
Identifying Acceptable Common Proposals for

Handling Inconsistent Software Requirements

Kedian Mu1 and Zhi Jin2

1 School of Mathematical Sciences
Peking University, Beijing 100871, P.R. China

2 Academy of Mathematics and System Sciences
Chinese Academy of Sciences, Beijing 100080, P.R. China

Abstract. The requirements specifications of complex systems are in-
creasingly developed in a distributed fashion. It makes inconsistency
management necessary during the requirements stage. However, iden-
tifying appropriate inconsistency handling proposals is still an impor-
tant challenge. In particular, for inconsistencies involving many different
stakeholders with different concerns, it is difficult to reach an agreement
on inconsistency handling. To address this, this paper presents a vote-
based approach to choosing acceptable common proposals for handling
inconsistency. This approach focuses on the inconsistency in require-
ments that results from conflicting intentions of stakeholders. Informally
speaking, we consider each distinct stakeholder (or a distributed artifact)
involved in the inconsistency as a voter. Then we transform identifica-
tion of an acceptable common proposal into a problem of combinatorial
vote. Based on each stakeholder’s preferences on the set of proposals, an
acceptable common proposal is identified in an automated way according
to a given social vote rule.

1 Introduction

It is widely recognized that inconsistency management is one of the important
issues in requirements engineering. For any complex software system, the devel-
opment of requirements typically involves many different stakeholders with dif-
ferent concerns. Then the requirements specifications are increasingly developed
in a distributed fashion, Viewpoints-based approaches [1,2,3] being a notable ex-
ample. It makes inconsistency management necessary during the requirements
stage. Generally speaking, inconsistency management may be divided into two
parts, i.e. consistency checking and inconsistency handling. Consistency check-
ing is a pervasive issue in requirements validation and verification. It focuses on
techniques for detecting inconsistencies in a collection of requirements, includ-
ing logic-based approaches [4,5,6] and consistency rule-based approaches [7,8].
In contrast, inconsistency handling focuses on how to identify an appropriate
proposal for handling given inconsistencies and to evaluate the impact it has on
other aspects of requirements stage [7,8].

Identifying appropriate inconsistency handling actions is still a difficult, but
important challenge [5]. Generally, the choice of an inconsistency-handling action

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 296–308, 2007.
c© IFIP International Federation for Information Processing 2007

Identifying Acceptable Common Proposals 297

should depend on the nature and context of these inconsistencies [9,10]. But the
context of the inconsistencies in requirements is always rather complex. Many
factors such as misunderstanding between customers and analysts, inappropriate
statements of requirements, and conflicting intentions of stakeholders can cause
inconsistencies during requirements stage. It is not easy to provide a universal
methodology to handle all the inconsistencies in requirements engineering.

In this paper, we concentrate on a particular kind of inconsistency that re-
sults from conflicting intentions of stakedholers. We would assume that there is
no shortcoming in the ways that developers elicit and restate the requirements.
That is, the inconsistent requirements are correctly elicited, stated, and repre-
sented from the perspective of corresponding stakeholders. There is no cause
other than conflicting intentions of different stakeholders for the inconsistency.
When an inconsistency resulting from conflicting intentions of stakeholders are
detected, the different stakeholders involved in the inconsistency often present
different proposals for handling the inconsistency from their own perspectives.
These proposals reflect different concerns and intentions, and it is difficult to
reach agreement on choice of proposals. Then the final proposal for handling the
inconsistency is often an unsuccessful compromise among these different stake-
holders. However, for this kind of inconsistency handling , there are two key
problems associated with the identification of acceptable common proposals.
One is how to evaluate an individual proposal from the perspective of each dis-
tinct stakeholder. That is, each stakeholder involved in the inconsistency needs
to express his/her preferences on a set of proposals. It will provide a basis for
identifying an acceptable common proposal. Another one is how to identify an
acceptable common proposal from the set of these different proposals. Clearly,
the latter problem is concerned with the mechanism of choosing the proposals
such as negotiation and vote.

To address this, we present a combinatorial vote-based approach to identi-
fying an acceptable common proposal for handling the inconsistency resulting
from conflicting intentions of stakeholders in Viewpoints framework [1] in this
paper. Combinatorial vote is located within the larger class of group decision
making problems. Each one of a set of voters initially expresses his/her pref-
erences on a set of candidates, these preferences are then aggregated so as to
identify an acceptable common candidate in an automated way [11]. Informally
speaking, for the inconsistency resulting from conflicting intentions of viewpoints
(or stakeholders), we transform a set of proposals into a set of candidates with
combinatorial structure. Then we consider each distinct viewpoint (or stake-
holder) as a voter with different preferences on the set of candidates. Then an
acceptable common proposal will be identified according some social vote rules
in an automated way.

The rest of this paper is organized as follows. Section 2 gives some prelimi-
naries about inconsistency handling in Viewpoints framework. Section 3 presents
the combinatorial vote-based approach to identifying an acceptable common pro-
posal for handling inconsistency. Section 4 gives some comparison and discussion
about the vote-based approach. Finally, we conclude this paper in section 5.

298 K. Mu and Z. Jin

2 Preliminaries

2.1 Viewpoints

The Viewpoints approach [1] has been developed to provide a framework in which
the different perspectives and their relationships could be represented and an-
alyzed. Viewpoint-oriented approaches to requirements engineering have been
used for requirements elicitation [2], modeling [3], validation[12], and elabora-
tion [13]. In the Viewpoints framework, a viewpoint is a description of system-to-
be from the perspective of a particular stakeholder, or a group of stakeholders. It
reflects the concerns of a particular stakeholder. The requirements specification
of the system-to-be comprises a structured collection of loosely coupled, locally
managed, distributable viewpoints, with explicit relationships between them to
represent their overlaps [14].

The Viewpoints may allow different viewpoints use different notations and
tools to represent their requirements during the requirements stage. However,
the first order predicate calculus is appealing for formal representation of require-
ments statements since most tools and notations for representing requirements
could be translated into formulas of the first order predicate calculus [5]. That
is, predicate calculus may be considered as a promising tool to represent require-
ments from multiple sources. Moreover, we focus on the inconsistency handling
rather than inconsistency checking in this paper. Then we need not consider rea-
soning with inconsistency in this paper.1 For these reasons, we use the predicate
calculus to illustrate our approach in this paper.

LetL be a first order language and let� be the consequence relation in the predi-
cate calculus. Let α ∈ L be a well-formed formula and Δ ⊆ L a set of formulas inL.
In this paper, we call Δ a set of requirements statements or a partial requirements
specification while each formula α ∈ Δ represents a requirements statement.

As mentioned earlier, in this paper, we are concerned with the problem of
handling inconsistency that involves multiple viewpoints. We would assume that
V = {v1, · · · , vn}(n ≥ 2) is the set of distinct viewpoints. Let Δi be the set of
requirements of viewpoint vi. Then the partial requirements specification is rep-
resented by a n tuple < Δ1, · · · , Δn >. For any Γi ⊆ Δi(1 ≤ i ≤ n), we call

⋃

i

Γi

an integrated requirements collection, which could be viewed as a combination
of requirements of multiple viewpoints. For example Γ1 ∪ Γ2 and Γ1 ∪ Γ3 ∪ Γn

are two integrated requirements collections.
Further, for each i(1 ≤ i ≤ n), Gi denotes the goal of viewpoint vi. Intuitively,

for each i, if the set of requirements Δi is sound with regard to vi, then Δi � Gi.
Generally, we call < G1, · · · , Gn > a goal base.

2.2 Inconsistency in Viewpoints

The term of inconsistency has different definitions in requirements engineer-
ing [6]. In this paper we will be concerned with the logical contradiction: any
1 This assumption is just for convenience. If not, we may use a paraconsistent adap-

tation of predicate calculus, such as Annotated Predicate Calculus [15], to represent
requirements statements [16].

Identifying Acceptable Common Proposals 299

situation in which some fact α and its negation ¬α can be simultaneously derived
from the same requirements collection [4]. Moreover, we focus on the inconsis-
tency arising from multiple viewpoints.

Definition 1 (Inconsistency). Let < Δ1, · · · , Δn > be the requirements speci-
fication comprising n viewpoints. Let Δ be an integrated requirements collection.
If there exists a formula α such that Δ � α and Δ � ¬α, then Δ is inconsistent;
otherwise, Δ is consistent. We abbreviate α ∧ ¬α by ⊥, which we read as “in-

consistency”. Further, if Δ =
k⋃

j=1

Γij (1 ≤ ij ≤ n), then we say that viewpoints

vi1 , · · · , vik
are involved in the inconsistency.

If Δ is inconsistent, then Δ may be partitioned into two collections. One is the
set of requirements statements being free from inconsistency, and another is the
set of requirements statements involved in inconsistency. Actions for handling
inconsistencies are always concerned with the set of requirements statements
involved in inconsistency. Let

INC(Δ) = {Γ ⊆ Δ|Γ � ⊥},
MI(Δ) = {Φ ∈ INC(Δ)|∀Ψ ∈ INC(Δ), Ψ �⊂ Φ},

CORE(Δ) =
⋃

Φ∈MI(Δ)

Φ,

FREE(Δ) = Δ − CORE(Δ).

Essentially, INC(Δ) is the set of inconsistent subsets of Δ; MI(Δ) is the set of
minimal inconsistent subsets of Δ; CORE(Δ) is the union of all minimal subsets
of Δ; and FREE(Δ) is the set of requirements that don’t appear in any minimal
inconsistent subset of Δ, that is, it is a set of requirements statements being free
from inconsistency. In contrast, CORE(Δ) could be considered as a collection of
all the requirements statements involved in inconsistency of Δ. It is this set that
is of concern in the inconsistency handling.

Now we give an example to illustrate these concepts.

Example 1. Consider the following setting in development of residential area
management system, which deals with the maintenance of fixed garages for ve-
hicles. Alice, a manager who is in charge of maintenance, supplies the following
demands:

– The damaged garages should be maintained;
– An individual free garage, Garage 1 is damaged.

Alice’s goal is

– Garage 1 should be maintained.

Bob, a manager who is in charge of distribution of garages, gives the following
demands:

300 K. Mu and Z. Jin

– Each garage on the expiration of utilization should be routinely maintained;
– All the free garages should not be maintained;
– Another individual garage, Garage 2 is on the expiration.

Bob’s goal is

– Garage 2 should be maintained.

Then the requirements of viewpoint vA, denoted ΔA, is

ΔA = { (∀x)(Damaged(x) → Maintain(x)),
Damaged(Garage 1) ∧ Free(Garage 1)}.

The requirements of viewpoint vB, denoted ΔB, is

ΔB = {(∀x)(Expire(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x)),
Expire(Garage 2)}.

The goal base < GA, GB >is

< {Maintain(Garage 1)}, {Maintain(Garage 2)} > .

Let Δ = ΔA ∪ ΔB .We can conclude that

ΔA � GA,

ΔB � GB,

Δ � Maintain(Garage 1) ∧ ¬Maintain(Garage 1).

Then Δ is inconsistent. In this case,

MI(Δ) = {Φ1}
FREE(Δ) = {(∀x)(Expire(x) → Maintain(x)),

Expire(Garage 2)},
CORE(Δ) = Φ1, where

Φ1 = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x)),

Damaged(Garage 1) ∧ Free(Garage 1)}.

As mentioned above, the repair actions should be performed on CORE(Δ). Gen-
erally, just for the simplicity of reasoning, the requirements set Δi contains both
preliminary requirements statements and relevant facts. For example, Damaged
(Garage 1) ∧ Free(Garage 1) and Expire(Garage 2) are facts in ΔA and ΔB ,
respectively. These facts are used to model the certain scenario associated with
each viewpoint’s goal. This paper focuses on how to elect an acceptable common
proposal for modifying the preliminary requirements specification , then we will

Identifying Acceptable Common Proposals 301

view the facts as being correct and not subject to the modification of preliminary
requirements. This will allow us to focus our attention on choice of actions per-
formed for modifying the preliminary requirements. Thus, we are concerned with
proposals for modifying a set of problematical preliminary requirements, denoted
CORE(Δ)P , which is a subset of CORE(Δ). In the example above,

CORE(Δ)P = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x))}.

2.3 Combinatorial Vote

Combinatorial vote has been presented by Lang in [11], where a group of voters
(or agents) is supposed to express their preferences and come to a common deci-
sion concerning a set of non-independent variables to assign. Of course, the set
of candidates X has combinatorial structure [11]. A combinatorial vote problem
consists of two steps:

(1) the voters express their preference on a set of candidates within a fixed
representation language;

(2) one or several optimal candidate(s) is (are) determined automatically, using
a fixed vote rule.

A preference profile consists of a preference structure for each of the voters. A
relational preference structure consists of a binary relationship ≥ on X . A vote
rule V is defined as a function mapping every preference profile P to an elected
candidate, or a subset of candidates. Given a preference profile P and a vote rule
V , the set of elected candidates is denoted by SelectV (P). Scoring rules consists
in translating the preference relation ≥i of voters into scoring function si(x),
such that the score si(x) of a candidate x with respect to voter i is a function of
its position in the relation ≥i. The plurality and the veto rules are appropriate
for combinatorial vote [11]. In this paper, we adopt the plurality rule as the vote
rule to illustrate our approach. Actually, the choice of social vote rules used in
the practice should depend on the specific circumstances.

The plurality rule is the scoring rule obtained by taking si(x) = 1 if and
only if x is non-dominated for ≥i, i.e., iff there is no y such that y >i x.
Selectplurality(P) is the set of candidates maximizing the number of voters for
whom x is non-dominated.

3 Identifying an Acceptable Common Proposal of
Inconsistency Handling

In this section, we will transform the problem of identifying an appropriate pro-
posal for handling inconsistency into combinatorial vote. It consists of four key
steps:

(1) We define a 1-1 mapping from the set of proposals to a set of candidates
that has combinatorial structure;

302 K. Mu and Z. Jin

(2) We transform the evaluation of proposals from the perspective of an in-
dividual viewpoint into a voter’s preference representation on the set of
candidates;

(3) Given a social vote rule, the set of elected candidates is identified
automatically.

(4) The set of elected candidates is transformed into the set of acceptable
common proposals.

3.1 Proposals of Inconsistency Handling

Generally, handling inconsistency in an integrated requirements collection Δ
means that stakeholders or viewpoints involved in the inconsistency are trying
to reach an agreement on the modification of CORE(Δ)P .

Informally, proposal for handling inconsistency should be a series of actions
performed to modify CORE(Δ)P . For each requirements α ∈ CORE(Δ)P , an
individual proposal for handling the inconsistency will delete it from CORE(Δ)P

or retain it.
Now we try to transform the problem of identifying appropriate proposals for

inconsistency handling into a problem of combinatorial vote. Let |CORE(Δ)P |
be the number of requirements in CORE(Δ)P . Suppose that |CORE(Δ)P | = m
and A = {a1, · · · , am} be a set of propositional variables that don’t appear in
Δ. Then we can define a 1-1 mapping f from CORE(Δ)P to A. Further, let Π
be a set of possible proposals for handling the inconsistency in CORE(Δ)P , then
|Π | = 2m.

Definition 2 (Transformation Mapping). LetX={a1,¬a1}×· · ·×{am,¬am}.
Let Π be the set of possible proposals for handling inconsistency. Transformation
mapping t is a 1-1 mapping from Π to X such that for every π ∈ Π, t(π) =
(t1, · · · , tn), where for each i (1 ≤ i ≤ n)

– ti = ai, if π retains requirements f−1(ai) in CORE(Δ)P ;
– ti = ¬ai, if π deletes requirements f−1(ai) from CORE(Δ)P ;

Essentially, by transformation mapping t, we transform the set of possible pro-
posals into a set of candidates with combinatorial structure. Suppose that vi1 , · · · ,
vik

involved in the inconsistency of Δ, the the problem of identifying appropriate
proposal is transformed into the following problem:

– Voters vi1 , · · · , vik
to elect a winner in X .

Since X has combinatorial structure, then the latter is a problem of combinatorial
vote [11]. Now we give an example to illustrate this transformation.

Example 2. Consider Example 1. again. Alice and Bob are involved in the in-
consistency and

CORE(Δ)P = {(∀x)(Damaged(x) → Maintain(x)),
(∀x)(Free(x) → ¬Maintain(x))}.

Identifying Acceptable Common Proposals 303

Now we define mapping f from CORE(Δ)P to {a1, a2} as follows:

f((∀x)(Damaged(x) → Maintain(x))) = a1,

f((∀x)(Free(x) → ¬Maintain(x))) = a2.

There are 4 possible proposals for handling inconsistency:

– π1: to delete (∀x)(Damaged(x) → Maintain(x)) from CORE(Δ)P ;
– π2: to delete (∀x)(Free(x) → ¬Maintain(x)) from CORE(Δ)P ;
– π3: to delete all the requirements in CORE(Δ)P ;
– π4: to retain all the requirements in CORE(Δ)P .

Then Π = {π1, π2, π3, π4} and

t(π1) = (¬a1, a2);
t(π2) = (a1,¬a2);

t(π3) = (¬a1,¬a2);
t(π4) = (a1, a2).

Now we transform inconsistency handling problem into a combinatorial vote
problem:

– Two voters (stand for Alice and Bob, respectively) to elect a winner in
{(¬a1, a2), (a1,¬a2), (¬a1,¬a2), (a1, a2)}.

3.2 Voting for a Common Proposal

As mentioned earlier, voters’ preferences on the set of candidates play an impor-
tant role in combinatorial vote. In this paper, for a particular voter, we focus
on the relational preference structure on X . It should be associated with the
viewpoint’s preference on the set of proposals.

Intuitively, the viewpoint’s preferences on the set of proposals are always
associated with the degree of satisfaction of his/her goal by performing each
proposal. For each proposal πi ∈ Π , let πi(Δ) denote the modification of Δ by
performing the proposal πi. Let �Gi

j� denote the number of formulas of goal Gj

that can be derived from πi(Δj) consistently. Then �Gi
j� may be viewed as a

measure of the degree of satisfaction of the goal.

Definition 3 (Preference on Π). Let Π be the set of possible proposals. For
each i (1 ≤ i ≤ n), a binary relationship with regard to viewpoint vi on Π,
denoted ≥i, is defined as follows:

∀ πl, πj ∈ Π, πl ≥i πj if and only if �Gl
i� ≥ �Gj

i �.
Note that πl >i πj if and only if πl ≥i πj and πj �≥i πl.

Definition 4 (Preference on X). Let Π be the set of possible proposals. For
each i (1 ≤ i ≤ n), ≥i is a binary relationship with regard to viewpoint vi on Π.
Let t is a transformation mapping from Π to X . Then ∀ t(πl), t(πj) ∈ X ,

304 K. Mu and Z. Jin

t(πl) ≥i t(πj) if and only if πl ≥i πj .

Now we give an example to illustrate the preferences of voters.

Example 3. Consider the proposals mentioned in Example 2. For viewpoint vA,

�G1
A� = 0;

�G2
A� = 1;

�G3
A� = 0;

�G4
A� = 0.

And for vB ,

�G1
B� = 1;

�G2
B� = 1;

�G3
B� = 1;

�G4
A� = 0.

Then

π2 ≥A π1, π3, π4

π1, π2, π3 ≥B π4.

and

(a1,¬a2)
≥A (¬a1, a2), (¬a1,¬a2), (a1, a2);

(¬a1, a2), (a1,¬a2), (¬a1,¬a2)
≥B (a1, a2).

Note that candidates written on a same line are equally preferred.

In this paper, we adopt the plurality rule as the vote rule. As mentioned ear-
lier, the plurality rule is the scoring rule obtained by taking si(x) = 1 if and
only if x ∈X is non-dominated for ≥i, i.e., iff there is no y such that y >i x.
Given preferences profile P , the set of acceptable common candidates, denoted
Selectplurality(P), is the set of candidates maximizing the number of voters for
whom x is non-dominated.

Example 4. Consider the example above again. In this case, there are two voters
vA and vB . The preference ordering ≥A, and ≥B are:

(a1,¬a2)
≥A (¬a1, a2), (¬a1,¬a2), (a1, a2);

(¬a1, a2), (a1,¬a2), (¬a1,¬a2)
≥B (a1, a2).

Identifying Acceptable Common Proposals 305

The plurality rule is used as the vote rule. Then the scores of candidates are:

sA((¬a1, a2)) = 0;
sA((a1,¬a2)) = 1;

sA((¬a1,¬a2)) = 0;
sA((a1, a2)) = 0;

sB((a1,¬a2)) = 1;
sB((¬a1, a2)) = 1;

sB((¬a1,¬a2)) = 1;
sB((a1, a2)) = 0;

Clearly, Selectplurality(P) = {(a1,¬a2)}. That is, (a1,¬a2) is the winner in X .
Since t−1((a1,¬a2)) = π2, π2 is the acceptable common proposal for handling the
inconsistency in ΔA∪ΔB . Therefore, by voting, (∀x)(Free(x) → ¬Maintain(x))
should be deleted from ΔB for maintaining consistency.

The combinatorial vote-based approach to identifying the acceptable common
proposals presented above may be illustrated as follows:

(Π,≥i)
t−→ (X ,≥i)

plurality rule−→ Seletplurality(≥i, 1 ≤ i ≤ n) t−1−→
πi(winner).

4 Discussion and Comparison

For the combinatorial vote, the computational complexity of the different prob-
lems obtained from the choice of a given representation language (propositional
logic) and a give vote rule (plurality rule) has been studied by Lang in [11]. How-
ever, there are other vote rules such as the veto rule also appropriate for combi-
natorial vote mentioned in [11]. The veto rule is obtained by letting si(x) = 1
if and only if there is at least a candidate y such that x >i y. If the veto rule is
used as the vote rule in Example 4., then

sA((¬a1, a2)) = 0;
sA((a1,¬a2)) = 1;

sA((¬a1,¬a2)) = 0;
sA((a1, a2)) = 0;

sB((a1,¬a2)) = 1;
sB((¬a1, a2)) = 1;

sB((¬a1,¬a2)) = 1;
sB((a1, a2)) = 0;

And Seletveto(P) = {(a1,¬a2)}. The winner is also (a1,¬a2) under the veto
rule. Of course, it is possible to get the different winners under different vote
rules.

306 K. Mu and Z. Jin

On the other hand, inconsistency handling in requirements engineering is
a rather complex issue. Most works focus on the inconsistencies that result
from misunderstand customer’s demands or incorrect statement of requirements
[17,18,5]. In contrast, the combinatorial vote-based approach is more appropri-
ate to handling inconsistencies that result from conflictive goals or intentions of
stakeholders. This kind of inconsistency handling is always associated with many
social activities such as vote and negotiation. It is not just a technical issue. The
vote-based approach may be viewed as a first attempt to provide appropriate
mechanism for handling inconsistencies result from conflict goals or intentions.

The preferences on the set of possible proposals of each individual viewpoints
play an important role in electing the acceptable common proposals in the vote-
based approach. In this paper, we just use �Gl

i� to evaluate the relative impor-
tance of proposal πl from the perspective of viewpoint vi. However, different
goals (formulas) in Gi may have different relative importance. So the relative
importance of each formula of Gi that can be derived from πl(Δi) should be also
taken into consideration in representing preferences on Π of vi. This would be
a direction of future work.

5 Conclusions

We have presented a combinatorial vote-based approach for identifying the ac-
ceptable common proposals for handling inconsistency in Viewpoints framework.

Identifying appropriate inconsistency handling actions is still a difficult, but
important challenge. The vote-based approach presented in this paper focuses on
the inconsistency that results from conflicting intentions of different stakehold-
ers. The main contribution of this paper is to transform identifying appropriate
proposals for handling inconsistency into a problem of combinatorial vote. It
consists of four key steps:
(1) we define a 1-1 mapping from the set of proposals to a set of candidates that

has combinatorial structure;
(2) we transform the evaluation of proposals from the perspective of an in-

dividual viewpoint into a voter’s preference representation on the set of
candidates;

(3) Given a social vote rule, the set of elected candidates is identified
automatically.

(4) The set of elected candidates is transformed into the set of acceptable
common proposals.

However, inconsistency handling in requirements engineering is a rather com-
plex issue. For the vote-based approach presented in this paper, the choice of
social vote rules used in the combinatorial vote and the approaches to evaluating
each proposal should be considered further in the future work.

Acknowledgements

This work was partly supported by the National Natural Science Fund for Distin-
guished Young Scholars of China under Grant No.60625204, the Key Project of

Identifying Acceptable Common Proposals 307

National Natural Science Foundation of China under Grant No.60496324, the Na-
tional Key Research and Development Program of China under Grant No.
2002CB312004, the National 863 High-tech Project of China under Grant No.
2006AA01Z155, the Knowledge Innovation Program of the Chinese Academy of
Sciences, and the NSFC and the British Royal Society China-UK Joint Project.

References

1. Finkelsetin, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: A Framework for Integrating Multiple Perspectives in System Development.
International Journal of Software Engineering and Knowledge Engineering 2(1),
31–58 (1992)

2. Kotonya, G.I.: Sommerville: Viewpoints for requirements definition. IEE Software
Eng.Journal 7, 375–387 (1992)

3. Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriguez, S., Silva, A.: A methodolog
ical framework for viewpoint-oriented conceptual modeling. IEEE Trans. Softw.
Eng. 30, 282–294 (2004)

4. Gervasi, V.D.: Zowghi: Reasoning about inconsistencies in natural language re
quirements. ACM Transaction on Software Engineering and Methodologies 14,
277–330 (2005)

5. Hunter, A.B.: Nuseibeh: Managing inconsistent specification. ACM Transactions
on Software Engineering and Methodology 7, 335–367 (1998)

6. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. Information and Software Technology 45,
993–1009 (2003)

7. Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging inconsistency in software
development. IEEE Computer 33, 24–29 (2000)

8. Nuseibeh, B.S., Easterbrook, A.: Russo: Making inconsistency respectable in soft-
ware development. Journal of Systems and Software 58, 171–180 (2001)

9. Gabbay, D., Hunter, A.: Making inconsistency respectable 2:meta-level handling
of inconsistent data. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 129–136. Springer, Heidelberg (1993)

10. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency
handling in multiperspective speci?cations. IEEE Trans. on Software Engineer-
ing 20, 569–578 (1994)

11. Lang, J.: From logical preference representation to combinatorial vote. In: Proceed-
ings of 8th International Conference on Principles of Knowledge Representation
and Reasoning, pp. 277–288. Morgan Kaufmann, San Francisco (2002)

12. Leite, J.P.A.: Freeman: Requirements validation through viewpoint resolution.
IEEE Trans. on Soft. Eng. 17, 1253–1269 (1991)

13. Robinson, W.N.: Integrating multiple specifications using domain goals. In: IWSSD
’89: Proceedings of the 5th international workshop on Software specification and
design, pp. 219–226. ACM Press, New York, NY, USA (1989)

14. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships
are difficult? In: Proceedings of the 25th International Conference on Software
Engineering, pp. 676–681. IEEE Computer Society Press, Los Alamitos (2003)

308 K. Mu and Z. Jin

15. Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. Journal of
Automated Reasoning 9, 179–215 (1992)

16. Mu, K., Jin, Z., Lu, R.: Inconsistency-based strategy for clarifying vague software
requirements. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809,
pp. 39–48. Springer, Heidelberg (2005)

17. Easterbrook, S., Nuseibeh, B.: Managing inconsistencies in an evolving specifica-
tion. In: Proceedings of the Second International Symposium on Requirements
Engineering (RE95), pp. 48–55 (1995)

18. Easterbrook, S.M., Chechik, A.: framework for multi-valued reasoning over incon-
sistent viewpoints. In: Proceedings of International Conference on Software Engi-
neering (ICSE’01), Toronto, Canada, pp. 411–420 (2001)

	Introduction
	Preliminaries
	Viewpoints
	Inconsistency in Viewpoints
	Combinatorial Vote

	Identifying an Acceptable Common Proposal of Inconsistency Handling
	Proposals of Inconsistency Handling
	Voting for a Common Proposal

	Discussion and Comparison
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

