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Abstract. Recovering a 3-D scene from multiple 2-D views is indispens-
able for many computer vision applications ranging from free viewpoint
video to face recognition. Ideally the recovered depth map should be
dense, piecewise smooth with fine level of details, and the recovery pro-
cedure shall be robust with respect to outliers and global illumination
changes. We present a novel variational approach that satisfies these
needs. Our model incorporates robust penalisation in the data term and
anisotropic regularisation in the smoothness term. In order to render the
data term robust with respect to global illumination changes, a gradient
constancy assumption is applied to logarithmically transformed input
data. Focussing on translational camera motion and considering small
baseline distances between the different camera positions, we reconstruct
a common disparity map that allows to track image points throughout
the entire sequence. Experiments on synthetic image data demonstrate
the favourable performance of our novel method.
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1 Introduction

Structure from motion is a challenging task in modern computer vision: Extrac-
tion of depth information from the images of a single moving camera is useful
for such tasks as robot navigation, augmented reality [I4], [13] or face recogni-
tion. In the latter case structure from motion allows to reconstruct a face from a
set of images, obtained by a single moving camera. One of the typical scenarios
in this context is a camera that moves horizontally with a constant speed and
whose optical axis is fixed orthogonal to the path of motion. While such a set-
ting simplifies the computation, it is still difficult to obtain dense reconstructions
that are robust under noise and illumination changes and provide sharp object
boundaries.

B.K. Ersbgll and K.S. Pedersen (Eds.): SCIA 2007, LNCS 4522, pp. 173 2007.
© Springer-Verlag Berlin Heidelberg 2007



174 N. Slesareva et al.

All these demands can be satisfied by variational techniques, that have proved
to be very useful in the context of optic flow estimation [2]. The reconstruction
problem is formulated in an energy minimisation framework, under the assump-
tion of global smoothness of the solution. Compared to other methods varia-
tional techniques offer a number of specific advantages: They allow transparent
modeling without hidden assumptions or post-processing steps. Moreover, their
continuous formulation enables rotationally invariant modeling in a natural way.
The filling-in effect creates dense depth maps with sub-pixel precision by prop-
agating information over the entire image domain. For these reasons we aim
here at exploring the performance of variational methods in the context of 3-D
reconstruction from multiple views.

Since the fundamental work of Faugeras and Keriven [5] many different meth-
ods for multi-view 3-D reconstruction have been proposed. In most cases a cali-
brated camera setup is assumed and locally constant intensity of objects in the
scene is required. In the core of the minimisation procedure there lays either
a gradient descent algorithm such as in [B], [I5] or a sophisticated strategy of
successive refinement of results as applied in [6]. The results are highly accurate,
however the reported computational times take up to several hours. Comparing
to other methods, that reconstruct 3-D objects from multiple views using varia-
tional framework, like for example in [9], [8] our method produces not a complete
model, but only one disparity map. On the other hand the simplicity of our ap-
proach allows us to study more sophisticated models that help to improve the
robustness of the method with respect to noise and varying illumination.

In this paper we focus on a prototypical scenario of a face recognition system
that reconstructs the face surface from images taken by a camera that moves
linearly with constant speed within an orthoparallel setting. This allows us to
exploit a number of ideas that originate from the computation of optic flow fields.
It is well-known that in the orthoparallel case the following relation holds:

:b.f

z=" (1)

Here, Z denotes the depth of a point in the 3-D world, b is the baseline distance
between successive camera positions, f specifies the focal length and D is the
disparity, i.e. the distance between the projection of Z on two successive image
planes. Formulating our problem in terms of disparity estimation, we obtain a
scene reconstruction up to a scaling factor that depends on one intrinsic (focal
length) and one extrinsic parameter (baseline).

Since the camera moves slowly with a constant speed, we obtain a series of
consecutive disparity maps that are identical. Hence, it is sufficient to compute
a single joint disparity map.

Our paper is organised as follows. The next section describes our variational
model and its underlying assumptions in detail. Its PDE formulation is given
by the Euler-Lagrange equation sketched in Section 3. Experiments in Section 4
illustrate the performance of our approach. The paper is concluded by a summary
in Section 5.
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2 Variational Framework

We assume a single camera that acquires images while moving slowly with a
constant speed along the x-axis. Thus, approximately the same displacement
field (disparity map) A(z,y) occurs between each pair of subsequent frames and
can be recovered as minimiser of a single energy functional:

E(\) = Ep(\) +aEs()), (2)

where Ep(A) is a data term, Eg()\) is a smoothness term, and the regularisation
parameter o > 0 determines the desired amount of smoothness.

Let fi(x) denote the grey value of frame i at location x = (x,%). In order
to render our method robust against noise, we first convolve with a Gaussian
K, of standard deviation ¢ > 0. By applying a logarithmic transform to the
result, the multiplicative effects of global illumination changes are transformed
into additive perturbations. This leads to the images ¢%(x) for i = 1,...,N, which
serve as input data for our variational approach.

For the data term Ep () we choose a gradient constancy assumption between
corresponding structures within consecutive frames g* and ¢g**':

Vgt + A y) = Vg'(z,y). (3)

It ignores any additive perturbations on g%(x) caused by global illumination
changes between consecutive frames f(x). Penalising deviations from this con-
stancy assumption between all consecutive frame pairs in a statistically robust
way [7] can be achieved by use of the data term

1 N-1 ) '
B = [ S w (Ve @A) - Ve B) dx )

where 2 C R? denotes our rectangular image domain, and ¥(s?) := /s2 + €2 is

a L' penaliser with a small regularising constant € > 0 ensuring differentiability.
Since the baseline distance between consecutive frames is supposed to be small

for our application, we can simplify our data term by the Taylor linearisations

99 @+ N y) & 09" (2, y) + 0uag”(zy) A,
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Introducing the matrices
i < (9" + (g551)? (9" = gn)gst! + (g™ — g;)%?)
(gt — gt + (g5 —gp)gitt (g —gl)® + (g4t —95)°

and the vector w := (A(x),1) T allows to reformulate the data term in a compact
way as a sum of robustified quadratic forms:

N—-1
ED(/\):/Q;[ > w(w'J'w) dx. (5)
=0
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The role of the smoothness term Fg(A) in our energy functional is to pe-
nalise deviations from smoothness in the unknown disparity field A(x). Instead
of a standard quadratic smoothness term (based on the L? norm), we use the
anisotropic image-driven regulariser of Nagel and Enkelmann [12]:

Es(\) = /Q VAT D(Vg)VAdx. (6)

Here, D(Vyg) is a normalised and regularised projection matrix orthogonal to
Vg. It is given by

1 @2+1? —g.g
v v 2y
Dive) = |Vg|? + 202 ( —9e9y 92 +V°

with some small regularisation parameter v.
Now we can write down the complete energy functional by combining the data
term (B) and the smoothness term (@)):

1 N—-1
B / (NZ¢ (wTJ'w) +aVAT DY) dx. (7)

i=

3 Euler-Lagrange Equation

From the calculus of variations [4] we know that a necessary condition for a
function A(x,y) to be a minimiser of the energy functional ([0) is given by the
Euler-Lagrange equation

N—-1
1 , , ,
>N (wTle) (Ji A+ Jiy) — div(D(Vg)VA) = 0

=0

with reflecting boundary conditions.

This nonlinear partial differential equation can be solved with the help of two
nested fixed point iterations: The outer loop fixes nonlinearities with previously
computed values of A\, while the inner loop solves the resulting linear problem
with the well-known successive overrelaxation (SOR) method [16].

4 Experiments

We evaluate the performance of the algorithm with the help of two synthetic se-
quences created in OpenGL: The first one illustrates a female head, as shown in
Figure[Il while the second one represents a more challenging task — reconstruc-
tion of a tree illustrated in Figure Pl The performance of the method was tested
on original sequences and versions with varying illumination as well as variants
with noise. Moreover, the results for the original sequences were compared to the
publicly available two-frame graph cuts method of Kolmogorov and Zabih [10].
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In our experiments both sequences contain up to 8 images with small dis-
placements of up to one pixel between successive camera positions. The ground
truth maps were obtained by rescaling and transforming the original OpenGL
Z-buffers into disparity maps. Consequently, for comparison with a ground truth
we compute the average absolute disparity error (AADE)

M
1 truth estimate
AADE:MZ|di —d; [

i=1

where M denotes the number of pixels.

There are just two model parameters that require adjustment: A smoothness
parameter o and a standard deviation of a Gaussian o for the preprocessing step.
Other numerical parameters were kept fixed and constant for all experiments.
The computation in all cases was stopped when the normalised L' norm of the
updates at a certain iteration k became sufficiently small:

POH PSP
2N

In our experiments values for 1 vary between 1076 to 10~8. The average time,
required for the evaluation of our experiments on an Intel Pentium 4 CPU with
3.2 GHz is in the order of 10 to 40 minutes (for 8 images degraded with Gaussian
noise). More sophisticated solvers such as multigrid methods, however, may allow
even for runtimes of less than a second [3].

<

4.1 Face Sequence

In this experiment we were using 8 images of a head scene, created in 3DS Max
8.0 and imported to OpenGL. The performance of the algorithm was tested on
the original sequence, its degraded version, contaminated with Gaussian noise
of o = 25 and a sequence made from the same scene but under conditions of
varying illumination (see Figure[I]). In all experiments we observed that the main
details of the head have been reconstructed in a realistic way: One can recognise
that the reconstructed object represents a human face with clearly shaped nose,
lips and eye slots. All experiments in this subsection have been carried out with
two slightly different error measures: Once, the overall AADE of the computed
disparity map was used; the other time, the AADE measurement was restricted
to the face region by using a mask shown in the Figure[Il Table [ shows optimal
parameters and error measures for the first setting, while Table [2] presents the
results for the second setting. Further on we observe that the results are fairly
robust under noise and varying illumination: All essential features of the face
remain recognisable and in accordance with the ground truth map.
Additionally we have investigated the influence of the number of images on the
reconstruction quality. The clear difference in error measurements confirms our
expectations: A larger number of images produces more stable results, since the
amount of correspondences and, therefore, the reliability of the result increases.
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Table 1. Results for the Head scene. AADE; = Average absolute disparity error
computed for the whole disparity map. Disparity values for these experiments vary in
the interval (0.1, 1). The parameters « and o have been optimised.

2 Frames 4 Frames 6 Frames 8 Frames Noise, 8 Fr. Illum., 8 Fr.

o 0.5 0.12 0.06 0.05 4.9 0.6
o 2.5 2.7 2.8 2.9 5.7 1.7
AADE; 0.0357 0.0298 0.0284 0.0286 0.0819 0.0387

Fig. 1. Head sequence, top to bottom, left to right. First row: Original frame 1, frame
7 of a sequence with varying illumination, frame 1 of the sequence degraded with
Gaussian noise of o = 25. Second row: Typical results of reconstruction for 8 images of
the original sequence, the sequence with illumination changes, and the noisy sequence.
Third row: Graph cuts result (8 disparity levels), ground truth and mask.
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Table 2. Results for the Head scene. AADE,, = Average absolute disparity error
computed for the face only. Disparity values for these experiments vary in the interval
(0.1, 1). The parameters a and ¢ have been optimised.

2 Frames 4 Frames 6 Frames 8 Frames Noise, 8 Fr. Illum., 8 Fr.

o 0.4 0.27 0.21 0.14 4.0 31
o 4.1 3.9 4.0 4.1 10.1 2.2
AADE,, 0.0244 0.0204 0.0193 0.0192 0.0569 0.0371

Finally, let us compare our results to the one obtained by using the graph
cuts method of Kolmogorov and Zabih [I0]. Since this method relies on large
displacements, we computed the disparity map between the first and the eighth
image of the noise free sequence and divided the obtained result by 7 (number of
images minus one). The corresponding disparity map which is presented in Figure
[Millustrates a very precise reconstruction of the silhouette of the head with clear
distinction of the ears and the neck. However, the main features of the face were
completely lost. Evidently, the algorithm is not able to reconstruct these features,
because this would require to estimate the displacements at the corresponding
locations with sub-pixel precision. But even for relatively large displacements it is
well-known that reconstructions of graph cuts methods for such smoothly varying
surfaces suffer from similar stair-casing effects [I1], this time, however, due to
the strong non-convexity of typical regularisers. Our observations are confirmed
by the higher AADE for the graph cuts method for both the face region and
the whole sequence which is given by AADE; = 0.0766 and AADE,, = 0.030,
respectively.

4.2 Tree Sequence

In this experiment we reconstruct an object of a very complex structure with fine
level of details. Additional difficulty for the algorithm represents a homogeneous
region, that corresponds to the sky above the landscape. As before, we make our
task even more challenging by degrading the original sequence with Gaussian
noise of o = 25 and also varying the illumination in the scene.

For the original sequence we observe a very detailed reconstruction: Sepa-
rate branches of the tree were estimated in accordance to the model, the overall
silhouette of the tree was preserved quite well, even the difference in depth be-
tween neighbouring leaves appears to be very close to the ground truth map.
The homogeneous region, corresponding to the sky was also estimated satisfac-
tory: Since hardly any information is available in the sky region that allows for
a direct estimation of the motion, our method propagates this information via
the smoothness term. Again, the reconstruction process shows robustness with
respect to noise and varying illumination: Both disparity maps show high sim-
ilarity to the ground truth map with slightly higher values of AADE. In this
experiment the difference between AADE values for the original sequence and
those with noise and illumination change is not so large as in the previous ex-
periment for the head sequence. This can be explained with the complexity of
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Fig. 2. Tree sequence, top to bottom, left to right. First row: Original Frame 1, frame 7
with varying illumination, frame 1 degraded with Gaussian noise of o = 25. Second row:
Typical results of reconstruction from 8 images of original sequence, with illumination
changes and noise. Third row: Graph cuts results for noise free and noisy image sequence
(8 disparity levels), ground truth.

the reconstructed object which leads to larger errors already in the undisturbed
sequence.

The result of the graph cuts method for the noise free sequence between the
first and eighth image (see Fig. ) shows quite accurate reconstruction of the
scene. Separate branches and overall shape of the tree were reconstructed very
well and in accordance with the ground truth map. However, once again small
variations of the disparity values cannot be estimated appropriately (the different
disparity layers within the tree are very well visible). The corresponding AADE
of AADE = 0.0793 for the graph cuts method is nevertheless close to ours. This
is due to the accurate spatial reconstruction of the shape of the tree. For the
noisy image sequence, however, the graph cuts method gives very poor results.
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Table 3. Results for the Tree sequence. AADE = Average absolute disparity error.
Disparity values for these experiments vary in the interval (0.1, 1).

2 Frames 4 Frames 6 Frames 8 Frames Noise, 8 Fr. [llum., 8 Fr.

« 0.7 0.2 0.1 0.03 27.0 0.12
o 1.8 2.0 2.3 2.66 2.7 2.18
AADE 0.0718 0.0644 0.0622 0.0616 0.0635 0.0650

Although we applied the same presmoothing strategy as for our stereo method,
the disparity map contains many artifacts and the overall shape of the tree is
very hard to recognise.

As before, we have experimented with smaller data sets of 2, 4 and 6 conse-
quent images. Resulting error measures, presented in the Table [3] show conse-
quent improvement as the number of images in the sequence grows.

5 Summary and Outlook

We have proposed a variational technique for a specific task of 3-D reconstruction
for multiple views with small baseline distances. The method has been tailored
towards applicability under more challenging conditions by incorporating various
concepts that allow to handle data sets with varying illumination and noise. We
have evaluated the performance of the approach with two sets of synthetic data
with good results. The phenomena which are not taken into account so far are
occlusions and specular reflections. This is a part of our ongoing work, whereby
for the handling of specular reflections ideas from [9] and [I] are expected to be
useful. An extension of our algorithm to arbitrary camera ego-motion is another
topic of current research.
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