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Abstract. We apply a general form of affine transformation model to compen-
sate illumination variations in a series of multispectral images of a static scene
and compare it to a particular affine and a diagonal transformation models. These
models operate in the original multispectral space or in a lower-dimensional space
obtained by Singular Value Decomposition (SVD) of the set of images. We use a
system consisting of a multispectral camera and a light dome that allows the mea-
surement of multispectral data under carefully controlled illumination conditions
to generate a series of multispectral images of a static scene under varying illumi-
nation conditions. We evaluate the compensation performance using the CIELAB
colour difference between images. The experiments show that the first 2 models
perform satisfactorily in the original and lower dimensional spaces.

1 Introduction

Colour image processing based on data acquired by a camera follows a complex image
formation process involving the properties of the camera, the reflection properties of the
object points, the spectral characteristics of the illumination source and the geometric
relation between all these components. In many applications we are however only in-
terested in one of the parts of this process. For instance, in industrial inspection, remote
sensing, or automatic colour correction, just to cite a few.

In this paper we propose the application of a general affine transformation model and
analyze its performance in relation to other 2 models for the description of illumination
changes. For this purpose we measure a static scene by a multichannel camera with 33
channels in the visible range of the spectrum. The scene illumination is provided by
120 lamps arranged on a semi-dome to provide a homogeneous illumination environ-
ment. The simplest model to describe color changes is given by a diagonal transform
of the colour space [1,4,5]. This model, which corresponds to the so-called von-Kries
adaptation in human colour vision [16], may be generalized by the introduction of an
offset in the transformation model (a translation vector) without changing the diagonal
nature of the transformation matrix [6], or by considering a particular class of affine
transformations of the distribution of the colour content in the colour or spectral space
[7,12]. In the cases where these affine models provide sufficiently accurate descriptions
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of the colour changes they can be used to develop invariant features. Such features can
be computed from RGB images obtained by conventional commercial cameras, and
from multispectral images. Typical application areas are illumination-invariant recog-
nition of objects, or robust content-based retrieval of satellite images obtained under
different illumination conditions and acquisition geometry [7,8,9]. In this paper we will
analyze the applicability of a general affine transformation model with the help of series
of multispectral images of static scenes under carefully controlled illumination changes.

The organization of the paper is as follows: in Section 2 we introduce the mathe-
matical framework for the estimation of the parameters of the models. In Section 3 we
describe the experimental device. In Section 4 we analyze the main features of the illu-
mination changes, and compare the compensation models, both in the original and in a
lower-dimensional spaces. Conclusions can be found in Section 5.

2 Affine Transformation Estimation for Illumination Changes

We use a vector x ∈ R
D
+ to denote a measurement from a D bands multispectral camera

of an object point under some illumination condition. Under a change in the illumina-
tion characteristics this vector will undergo a change which can be described by the
transformation x → x̃. Assuming a specific model of light-camera interaction, Healey
et al [7,8,9] consider the following Equation to describe this change:

x̃ = A · x, (1)

where A is a D × D matrix. On the other hand, a general affine transformation model
in the form of Eq. 2 [2] could be motivated by the inclusion of effects like noise in the
camera, or others:

x̃ = B · x + t, (2)

where B is also a D×D matrix. The estimation of the B matrix and the t vector follows
the description by Heikkila et al in [10], who applied the model to the movement of rigid
objects in grey-scale images. We consider the two point sets X and ˜X as N×D matrices
with N the number of points in the set, and C and ˜C their covariance matrices. Let us
introduce the Cholesky Factorization:

C = F · Ft

˜C = ˜F · ˜Ft (3)

where Ft and ˜Ft are the transpose matrices of F and ˜F respectively. Points in the set
are first whitened (only shown for the first group), i. e.

y = F−1 · x, (4)

where x = x − E{x}. Taking into account Eq. 2 and Eq. 4 we have ˜F · ỹ = B · F · y,
and creating a quadratic form of this last expression, we get

˜F · ˜Ft = B · F · Ft · Bt, (5)
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In [15] Sprinzak et al proved that an equation of the form T ·Tt = S ·St has a solution
of the form T = S ·M, where M is an orthonormal matrix. This will help find the final
relation y → ỹ. Applying this to Eq. 5 and solving for B, we have

B = ˜F · Mt · F−1, (6)

Substituting Eq. 6 in ˜F · ỹ = B · F · y, yields:

ỹ = Mt · y, (7)

The assessment of the M matrix is known as the Orthogonal Procrustes problem
(see [13] for details). The solution matrix is M = V · Wt, where V · D · Wt is the
Singular Value Decomposition of (Yt · ˜Y). Y and ˜Y are N × D matrices formed by
the vectors y and ỹ of the point sets. We obtain B replacing M in Eq. 6. Applying the
Expectation Operator to x̃ = B · x + t, we get t = E{x̃} − B · E{x}.

The matrix A in the particular affine transformation model can also be obtained using
the definition of the Moore-Penrose inverse. Following [4], who applied this model to
illumination changes in RGB images, consider a D×N matrix Xt of points under some
reference illumination condition. Denote by ˜Xt the corresponding matrix when there is
an illumination change. The matrix A that accomplishes:

˜Xt ≈ A · Xt, (8)

is:
A = ˜Xt · [Xt]+, (9)

[Xt]+ is the Moore-Penrose inverse of matrix Xt (i. e., [Xt]+ = X(Xt ·X)−1). The
diagonal transform matrix Ad can be obtained from Eq. 9. Considering [4]:

Ad
ii = ˜Xt

i · [Xt
i ]

+ =
˜Xt

i · Xi

Xt
i · Xi

, (10)

where the single subscript i denotes the ith matrix row and the double subscript ii de-
notes matrix element at row i column i.

3 Experimental Set-Up

In our experiments we use a multichannel camera built around the CCD QImaging
Retiga EX camera (12-bit, Monochrome Cooled camera without IR Filter). The sensor
resolution is 1036× 1360, down 516× 676 pixels. Connected to the camera is a Liquid
Crystal Tunable Filter (LCTF). The spectral sampling is 10 nm in the range from 400
to 720 nm, resulting in 33 channels. The tunable filter is fixed in front of the camera
and the camera/filter combination is mounted on top of the hemisphere, looking down
towards its center.

The illumination chamber is shaped as a hemisphere with a diameter of 60 cm and
contains 120 halogen lights of 10 Watts each. The lamps are powered by three-phase
AC 12 volts adjustable power supply. Each group powers 40 lamps. The even spatial
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Fig. 1. (a) Experimental set-up with hemispherical illumination and 3 phase potenciometers, (b)
Spectra of the 26 illumination levels

distribution of the lamps inside of the hemisphere avoids flickering effects, due to the
AC current. By adjusting the voltage level of the illumination chamber power supply we
can change the spectral power distribution of the illuminant. The experimental set-up is
shown in Figure 1(a).

4 Illumination Transformation Estimation

4.1 Change in Illumination of the Experimental Set-Up

We change the power supply of the illumination uniformly over the whole range to
get 26 different illumination levels and for each illuminant we capture an image of a
perfect reflectance diffuser object (spectralon) to serve as a spectral descriptor of the
light source. In Figure 1(b) the spectral power distribution of the illuminants is shown.
They are normalized to 1 dividing each one by its own maximum.

We first characterize the properties of light sources. This is done using the following
methods:

Colour Temperature: It is defined as the temperature in Kelvins at which a heated
black-body radiator matches the hue of a lamp [16]

Colour Rendering: Defined as a value in the interval [0 − 100] which measures the
effect of a light source on the colour appearance of objects in comparison with their
colour appearance under a reference illuminant (see [3]).

Colour Difference in the CIELAB and CIELUV Colour Spaces: These Coordinate
systems are derived from properties of human color vision in which euclidean dis-
tance corresponds to perceptual difference (for a description, see [16]).

Figure 2 shows the changes in Colour Temperature, Colour Rendering, the chro-
maticity measured as (a∗, b∗) vectors in the CIELAB system (see Section 4.2 for more
details on CIELAB conversion) , and the change in Lightness vs the chromaticity C∗

ab

for the 26 illuminants. The 26th illuminant (with highest L∗ value) is taken as refer-
ence. For the calculation of the CIELAB colour difference, the procedure to manage the
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white point explained in section 4.2 is used. From Figures 2(a) and (b) we can see that
the illuminants correspond to different Colour Temperatures and that they are similar to
the corresponding Black Body Radiators (i.e., Colour Rendering values are very close
to 100). Figures 2 (c) and (d) show significant variation both in L∗ and Chroma val-
ues. Figure 3 shows an important colour difference measured in CIELAB and CIELUV
colour spaces for the illumination changes.

(a) Colour Temperature (b) Colour Rendering

(c) a∗ vs b∗ (d) Lightness vs C∗
ab

Fig. 2. Analysis of the 26 Illumination spectra

4.2 Assessment of the Compensation

We take a series of 26 images of 4 wooden geometric objects (denoted as Image 1 to
Image 26), together with the illuminants of Section 4.1, and apply the affine models
to Image k, k = 2, . . . , 26 so they are as similar as possible to Image 1 (the refer-
ence image) after the affine transformation (where the ordering in k is such that Image
26 corresponds to the illumination in Section 4.1 with highest L∗ value). We use the
CIELAB colour space [11] to assess their compensation performance, converting the
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Fig. 3. ΔEab and ΔEuv colour difference values between Illuminant k (k = 1, . . . , 26) and
Illuminant 26, taken as reference

spectral curves of each image of the geometrical objects using the conventional formu-
lae to change from spectra to the XY Z colour space [11]:

X ∝
∑

λ

P (λ)R(λ)x̄(λ), Y ∝
∑

λ

P (λ)R(λ)ȳ(λ), Z ∝
∑

λ

P (λ)R(λ)z̄(λ)

(11)
where P (λ) is the Power Distribution of the Illuminant, R(λ) is the reflectance spec-
trum of the object and the product P (λ) · R(λ) is the signal arriving at the
camera. [x̄(λ), ȳ(λ), z̄(λ)] are the Colour Matching Functions of the 10◦ 1964 CIE
Supplementary Standard Observer [11]. The white point change between illuminations
(Xni, Yni, Zni), i = 1, ...26, is obtained evaluating the XY Z coordinates of the im-
ages of the spectralon for each illuminant, and normalizing the Y value of the highest
illuminant to 100. The rest of the (Xni, Yni, Zni) values are changed accordingly:

Xni ← Xni

Yn26
· 100, Yni ← Yni

Yn26
· 100, Zni ← Zni

Yn26
· 100. (12)

This normalization constant is used for any CIELAB colour difference.

4.3 Model Evaluation in the Original Space

In Figure 4 we can see the mean ΔEab Colour Difference for the comparison between
Image 1 and the rest for the 3 models (general, particular and diagonal). The applica-
tion of the first 2 models decreases ΔEab substantially, but this is not the case for the
diagonal model.

In Figure 5 we show that the general affine transformation model gives better ΔEab

results than the particular affine model for low illumination differences between images.
As the difference gets higher, both Models tend to give similar results, though the par-
ticular model tends to oscillate more. We also generate simulated RGB images before
and after compensation using the 33×3 transformation matrix of a commercial camera
obtained following the procedure described in [14]. In Figure 6 we see the Simulated
Images 1, 26, and the change from 26 to 1 using the general affine model.
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Fig. 4. Comparison mean ΔEab value before and after compensation using the general, particular
and diagonal affine transformation models in the 33 dimensional space between Image 1 and
Image k with k = 2, . . . , 26
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Fig. 5. Zoomed version Comparison mean ΔEab value before and after compensation using both
affine transformation models in the 33 dimensional space

(a) RGB 1 (b) RGB 26 (c) RGB 26 → 1

Fig. 6. Simulated RGB Images created with the sensitivity curves of a Nikon camera
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Fig. 7. Mean ΔEab value using the general affine transformation model for a 4, 8 and 33 dimen-
sional space
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Fig. 8. Mean ΔEab value using the particular affine transformation model for a 4, 8 and 33
dimensional space

4.4 Model Evaluation in a Low-Dimensional Space

We focus on the first two types of models. We apply the Singular Value Decomposition
transform to a random selection of the 5% of the whole amount of pixels of the 26
multispectral images acquired under different illuminations. We make a selection of the
first 4 and 8 eigenvectors ordered by their corresponding eigenvalues, and project the
original images in the 33 dimensional space to these lower dimensional spaces using
the following matrix projection formula:

XjD = X33D · P33→j , (13)

where j = 4, 8. We apply both affine transformation models in this lower dimensional
space, and recover then the transformed data in the original space using:

Xch,33D = Xch,6D · Pt
33→j , (14)
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Fig. 9. Zoomed version comparison mean ΔEab value for the general and particular affine trans-
formation models in an 8 dimensional space

Images 1 and 2 

(a) bij 2 → 1
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Fig. 10. Grey-scale image general and particular models matrix elements in the original space

We evaluate the models in the same way as in Section 4.3. Figures 7 and 8 show that
we can work in an 8 dimensional space and obtain the same compensation performance
results as in the original 33 dimensional space, for both models. In Figure 9 we show
that for low illumination changes the general affine model gives better results than the
particular affine model in an 8 dimensional space. Finally, in Figure 10 we present 2
examples of the matrix elements values of the models to analyze their distribution in
the 33 dimensional space. The main diagonal and other parts of the matrices contribute.
There is then an interaction among channels due to some internal device processes.

5 Conclusion

In this paper we showed that the affine model used by Heikkila et al in [10] for the
analysis of rigid body movements can be applied to the compensation of illumination
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changes. This model gives better results in general than the particular affine model in
the original 33 dimensional space. The analysis of illumination changes as affine trans-
formations opens the door to the development of invariant representations of images.
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