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Abstract. In this paper we describe a peer-to-peer approach that ails at allowing 
a group of like-minded people to share relevant documents in an implicit way. 
We suppose that user save their documents in a local user-defined hierarchy. the 
association between documents and hierarchy nodes (or folders) is used by a 
supervised hybrid neural-CBR classifier in order to learn the user classification 
strategy. This strategy is then used to compute correlations between local fold-
ers and remote ones allowing to recommend documents without having a 
shared hierarchy. Another CBR system is used to memorize how good queries 
are answered by peer agents allowing to learn a dynamic community of peer 
agents to be associated with each local folder.  

Keywords: Collaborative Document Sharing. Peer To Peer, Case-based reason-
ing; Community identification. 

1   Introduction 

Social networks based information searching and dissemination approaches have 
gained recently an increasing attention as a promising approach to handle the problem 
of information searching on the Internet. The idea is to provide a computer-mediated 
support that allow organized group of like-minded people to share their experiences in 
information searching. Actually, it is reasonable to expect enhancing the outcome of a 
personal information searching process by providing the user with some access to 
searching experiences of other like-minded users [4, 7]. Useful experiences include: 
a) relevant founded documents, b) interesting information sources as well as c) usage 
information indicating how to better use existing searching tools. In this work we fo-
cus on the problem of documents sharing among an organized group of like-minded 
people. Examples are shared bookmark systems [10, 11, 12, 13], and collaborative 
bibliographical data management systems [2, 6, 9]. The problem here is to recom-
mend users that are interested in some topic T with documents that are effectively 
relevant to T by exploring the set of judgments made by the group's members about 
the relevancy of documents to interest topics. Relevancy judgment can be made  
explicitly by users or inferred, in an implicit way, by observing user's actions.  
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Interests topics are usually organized in a hierarchy. The goal is to ease document 
indexing and recall processes. Hierarchies can either be user-defined as it is the case 
of individual web bookmarking tools, or system-defined such as the case of using 
some domain ontology to index the documents. According to the sharing degree of 
the interests topic' hierarchy among the users we classify document sharing ap-
proaches into three classes: 

1. Class 1: Systems where users share the same topic hierarchy with the 
same interpretation of each topic. Most existing systems fall into this 
class. Such systems have often a centralized architecture [1, 3]. Users reg-
ister, in an implicit or in an explicit way, relevancy judgment into a  
central repository. The problem here is to compute (or to predict) how 
relevant would be a document d for a user u knowing the relevancy of this 
document to other users [3].  

2. Class 2: Systems where users share the same hierarchy of interest' topics 
but each has her/his own interpretation of topics. A document is judged 
relevant to a topic T by one user may be judged relevant to other topics 
(related to T) by others. In addition to the problem of predicting document 
relevancy for each user, systems belonging to this class should also handle 
the problem of heterogeneity of topics interpretation [9] 

3. Class 3: Systems where each user manages her/his own topic' hierarchy. 
This class can be seen as a generalization of the previous one. In addition 
to the above mentioned problems, systems from this class should find a 
mapping between the different topics hierarchies used by different users. 

In this paper we describe a collaborative case-based reasoning (CBR) approach 
for implementing systems from the third class. The basic idea of the proposed ap-
proach is to associate with each user a CBR classifier that learns how the user classi-
fies documents relevant to her/his own hierarchy of interest topics. The use of a CBR 
classifier is motivated by the incremental learning capacities that can handle dy-
namic changing in user's classification strategies. Mapping topics defined by user U1 
to those defined by another user U2 is computed by classifying documents provided 
by U1 using the classification knowledge (i.e. cases) related to U2. In other words 
the similarity measure between two topics (defined by two different users) is itself 
computed by a CBR system. This mapping function is used to infer, for each user 
and for each topic, the most appropriate social network to fed the local topic with 
relevant documents. The reminder of this paper is organized as follows: The docu-
ment recommendation approach is described in section 2. Subsection 2.1 gives a 
general overview of the approach. Then the three main components of the approach : 
Learning to classify, learning to recommend and community learning are describes 
inn subsequent subsections. Ann example of applying the recommendation approach 
for implementing a bookmark recommendation approach is given with first experi-
mental results are given in section 2.5. Related work are reported in section 3 and a 
conclusion is given in section 4. 
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2   Our Approach 

2.1   General Description  

The goal of the proposed document sharing approach is to allow a group of like-
minded people to share their documents in an implicit way [7]. Let U be the group of 
users. U = {u1, u2,..., un} where n is the number the group members. The sharing sys-
tem functions as follows: each user ui manages her/his own document collection. We 
assume that each user ui organizes his/her documents in a collection of folders Fui= 
{fui

j}. The same document d can be saved to more than one local folder. Each user ui is 
associated with a personal software assistant agent Aui. The role of this agent is to 
learn to map, if possible, each local folder fui

j with folders managed by other users. In 
other words the task of agent Aui is to learn a mapping function Mui : Fui → ∏j Fuj j ≠ 
i. Computing this mapping function requires computing a correlation measure be-
tween local and remote folders. A local folder fui

j will be mapped to highly correlated 
remote folders. The huge number of available documents does not allow to use simple 
folder correlation measure such as correlation(f1, f2) = ⎢f1 ∩ f2 ⎢/ ⎢f1 ∪ f2⎢since two 
effectively highly correlated folders may have a low correlation degree computed by 
such a function. A document similarity function could be used to cope with this prob-
lem. Correlation between two folders could be expressed by how much documents in 
f1 are similar to those in f2. Another problem to cope with is that folders do not neces-
sarily express a class of documents. Folders are basically defined by users as a docu-
ment organization entity. Different users apply different document classification  
criteria. Therefore using a mere document similarity function ay lead to poor folder 
correlation detection. In our approach we propose to compute folder correlation as a 
function of their usage similarity. More precisely, a correlation degree between folder 
fui (created by user ui) and folder fuj (created by another user uj) is given by the ratio of 
documents in folder fuj that would be classified in folder fui according to user ui classi-
fication scheme. Hence in order to compute the mapping function we first need to 
model each user classification scheme. This is performed by using a incremental su-
pervised classifier. Classes to be recognized are defined by the set of folders created 
by the user. The proposed classifier is described in next section. A collaboration pro-
tocol is described in section IV that allow each agent to compute correlation between 
its local folders and remote ones. Documents added to remote folders that are highly 
correlated to a local folder f will be recommended to be added to f. From the classifi-
cation learning point of view, each document recommendation will constitute either 
as a positive example (if the recommendation is accepted by the user), or either as a 
negative example (if the recommendation is rejected by the user). The classification 
learning and the older correlation computation are described in the next two following 
sections.  

2.2   Learning to Classify 

In order to learn the user document classification scheme, each personal agent imple-
ments an incremental hybrid neural/case-base reasoning classifier. This classifier 
called PROBIS and initially proposed in [14] is based on the integration of a prototype-
based neural network and a flat memory devised into many groups, each of them is 
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represented by a prototype. PROBIS contains two memory levels, the first level con-
tains prototypes and the second one contains examples. The first memory level is 
composed of the hidden layer of the prototype-based neural network. A prototype is 
characterized by: 

1. The prototype’s center. This is given by the co-ordinates in the m-dimensional 
space (each dimension corresponding to one parameter), these co-ordinates are 
the center of the prototype. 
2. The prototype’s influence region. This is determined, by the region of the 
space containing all the examples represented by this prototype. 
3. The class to which belongs the prototype. In our application the class is the 
folder identifier in which the document is saved.  

The second memory level is a simple flat memory in which examples are organised 
into different zones of similar examples. These two levels are linked together, so that 
a memory zone is associated with each prototype. The memory zone contains all ex-
amples belonging to this prototype. A special memory zone is reserved for atypical 
examples. These are examples that do not belong to any prototype. Documents that 
belongs to more than one folder will be typically saved in this memory zone. The 
classifier system operates either in learning mode or in classification mode. The sys-
tem can switch from one mode to another at any moment. Before the first learning 
phase, the system contains neither prototypes nor zones of examples. Examples for 
training are placed initially in the atypical zone. Prototypes and associated zones are 
then automatically constructed. An incremental prototype-based neural network is 
used to construct the upper memory level. Particular and isolated examples are kept in 
the atypical zone whereas typical examples are transferred to the relevant typical 
zones. This memory organization helps to accelerate the classification task as well as 
to increase the system’s generalization capabilities. In addition adding a new example 
is a simple task, the example is added in the appropriate memory zone and the associ-
ated prototype is modified. The learning procedure is the following: 

1) If the new example does not belong to any of the existing prototypes, a new pro-
totype is created (this operation is called assimilation). This operation is accomplished 
by adding a new hidden unit to the neural network. The co-ordinates of this prototype 
and the radius of the influence region is initialized to a maximal value (this is a sys-
tem parameter). A new memory zone is also created and linked to the prototype. The 
new example is added to the new memory zone. 

2) If the new example belongs to a prototype whose class value is the same as the 
example, the example is added to the associated zone of the second level memory. 
The prototype co-ordinates are modified according to the Grossberg learning law [5] 
to fit better the new example (this operation is called accommodation). The vector 
representing the prototype co-ordinates and memorized in the weights of the links 
going from the input layer to this prototype is modified as follows: 

Wpro(t+1)= Wpro(t)+g(t)*Sim (bi- Wpro(t)) 

where bi is the vector representing the document to classify, g(t) is a decreasing series 
which tends to 0, and Sim is the document similarity function. 
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3) If the new example belongs to a prototype whose class value is not the same as 
the example, the radius of this prototypes is decreased in order to exclude the new 
example of this prototype (this operation is called differentiation). The new example 
is introduced again to the neural network and the most similar prototype (if any) is 
activated again and one of the three previous conditions is right. 

2.3   Learning to Recommend 

The goal of an assistant agent is to gather form peer agents documents that can be 
relevant to be added to a local folder. Given a target local folder f, an agent applies the 
following steps for computing documents relevant to f : First, the agent computes 
summery of f. Actually, the summery is a keyword list containing the k-most frequent 
keywords that are listed in descriptions of documents stored in f. Then the agent ap-
plies the community formation algorithm, described in section 2.4, in order to get the 
list of peer agents that are likely to provide most relevant documents. A recommenda-
tion request is sent to each member of the computed community. A recommendation 
request contains the following informations: the sender agent identifier, the target 
folder identifier, the folder summery and the list of document descriptions of docu-
ments in f. Selected peer agents respond to a recommendation request by sending 
back : a list of relevant folder's identifiers and a list of recommended agents. Local 
folders whose correlation degree with the received folder is above a given threshold t 
are said to relevant to the recommendation request. The correlation between folder f 
and a local folder g is given by:  

correlation(f,g) = |di in f : Class(di) = g | / |f| 

Where Class(x) is a function giving the predicted class, according to the local 
classifier, of document di. With each sent folder, the agent associate the computed 
correlation degree. 

The list of recommended agents is computed by applying the local community 
formation algorithm (see section 2.4) using the received folder summery. This facility 
allow to propagate among agents of the system the expertise of the different agents. 
Notice that either of the both answer lists (recommended folders end agents) can be 
empty. Upon receiving answers for the selected peer agents, the initiator agent used 
the lists of relevant folders with their correlation degrees for updating a local folder 
correlation matrix (FCM). The FCM is a m X n matrix where m is the number of fold-
ers in the local repository and n the number of peer agents known to the agent. An 
entry FCM[i, j] is a set of couples <fjk ,corij> where fjk is a folder identifier maintained 
by user uj and corij is the correlation degree between the folder fjk and the folder fik 

maintained by local agent.  
The FCM matrix is used by an assistant agent in order to determine which remote 

folders are highly correlated to a given local folder f. A folder request message is then 
sent for agents that have the selected remote folders. Upon receiving a folder request 
message, an agent send back all documents contained in the requested folders. The 
initiator agent merges the list of received documents (in case it requests downloading 
more than one remote folder) and the top K-documents will be presented to the asso-
ciated user when accessing the local folder f. K is a user defined parameter that allow 
the user to limit the number of new documents to be recommended at once when  
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accessing a local folder. This two step document recommendation computation proc-
ess aims at reducing the network traffic by transmitting over the networks only docu-
ments to be effectively recommended to the user.  

Received lists of recommended agents are used by the community formation mod-
ule, described in the next section, in order to complete its information about the peer 
community associated to a given local folder. The user evaluates the recommended 
documents by simply accepting or refusing each of these documents. Recommenda-
tions provided by a given agent are evaluated using the classical precision and recall 
criteria defined as follows: 

Precision (summery, ai) = | accepted recommendations provided by ai | /  
| recommended documents | 

Recall (summery, ai) = | accepted recommendations provided by ai |  
                                   | accepted recommended documents | 

The user feed back is used, on one hand, to update the the local agent classification 
knowledge as described in section 2.2. On another hand, it is used to evaluate the rec-
ommendations provided by peer agents. This evaluation is used by the community 
computation module, as described in the next section. 

2.4   Community Computation 

In order to avoid sending recommendation requests to all known peer agents, we pro-
vide each assistant agent with learning capability that allow to compute for each local 
folder a set of peer agents that are most likely to provide relevant documents. We call 
these agents, the folder community.  

We use a second CBR reasoner in order to compute folder's communities. A source 
case is classically composed of a problem part and a solution part []. In this sub-
system, the problem part is given by a keyword list that summarize a folder content 
while the solution part is composed of the list of peer agents identifiers. With each 
agent identifier is associated a the highest correlation degree obtained from this agent 
and, if it exists, the user evaluation of the recommendations provided by this remote 
agent answering a recommendation request using the folder summery provided in the 
problem part.  

Initially, the case base is empty. As a consequence, the local agent will send the 
recommendation request to all known agents. Upon receiving recommendations and a 
the user feedback, a new source case can be added to the case base. The recommenda-
tion evaluation criteria are used to compute a trust degree in the concerned remote 
agent. The trust degree is defined as the product of the computed precision and recall. 
Notice that only agents that have answered a folder request message (see previous 
section) can be evaluated. All other agents that have answered a recommendation re-
quest message will be assigned a neutral trust degree (i.e. 0.25 on a scale from 0 to 1, 
that to say that both precision and recall are equal to 0.5).  

Before sending a new recommendation request with a target folder f, the agent 
computes the new summery of f. The summery of a folder changes in function of the 
actual set of documents that are stored in f but also in function of the summery of 
other local folders. the case retrieval phase computes the similarity between the new 
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folder summery and the problem part of each stored case. Cases with similarity  
measure above a given threshold tr will be retrieved. Each retrieved case provides a 
set of agents to contact. The obtained lists of agents are then merged and the result list 
is sorted in function of the trust degree. The top K-agent (where K is another system 
parameter) will form the folder community.  

2.5   Application: Collaborative Bookmarking 

In oder to illustrate our document recommendation approach, we have applied the 
proposed approach in the context a collaborative bookmark management system. In 
this application a document is represented by a bookmark. A bookmark is described 
by a couple : 1) the address of the indexed web site (i.e. the site URL) and 2) by a set 
of keywords that summarize the content of the indexed page.  Hence the similarity 
between two bookmarks is defined as a weighted sum of two basic similarities de-
fined overs URL and keyword lists. 

sim(b1, b2) = α URLSim(b1.url, b2.url) + (1-α) ContSim(b1.Cont, b2.cont) 

Where 0<α<1 is weight of the address similarity. The address similarity URLSim 
function is defined as follows:  

URLsim(a,b) = 0 if a and b have different web servers. 
URLSim(a,b) = 1- h(a.FP, MSCA(a.FP,b.FP)       + 

                                h(b.FP,MSCA(a.FP,b.FP) /h(a.FP,root) +h(b.FP,root) 

Where the function h() returns the number of links between two nodes in the docu-
ments tree and MSCA() returns the most specific common ancestor of two nodes in a 
tree. This similarity measure is based on the hypothesis that two documents that are 
placed in the same directory on the same server are similar to each other. More the 
directory is deep in the server hierarchy more the documents are related to each other. 

The content similarity function is defined by : ContSim(u,v) = | u Ո v | / | u Ս v | .  
In order to validate our approach we have applied the following experimentation 

protocol. We start by forming a synthetic collection of bookmarks. The total number 
of bookmarks is 300. These bookmarks are grouped in 30 folders. The mean number 
of bookmarks per folder is 10. Starting from this bookmark collection we randomly 
generated ten other collections by modifying each by up to 35%. Two types of opera-
tions are possible in order to modify a folder: 1) delete a bookmark from the entire 
collection ,2) move a bookmark to another folder. Notice that we assume that a 
bookmark may not belongs to two different folders at the same time. The generated 
bookmark collections verify, by construction, this property. The modification per-
centage (i.e. 35%) ensures a suitable overlapping between the different collections of 
bookmarks. The system performances are evaluated by two criteria: 

• The learning ratio that measures for each classifier the precision of good classifi 
cations of examples belonging to the learning set (i.e. local bookmarks used to 
build the classifier) 
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• The generalization ratio that measures the precision of recommending a bookmark 
of the right folder. The right folder of a bookmark is the original folder where the 
bookmark was in the initial collection. 

A set of ten different experiences has been conducted. The average obtained learn-
ing ratio is 93,3% and the average generalization ratio 86,2%. While these figures are 
encouraging, we should admit that these will not be the same is real world settings 
where overlapping ration among bookmark folders is far below the artificial overlap-
ping threshold we have imposed in our experimental work. 

3   Related Work 

A number of document sharing and recommendation systems are proposed in the sci-
entific literature. Most of existing systems fall in the first two classes defined in  
section 1.  

Pharos [1] and KnoweldgePump [3] provide users with the possibility to share a 
centralized document repository. The repository hierarchy is defined by a system ad-
ministrator. Both systems provide also customization service in order to recommend 
users with documents that are more interesting for them in given folder. Recommen-
dation computation is made by applying a collaborative filtering mechanism that is 
base on matching the characteristics of bookmarks added and accessed by each user.  

GAB is a shared bookmark system that allows merging different user bookmark re-
pository in a virtual centralized bookmark [16]. No recommendation mechanism is 
provided. It is up to the users to navigate in the merged repository to find bookmarks 
they are interested in. A comparable approach is also implemented in the Power-
Bookmarks systems [11]. CoWing in a peer-to-peer (P2P) multi-agent collaborative 
bookmarking system [7, 8]. CoWing is the our first prototype of document sharing 
system. In this early prototype agents send recommendation request to all known 
agents and all agents respond directly with the set of documents to recommend. No 
Community formation function is provided. Bibster [2, 6] is a P2P bibliographical 
data sharing system. In this system, each agent publishes its own expertise for all 
agents. The published expertise is used to match agents to actual need of recommen-
dation expressed by an agent. 

Most related to our approach are the COBRAS system [9] and the REMINDIN  
approach [15]. Both systems provide a query routing in a P2P network based on ob-
serving queries that are successfully answered by peer agents, these queries are 
memorized locally. Subsequently, a peer uses this information in order to select others 
peers to forward request to. 

4   Conclusion 

In this paper we've proposed a new approach for allowing a a group of like-minded 
people to share documents in an implicit and intelligent way. Users are not required to 
do extr effort to get document recommendations from others. They are only required 
o maintain their personal documents in a hierarchy of folders (as most do). Personal 
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software agents observes users in order to learn document classification rules. This 
knowledge is used to compute a correlation degree between local folders and remote 
ones. In addition, agents uses feed-back provided by the user when accepting or re-
jecting recommendations in order to learn to associate a community of peer agents for 
each local folder. Recommendation request concerning a local folder is only sent to 
the community avoiding broadcasting the request to all known peers. 
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