the characteristics of bookmarks added and accessed by each user.

GAB is a shared bookmark system that allows merging different user bookmark re-
pository in a virtual centralized bookmark [16]. No recommendation mechanism is
provided. It is up to the users to navigate in the merged repository to find bookmarks
they are interested in. A comparable approach is also implemented in the Power-
Bookmarks systems [11]. CoWing in a peer-to-peer (P2P) multi-agent collaborative
bookmarking system [7, 8]. CoWing is the our first prototype of document sharing
system. In this early prototype agents send recommendation request to all known
agents and all agents respond directly with the set of documents to recommend. No
Community formation function is provided. Bibster [2, 6] is a P2P bibliographical
data sharing system. In this system, each agent publishes its own expertise for all
agents. The published expertise is used to match agents to actual need of recommen-
dation expressed by an agent.

Most related to our approach are the COBRAS system [9] and the REMINDIN
approach [15]. Both systems provide a query routing in a P2P network based on ob-
serving queries that are successfully answered by peer agents, these queries are
memorized locally. Subsequently, a peer uses this information in order to select others
peers to forward request to.

4 Conclusion

In this paper we've proposed a new approach for allowing a a group of like-minded
people to share documents in an implicit and intelligent way. Users are not required to
do extr effort to get document recommendations from others. They are only required
o maintain their personal documents in a hierarchy of folders (as most do). Personal

94 R. Kanawati and M. Malek

software agents observes users in order to learn document classification rules. This
knowledge is used to compute a correlation degree between local folders and remote
ones. In addition, agents uses feed-back provided by the user when accepting or re-
jecting recommendations in order to learn to associate a community of peer agents for
each local folder. Recommendation request concerning a local folder is only sent to
the community avoiding broadcasting the request to all known peers.

References

1. Bouthors, V., Dedieu, O.: Pharos, a Collaborative Infrastructure for Web Knowledge Shar-
ing. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, pp. 215–
233. Springer, Heidelberg (1999)

2. Brockstra, J., et al.: Bibster: A semantic-based bibliographic P2P syste. In: Proceedings of
the second workshop on semantics in P2P & grid computing, New York, pp. 3–22 (May
2004)

3. Glance, N., et al.: Making recommender systems work for organization. In: proceedings of
PAAM’99, London (April 1999)

4. Delgado, J., Ishii, N., Ura, T.: Intelligent Collaborative Information Retrieval. In: Coelho,
H. (ed.) IBERAMIA 1998. LNCS (LNAI), vol. 1484, pp. 170–182. Springer, Heidelberg
(1998)

5. Grossberg, S.: Competitive learning: From interaction activation to adaptive resonance.
Cognitive Science 1, 23–63 (1987)

6. Hasse, P., Ehrig, M., Hotho, A., Scnizler, B.: Personnalized Information Access in a bib-
liographic Peer-to-Peer System. In: Staab, S., Stuckenschmidt, H. (eds.) Semantic web and
Peer-to-Peer, Decentralized management and exchange of knowledge and information, pp.
144–157. Springer, Heidelberg (2006)

7. Kanawati, R., Malek, M.: Informing the design of shared bookmark systems. In: proceed-
ings of RIAO’2000: Content-based Multimedia information access, Paris (2000)

8. Kanawati, R., Malek, M.A.: multi-agent system for Collaborative Bookmarking. In: pro-
ceedings of fourth international Workshop on Agent-oriented Information System
(AOIS’02), CEUR , vol. 59, Bologna, pp. 84–97 (July, 2002)

9. Karoui, H., Kanawati, R., Petrucci, L.: COBRAS: Cooperative CBR System for Biblio-
graphical Reference Recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir,
H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 76–90. Springer, Heidelberg
(2006)

10. Keller, R.M., Wolf, S.R., Chen, J.R., RabinowitzJ., L., Mathe, N.A: Bookmaking Service
for Organizing and Sharing URLs. In: Proceedings of the 6th International Conference on
the World Wide Web, Santa Clara, CA (April 1997)

11. Li, W., Vu, Q., Agrawal, D., Hara, Y., Takano, H.: PowerBookmarks: A system for Per-
sonnalizable Web Information Organization, Sharing and Management. In: proceedings of
the 8th International World Wide Web Conference (WWW’8), Toronto, Canada (May
1999)

12. Lim, J-G.: Using Cool-lists to Index HTML Documents in the Web. In: Proceedings of the
2nd International Conference on the World Wide Web (WWW’2) Chicago, IL, 1994 pp.
831–938 (1994)

13. Maarek, Y.S., Ben Shaul, I.Z.: Automatically Organizing Bookmarks per Contents. In:
Proceedings of the 5th International World Wide Web Conference, Paris (May 6-8, 1996)

 Computing Social Networks for Information Sharing: A Case-Based Approach 95

14. Malek, M.: Hybrid approaches Integrating Neural Networks and case based reasoning:
from Loosely Coupled to Tightly Coupled Models. In: Sankar, K.P., Tharam, S.D., Daniel,
S.Y. (eds.) Soft Computing in Case-based Reasoning, pp. 73–94. Springer, Heidelberg
(2000)

15. Tempich, C., Staab, S.: Semantic Query Routing in Unstructured Networks Using Social
Metaphors. In: Staab, S., Stuckenschmidt, H. (eds.) Semantic web and Peer-to-Peer, De-
centralized management and exchange of knowledge and information, pp. 107–123.
Springer, Heidelberg (2006)

16. Wittenburg, K., Das, D., Hill W., Stead, L.: Group Asynchronous browsing on the World
Wide Web. In: Proceedings of the 6th International Conference on the World Wide Web
(WWW’6) (1997)

	Introduction
	Our Approach
	General Description
	Learning to Classify
	Learning to Recommend
	Community Computation
	Application: Collaborative Bookmarking

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

