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Abstract. One problem in appearance-based pose estimation is the
need for many training examples, i.e. images of the object in a large
number of known poses. Some invariance can be obtained by consider-
ing translations, rotations and scale changes in the image plane, but the
remaining degrees of freedom are often handled simply by sampling the
pose space densely enough. This work presents a method for accurate in-
terpolation between training views using local linear models. As a view
representation local soft orientation histograms are used. The derivative
of this representation with respect to the image plane transformations
is computed, and a Gauss-Newton optimization is used to optimize all
pose parameters simultaneously, resulting in an accurate estimate.

1 Introduction

Object recognition and pose estimation can be done in several ways. In the bag-
of-features approach, local coordinate frames are constructed around points of
interest [5], [9], and features from each local frame vote for a certain object and
pose hypothesis. In the model-based approach [2], [11], a geometrical model is
fitted to the observed image. This approach is often very accurate, but requires
a good initial guess and a manually constructed 3D model. Global appearance-
based methods extract features from the appearance of the entire object and
match these to training views in memory. Ever since [10], [7], the most common
approach seems to be using PCA.

In this paper, we use an appearance-based method using full object views, but
avoid PCA due to the global nature of this representation. The main goal is to
maximize the accuracy of the pose estimate by interpolating between a limited
number of training views. The interpolation method is based on representing the
views with channel-coded orientation [3], [4], and optimizing all pose parameters
(including position, rotation and scale in the image plane) simultaneously using
a Gauss-Newton method. The method requires an initial guess, which in a real
system could be obtained using your favorite fast but inaccurate bag-of-features
approach.
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The motivation for using full object views is two-fold. The first reason is
that once we have formed an initial object hypothesis, it makes sense to use as
much image information as possible in order to get an accurate estimate. The
second reason is that using full views, we can focus on the interpolation and
view representation, and ignore other aspects like how to choose interest points
and construct local frames in a bag-of-features approach. This makes it easier
to compare different view representations. Similar interpolation techniques as
proposed here should however be possible to integrate also in a bag-of-features
framework.

In contrast to model-based methods, our approach requires no knowledge of
3D geometry in the system, and is in no way specific to 3D pose estimation. The
training set could consist of any parameterized image set, e.g. a robotic arm in
different configurations etc.

2 Algorithm

2.1 Pose Estimation

The appearance of an object is determined by the object state p= [θ, φ, s, α, x, y].
The parameters s, α, x, y represent the scale, rotation and position of the object
in the image plane and will be referred to as the image parameters pimg. The
two auxiliary angles θ and φ cover all pose variations not explained by rotation
in the image plane and will be referred to as the pose angles ppose.

During training, we learn the appearance of the object given (θ, φ) using
canonical image parameters. The result of the learning can be seen as a function
f that maps the pose angles to a predicted feature vector:

ĉ = f(θ, φ) . (1)

During operation of the system, we maintain a current hypothesis of the object
state, and cut out an image patch around the current (x, y) with rotation α and
size s. This can be formalized by a function

c = g(s, α, x, y) (2)

producing an observed feature vector from the image given certain image pa-
rameters. The pose estimation problem is now to find an object state p∗ which
minimizes the difference between the observed and predicted feature vectors:

p∗ = argmin
p

‖r(p)‖2 (3)

where
r(p) = f(θ, φ) − g(s, α, x, y) . (4)

This can be solved using your favorite optimization method. We use a Gauss-
Newton method, with a simple backtracking line search [8]. The update step
direction s is given by

Js = −r , (5)
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where J is the Jacobian of r:

J = [f ′, −g′] =
[
f ′θ, f

′
φ, −g′

s, −g′
α, −g′

x, −g′
y

]
(6)

The derivative of g with respect to transformations in the image plane depends
on the choice of view representation and will be discussed in Sect. 3. The deriva-
tive of f can be approximated by a local linear approximation of the training
manifold, discussed in Sect. 2.3.

In each step of the iterations, we measure g(pimg) directly in the query image,
i.e. we cut out a new patch using the current pimg and extract a new feature
vector from the image. A faster but less accurate option would be to keep the
original feature vector and Jacobian, and use them as a linear approximation of
g throughout the entire solution procedure.

2.2 Geometrical Interpretation of Gauss-Newton

To fully understand the method, it is useful to have a geometrical image in
mind. The output of the functions f and g define two manifolds in feature space.
The first manifold contains all expected appearances of the object, learned from
training examples, and the second one contains all observable feature vectors at
different positions in the query image. The objective is to find one point on each
manifold such that the distance between the two points is minimal.

What the Gauss-Newton method does is to approximate each manifold with
its tangent plane and find the points of minimal distance on these hyperplanes.
Let f(ppose + spose) ≈ f(ppose) + f ′(ppose)spose and g(pimg + simg) ≈ g(pimg) +
g′(pimg)simg. The minimum-distance points are given by the over-determined
equation system

f(ppose) + f ′(ppose)spose = g(pimg) + g′(pimg)simg , (7)

which is solved by (5) with s = [spose simg]. If the linear approximation is good
enough, we can expect good results even after a single iteration.

2.3 Local Linear Approximation

In this section, we describe how to approximate the value and derivative of f
by a variety of locally weighted regression [1], [6]. To simplify the notation and
avoid double subscripts, let p = [θ, φ]T, and let p0 be the current guess of p, i.e.
we consider only the auxiliary pose angles. The system is given a set of training
views with pose angles pi, from which features ci are extracted. The learning
consists simply of storing all these training samples {pi, ci}. In operation mode
we need the value and derivative of f at the current hypothesis p0, which is
computed by fitting a linear model to the training samples closest to p0. The
basic strategy is to weight all training samples according to their distance to p0:

wi = K(‖pi − p0‖) . (8)
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Here K is a smooth Gaussian-looking weighting kernel with compact local sup-
port; in our case a second-order B-spline. We then solve the weighted least-
squares problem

min
A,b

∑

i

wi‖(A(pi − p0) + b − ci‖2 . (9)

This produces an interpolation using neighboring points only. From the Taylor
expansion of f , we can identify b and A as the approximated function value and
derivative respectively:

f(p) ≈ f(p0) + f ′(p0)(p − p0) ≈ b + A(p − p0) . (10)

If the training views are irregularly distributed in (θ, φ)-space, the number of
samples included within the support of K is arbitrary and may even be zero. In
contrast, if the weighting kernel is large, the linear approximation may be poor.
Instead of using a fixed kernel, we could always select the k nearest neighbors,
but without any sample weighting this would produce a discontinuity when set
of neighbors changes. Since we expect f to be a smooth function, and since we
are going to use the approximation in an iterative optimization, it is important
that our approximation is also smooth.

Our method does something in between, by using a weighting kernel that is
scaled according to the nearest training samples. We let K(r) be scaled such that
K(r) = 0 iff r > 1 and sort the training samples by their distance to p0, such
that ‖pi −p0| ≤ ‖pi+1 −p0‖ for all i. We now weight our samples according to

wi = K (β‖pi − p0‖/‖pk − p0‖) . (11)

If β = 1, this gives zero weight to the k’th sample and non-zero weight to all
samples strictly closer to p0. However, if there are several samples with the same
distance to p0 as pk, all these samples will get zero weight as well, which may
produce too few active samples for a reliable model fitting. This is solved by
choosing β slightly larger than 1, giving at least k active samples. Each wi is
now a continuous function of p0, and A,b depend continuously on the wi’s. This
ensures that our approximation responds continuously to changes in p0.

3 View Representation

Given the pose estimation procedure in Sect. 2.1, we wish to find a good de-
scription of each view in terms of a feature vector c. To make the representation
depend continuously on the input image, we avoid too complicated things like
region detection etc. What we want is a simple non-linear transformation of
the view. In order to be invariant to lighting, we use local orientation instead
of image intensity. For robustness against occlusion and background clutter, we
avoid global view representations like PCA or DCT. One simple option could be
to simply downsample the gradient magnitude. Note however that in order for
the interpolation between training views to be successful, the same edge of an
object must be visible within the receptive field of one pixel in the downsampled
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image for several views (see Fig. 1). Since our training views are rather coarsely
spaced, we would need very heavy smoothing or downsampling, which would
destroy much image information. Instead, we use channel coded orientation or
soft orientation histograms as view representation.

Fig. 1. Top: Gradient magnitude of two adjacent training views and an interpolated
intermediate view. Since the spatial resolution of the feature representation is too large,
linear interpolation does not produce the expected features of intermediate views.

3.1 Channel Coding

Given a scalar-valued feature image z(x, y) and a weight function w(x, y), the
channel coded feature map is a 3D array c with elements

cijk =
∫

R2
Bijk(x, y, z(x, y))w(x, y) dx dy , (12)

where
Bijk(x, y, z) = B1(x − x̃i)B2(y − ỹj)B3(z − z̃k) (13)

are smooth, localized but overlapping basis functions, causing each pixel to
smoothly contribute to several channels. Each channel cijk measures the pres-
ence of the feature value z̃k around image position (x̃i, ỹj). The points (x̃i, ỹj, z̃k)
are called the channel centers. We can think of it as first representing the fea-
ture image as a set of points (x, y, z) in a 3D spatio-featural space, and then
downsampling this space in all three dimensions simultaneously.

In our case, the feature z is local orientation taken modulo π, such that we
do not distinguish between positive and negative edges. The gradient magnitude
is used as weight w(x, y). If the kernels are chosen as rectangular and non-
overlapping, we get a simple 3D histogram. If we create a binary weight wB(x, y)
by thresholding w(x, y) at 10% of the maximum value and use first order (linear)
B-spline [12] as basis function, we something similar to the SIFT descriptor [5].
By increasing the overlap and smoothness of the basis functions, we expect to
get a smoother behavior. In the evaluations, second order B-spline kernels will
be used.

The expected advantage comes from the fact that we can use a coarse spatial
resolution but still maintain much useful information. For example, we can rep-
resent the presence of multiple orientations in a region without averaging them
together. The low spatial resolution and the smoothness of the basis functions
makes it more likely that the view representation transforms smoothly between
the training poses, which makes it suitable for view interpolation.
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3.2 Derivatives of the Channel Coding

In updating the image parameters iteratively according to Sect. 2.1, the deriva-
tives of the view representation with respect to the image parameters are re-
quired. For simplicity of notation, we ignore the weight function w(x, y) for a
moment, and rewrite (12) in vector notation:

cijk =
∫

R2
Bijk(x, z(x))dx . (14)

The weights will be considered again in Sect. 3.3. We consider now a certain
channel coefficient cijk, and to further simplify the notation, the integral limits
and indices ijk will be dropped. We are interested in what happens when the
feature image is rotated, scaled and translated:

c =
∫

B(x, z(Ax + b)) dx (15)

where

A = esR = es

(
cosα −sin α
sin α cosα

)
, b =

(
bx

by

)
(16)

Substituting u = Ax + b where u = [u, v]T gives x = A−1(u − b) and

c = |A−1|
∫

B(A−1(u − b), z(u)) du . (17)

We now want to differentiate (17) with respect to α, s, bx, by, and start with α.
For compactness, we leave out the arguments to B and its derivatives. These
arguments are always as in (17). First note that |A−1| is constant with respect
to α. Since everything is smooth and well-defined, we can replace the order of
the integration and differentiation.

dc

dα
= |A−1|

∫
d
dα

[B(. . .)] du = |A−1|
∫

B′
x(. . .)

dA−1

dα
u du (18)

where

dA−1

dα
= e−s

[
− sinα cosα
− cosα − sinα

]
(19)

B′
x = [B′

x, B′
y] (20)

The differentiation with respect to b proceeds similarly. We get

dc

db
= |A−1|

∫
d
db

[B(. . .)] du = −|A−1|
∫

B′
x(. . .)A−1 du (21)
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In differentiating with respect to s, |A−1| is no longer constant. The product rule
gives us

dc

ds
=

d|A−1|
ds

∫
B(. . .) du + |A−1|

∫
d
ds

[B(. . .)] du = (22)

= − 2|A−1|
∫

B(. . .) du + |A−1|
∫

B′
x(. . .)

dA−1

ds
u du = (23)

= − |A−1|
∫

2B(. . .) + B′
x(. . .)A−1u du (24)

Setting s = 0, α = 0,b = 0 gives A−1 = I, and the derivatives in (18), (21) and
(24) become

dc

dbx
= −

∫
B′

x(u, z(u)) du (25)

dc

dby
= −

∫
B′

y(u, z(u)) du (26)

dc

ds
= −

∫
2B(u, z(u)) + uB′

x(u, z(u)) + vB′
y(u, z(u)) du (27)

dc

dα
=

∫
vB′

x(u, z(u)) − uB′
y(u, z(u)) du (28)

By computing these derivatives for each channel and stacking them into vectors,
we get g′

x,g′
y,g′

s,g
′
α required in (6). Note that if the basis functions are B-splines,

all terms in the above integrals are just piecewise polynomial functions with the
same support, so the amount of computation required to evaluate each of the
derivatives is in the same order of magnitude as computing the channel-coded
feature map itself.

3.3 Weighted Data

In the previous section, the weights from (12) were not considered. By intro-
ducing these weights again, the results are similar. Since the weights are defined
for each pixel in the feature image, they transform with the features, i.e. (15)
becomes in the weighted case

c =
∫

B(x, z(Ax + b))w(Ax + b) dx . (29)

After the variable substitution, we have

c = |A−1|
∫

B(A−1(u − b), z(u))w(u) du (30)

In this expression, the weighting function is independent of the transformation
parameters α, s,b and is left unaffected by the differentiation. The complete
expressions for the derivatives in the weighted case are just (25)-(28) completed
with the multiplicative weight w(u) inside the integrals.
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3.4 Normalization

The method has shown to work better if the channel vectors are normalized
using c̃ = c/‖c‖, where ‖ · ‖ is the L2 norm. In this case, we should change the
derivatives from previous section accordingly. From the quotient rule, we have

dc̃
dα

=‖c‖−2(
dc
dα

‖c‖ − c
d‖c‖
dα

) = ‖c‖−1(
dc
dα

− c̃c̃T dc
dα

) (31)

where we have used that d‖c‖
dα = c̃T dc

dα . The derivatives with the respect to the
other variables are derived analogously.

4 Experiments

The method is evaluated on a set of objects scanned with a turn-table, producing
training images like in Fig. 2. Views are available for every 5◦ in both the θ and
φ domain. The method was trained on views 20◦ apart, and evaluated on all
intermediate views. This gives 50 training views and 629 evaluation views.

In the first experiment, we assume that the image parameters are known,
and optimize the pose angles [θ, φ]. The iterations were initialized at the closest
training view, which is similar to what can be expected from an inaccurate object
detector. The best parameter settings were found by an exhaustive search. The
results using different varieties around the best option are shown in Table 1.
As we see, the performance is rather insensitive to parameter variations in this
order of magnitude.

In the second experiment, all 6 pose parameters were optimized simultane-
ously. One problem here is that the set of angles [α, θ, φ] is ambiguous such that
two distinct set of angles can represent the same pose. Because of this, we com-
bine the pose angles and image rotation into a rotation quaternion and measure
the error in the quaternion domain. An RMS quaternion error of 0.015 corre-
sponds to around 2◦ error in each angle. The method was initialized using the

Fig. 2. Training views. Y-axis: θ, X-axis: φ.
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Table 1. RMS error in degrees for pose angles only, around the manually selected
option 8×8×6 channels, 4 neighbors. Left: Varying spatial resolution. Middle: Varying
number of orientation channels. Right: Varying number of neighbors.

nx × ny error
6x6 1.2
8x8 1.2

10x10 1.3
12x12 1.4
14x14 1.4

nf error
4 1.2
6 1.2
8 1.3
10 1.3

neighbors error
3 1.3
4 1.2
5 1.2
6 1.2
7 1.3
8 1.6
9 1.9

Table 2. RMS error for all parameters (x,y,s error is in pixels) around the manually
selected option 8×8×6 channels, 4 neighbors. Left: Varying spatial resolution. Middle:
Varying number of orientation channels. Right: Varying number of neighbors.

nx × ny x,y s q
6x6 3.5 6.8 0.016
8x8 3.5 6.2 0.016

10x10 4.2 6.7 0.017
12x12 4.1 7.0 0.017
14x14 4.5 7.6 0.018

nf x,y s q
4 3.55 6.6 0.015
6 3.5 6.8 0.016
8 3.5 7.0 0.015
10 3.6 7.5 0.016

neighbors x,y s q
3 3.5 6.1 0.016
4 3.5 6.2 0.016
5 3.4 6.0 0.016
6 3.1 6.0 0.015
7 3.6 6.3 0.017
8 3.6 6.6 0.020

true image parameters and the closest pose parameters from the training set.
The results for different options are shown in Table 2. Here s is the radius in
pixels of a box containing the object, and the errors in x, y, s are measured in
pixels. The size of the car in the images is around 300 pixels.

The current implementation runs at a few frames per second on an AMD
Athlon 3800+.

5 Discussion

This paper has described an accurate interpolation method for view-based pose
estimation using local linear models and Gauss-Newton optimization. Some va-
rieties in the view representation have been compared in terms of fitness to this
framework. However, the evaluation is in no way complete. There are several
more parameters to play around with, e.g. the amount of overlap between ba-
sis functions, different soft tresholdings of the orientation image etc. It would
also be interesting to perform a more detailed study on the performance of this
representation compared to other approaches like PCA, wavelet representations
etc.

The most critical fact is however that the evaluation dataset is too simple,
without occlusion and difficult backgrounds. To verify that the method works
in the real world, it has been run on hand-camera video sequences, but without
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any quantitative error measures. Some video clips are available online 1. A more
rigorous evaluation should be performed on real image sequences with ground
truth. In the near future, we plan to create datasets for this purpose and make
them publicly available.

Recall that the full view setting was chosen mainly to be able to focus on
the interpolation and feature representation. The goal of our future research is
to transfer these techniques to methods based on local patches. This creates
new problems, e.g. how to handle the fact that patches may be selected from
different positions on the object in different views. Solving these problems will
be challenging but hopefully rewarding in terms of greater performance.
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