
J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 279–293, 2007.
© Springer-Verlag Berlin Heidelberg 2007

RED-PL, a Method for Deriving Product Requirements
from a Product Line Requirements Model

Olfa Djebbi1,2 and Camille Salinesi1

1
 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2
 Stago Instruments, 136 avenue Louis Roche, 92341 Gennevilliers, France

olfa.djebbi@malix.univ-paris1.fr,
Camille.Salinesi@univ-paris1.fr, odjebbi@stago.fr

Abstract. Software product lines (SPL) modeling has proven to be an effective
approach to reuse in software development. Several variability approaches were
developed to plan requirements reuse, but only little of them actually address
the issue of deriving product requirements. Indeed, while the modeling
approaches sell on requirements reuse, the associated derivation techniques ac-
tually focus on deriving and reusing technical product data.

This paper presents a method that intends to support requirements deriva-
tion. Its underlying principle is to take advantage of approaches made for reuse
PL requirements and to complete them by a requirements development process
by reuse for single products. The proposed approach matches users' product re-
quirements with PL requirements models and derives a collection of require-
ments that is (i) consistent, and (ii) optimal with respect to users' priorities and
company's constraints. The proposed methodological process was validated in
an industrial setting by considering the requirement engineering phase of a
product line of blood analyzers.

Keywords: Requirements, Derivation, Product Line.

1 Introduction

As defined by the Software Engineering Institute (SEI), “a software product line
(SPL) is a set of software-intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way”.

Software Product Line Engineering is rapidly emerging as a viable and important
software development paradigm allowing companies to realize order-of-magnitude
improvements in time to market, cost, productivity, quality and flexibility.

These new outcomes can be attributed to strategic software reuse. Software prod-
uct line techniques explicitly capitalize on commonality and formally manage the
variations among products in the product line. As a result, the main effort to design a
product from the product line is due to the variations and the impact of the choices
made for the required product.

Compared with conventional techniques, companies that manage a software prod-
uct line report success stories in which they decreased their time-to-market for new

280 O. Djebbi and C. Salinesi

products by factors of 2 to 50, reduced defect rates as high as 96% and multiplied
productivity by a factor of 2 to 3 [1].

As Fig. 1 shows it, software products are developed, in the context of product line
engineering, according to a two-stage process: the domain engineering stage and the
application engineering stage [2]. Domain engineering involves implementing com-
monalities between product family members through a set of shared software arti-
facts, while preserving at the same time the ability to vary the products. During appli-
cation engineering, individual products are derived from the product family, i.e. con-
structed using a subset of the shared software artifacts.

Domain

Analysis

Domain

Design

Domain

Realization

Domain

Testing

Requirement Architecture
Components T

t

Domain
tif t

Product

Analysis

Product

Design

Product

Realization

Product

Testing

Requirement Architecture
Components T

t

Product I

Product N

D
o

m
ai

n

E
n

g
in

ee
ri

n
g

P
ro

d
u

ct

E
n

g
in

ee
ri

n
g

New requirements

Fig. 1. Requirements Engineering challenges in a Software Product Line context (SEI)

In this particular context, Requirements Engineering (RE) processes have two
goals: to define and manage requirements within the product line and to coordinate
requirements for the single products. To achieve the latter goals, product requirements
must be elicited by matching the product line requirements with customers' initial
requirements (fig.1).

Some recommendations can be found to manage requirements in the context of
SPL, but they always need to be customized [3] [4] [5] [6] [7]. Existing approaches
rely on a requirements variability modeling process followed by a requirements selec-
tion process to retrieve a requirements collection specifying the single product to
build.

Our experience showed us that, as stated by [8] [9], this way of working has sev-
eral limits:

• Requirements are solution-driven: the selection among pre-defined product line
requirements models that most often correspond to features already imple-
mented in existing products, can influence stakeholders and skew their choices.
They will naturally establish links between their problem and the existing solu-
tions, adopt features with marginal value, and naturally forget about important

 RED-PL, a Method for Deriving Product Requirements 281

requirements that are not present in the PL requirements model. As a result, the
focus is on model elements that implement the solution rather than on the ex-
pression of actual needs.

• Customer dissatisfaction: the customer requirements can be different from the
ones identified in the PL requirements models. Selecting among existing
requirements can lead to miss out important requirements.

• Innovation damping: the RE process is inherently characterized by insight-
driven evolution episodes. It fosters opportunistic exploration of the conceptual
space and promotes creative thinking within the system requirements. On the
opposite, selecting among predefined requirements restricts considerably
creativity and search for innovative ways to deal with problems, hence reducing
the added value of the new products to be developed.

• Lack of guidance: customers and marketing people are most often on their own
to elicit the requirements for new products. Existing approaches provide little
guidance (notation, process, rules …) to assist them in eliciting consistent
product requirements, neither are developers guided in adding new requirements
to the PL requirements model.

• Customer training: interactions between customers and variable requirements
models imply that users should make an additional effort to understand the PL
models and to seek their requirements in these models.

• Customer overwhelm: customers should not have to consider the complete
collection of PL requirements as they are only interested in the requirements for
a current product. Overwhelmed by a huge amount of data, customers lose track
of the initial mission and are naturally lead to inquire about, comment, and even
ponder over “requirements” that do not correspond to real needs.

These limits engendered by the requirements selection processing have many im-
pacts on the project processes and artifacts, namely:

• Quality of the requirements documents: when stakeholders select requirements
from the PL models, the resulting documents consist in a copy of a PL
requirements model extract. When, on the contrary, stakeholders come up with
new requirements, specifying these independently from the PL requirements
model is inefficient. We believe, there is a need for guiding the merge between
variability requirements specifications with requirements documentation for
single products. Furthermore, product requirements specifications can be
inconsistent since PL RE methods do not propose processes to verify the
consistency and the compatibility of the new requirements with the older ones.

• Quality of the resulting product: it is quite well documented that the outcomes
of projects with poor requirements management drive to poor product quality.
This applies to products developed in the context of PL as for any other kinds of
products even though reuse is facilitated.

• Project management: training customers to understand the PL requirements
models and to discuss about them is a waste of time and creates an ambiguity
between the roles of analysts and customers that inevitably leads to conflicts.
This, associated with poor requirements definition in early project phase,
generates rework in later phases of the project, extra costs, deadlines overrun,
and difficult project management.

282 O. Djebbi and C. Salinesi

• Strategic objectives of the company: stopping innovation and market
anticipation with new products may harm the company strategic objectives.
Besides, applied methods leading to customer dissatisfaction may even threaten
the survival of the company.

To overcome these shortcomings of existing methods, we believe there is a
need for a product requirements derivation approach that satisfies the following
characteristics:

• Requirements oriented: customers should be able to express their real needs, and
the built product should answer to these needs.

• Product line based: the developed product should take advantage of the PL
platform and reuse elaborated requirements that are already linked, traced and
validated.

• Unified into the whole product line development cycle: it should provide means
to ensure traceability with the remainder development phases for both the
product line and the single product being developed.

• Easy to apply
• Supported by a CASE tool that is integrated into existing toolkits: appropriate

tool support is mandatory to facilitate automate handling of the method
processes and artifacts, and hence his large adoption by developers’ community.

• Scalable: the method should allow modeling large-scale systems.

This paper presents a method that intends to support the requirements listed above.
The study was undertaken with the collaboration of the AFIS1 association and the
method was developed by application to a product line of a French company named
Stago -a medical company that produces blood analyzers [10]. The experience con-
sisted in gradually introducing basic PL management principles while meeting practi-
cal issues in the RE phases of a new product creation project. The selection of these
basic principles resulted from extensive bibliography research. Based on this
experience, we developed a method, named RED-PL (Requirements Elicitation &
Derivation for Product Lines) that guides the elicitation of product requirements by
derivation from the PL requirements specification. The approach takes into account
both the company’s environmental and technical constraints and the specific product
requirements as expressed by customers.

RED-PL is based on already existing PL requirements notations. The originality of
the RED-PL method is that (i) it is user-oriented and (ii) it guides product require-
ments elicitation as a decision making activity. Indeed, RED-PL makes it possible to
users to express their needs using classic requirements engineering techniques. Then,
mechanisms are used to convert these needs and match them with the PL require-
ments specification. Negotiation and arbitration are finally supported in RED-PL to
elicit optimal product requirements while maximizing reuse.

The paper is organized as follows. Section 2 outlines the challenges faced by Stago
and the problems encountered while performing RE activities within its SPL man-
agement context. Section 3 presents the RED-PL method which was developed to

1 French Association on Systems Engineering, affiliated to INCOSE (International Council on

Systems Engineering) http://www.afis.fr/

 RED-PL, a Method for Deriving Product Requirements 283

meet these challenges. The methodological process is illustrated using the Stago data
that were initially used to develop it. Section 4 provides an overview of existing
methods and discusses how they deal with these challenges. Finally, conclusions are
given in section 5.

2 Problem Statement in Stago’s Context

Stago Instruments [10] is a company that produces analytical instruments for the
haemostasis diagnosis. These instruments are embedded and real-time systems. They
are used in hospitals and laboratories in the context of routine analysis or biologic
researches.

The automatons produced by the company fit into a product line: all of them share
the same core part with the main blood analysis functionalities. Each automaton has
also its own characteristics and differs from the others. These variable parts can be as
simple as color, weight or user interface of the machine; or more advanced such as
biological processes, capacity in term of number of tubes handled, or mechanical and
electronic technologies.

In general, instruments make tests on patients’ products (total blood, plasma) and
return results that are then interpreted by doctors.

In order to make tests, biologists load tubes of patients’ products as well as reagent
tubes in the instrument. While loading, tubes have to be identified. The biologist must
then choose an analysis methodology and launch the tests. A methodology is a series of
steps that simulate corpus reactions. Methodologies differ following test types (TP,
TCA, etc.), but comprise necessarily a mix step and an incubation step. They may also
use mixing and heating steps. Researchers can compose their own methodologies.

The instruments treat tubes, accomplish analyses according to specified method-
ologies, make measurements, and return the results to the biologist.

Products are loaded by batch. Nevertheless, the instrument is able to interrupt cur-
rent tests in order to load and treat urgent tubes. Before launching tests, tubes must be
treated to separate their constituents. Two processes of separation exist: centrifugation
and micro-filtration. All instruments are able to implement theses processes however
only one of them is implemented at a time in a given instrument.

There are three kinds of measurements: chronometric, colorimetric and immu-
nologic. Instruments can implement several measure techniques, but an instrument
that implements micro-filtration should not implement the photometric measure.

Test results are provided to the biologists in gross unit (Sec, D.O/min, Δ D.O), as
well as in calculated unit (INR, μg/ml, UI/ml). To establish correspondences between
units, the instrument must support calibrations. Besides, the instrument can view
results on the screen, print them, and/or transfer them to the hospital or laboratory’
host and put them into the patient case historic.

During projects, Stago teams manage in parallel the requirements documentation
for the product line (common requirements) and for the single products (variable
requirements).

Fig. 2 presents a model that was developed to document the most important re-
quirements of the Stago instruments product line. The PL requirements are modeled
using a Feature-oriented notation.

284 O. Djebbi and C. Salinesi

The figure shows a tree in which nodes are the features that correspond to PL
requirements and links describe feature decomposition. There are three types of re-
quirements: mandatory (e.g ‘Load products’), optional (e.g. ‘Separate constituents’)
and alternative (e.g. ‘Centrifuge’ and ‘Micro-filter’). A mandatory requirement is
common to the PL and must be included in every product of the PL. An optional
requirement may, or not, be chosen for the considered product. Alternative require-
ments are collections of requirements from which some can be selected and others
not. A UML-cardinality is associated to the collection to indicate the minimum and
maximum number of requirements to be chosen. Additional dependency links
between requirements, namely the ‘requires’ and the ‘mutex’ relationships, can be
defined to specify additional constraints in requirements selection.

Diagnose thrombosis/haemostasis

Identify failing factor Interpret results

Analyze

Set products to analyze and reagents

Calibrate

Set up analysis
methodology

Obtain analysis results

Avoid contamination Ensure traceability

Measure reaction

Load reagents Recuperate
products

Identify
products

By
RFID By

barcode

By identificator

Load
products

For
urgent

test

By batch

FIFO

By test type By patient

Separate
constituents

Micro-
filter

Centrifuge

Mix

Agitate

Incubate

Heat

Photometric

Immunologic

Chronometric

Manual By extern
system

In the
screen

By listing

In the patient
case history

FIFO

By test type

By patient

By id By RFID

By printing on tubes

Clean

Evacuate waste
1..*

« requires »

1

Colorimetric

« mutex »

Fig. 2. Requirements model of Stago’s product line

Since users are free in their way to express requirements, it happens that some re-
quirements already exist in the PL requirements documentation, but with a different
form. Users also insist on some requirements and ignore their impacts on other ones,
or on the project progress itself. Users also often forget about important requirements
and ignore opportunities offered by the product line.

In this context, Stago raised priority questions namely: (i) how to ensure the satis-
faction of the real user's needs? and (ii) how to derive an optimal and consistent
collection of product requirements that meet users needs and that cost little to the
company? The RED-PL approach was developed and tried out on a Stago project to
answer these questions.

 RED-PL, a Method for Deriving Product Requirements 285

3 The RED-PL Approach

In contrast to the traditional ‘Selection’ approach, requirements derivation for PLs
must take into account stakeholders’ original needs. As depicted in Fig. 3, RED-PL
consists of:

• eliciting user requirements,
• matching users’ requirements with PL requirements. This activity leads to

establish the set of requirements that the PL subsumes and that satisfy users’
needs. They correspond to a set of possible products to build.

• deriving the optimal set of product requirements, taking into account users’ and
company’s constraints.

These processes are respectively described in the three following sub-sections.

Product Line

Product 1

Product 2

Product N

Domain Engineer

User

Product Requirements
Engineer

Requirements
Elicitation + Constraints

Company

Constraints

Match requirements
+ Generate products

Capitalize

Arbitrate

Fig. 3. Processes of the RED-PL approach

3.1 The Matching Process

The matching process is an iterative process that consists in interpreting users’
requirements in terms of the PL requirements. It results in a collection of require-
ments that shall be implemented in the product (named 'product requirements'). The
matching process aims at: (i) eliciting new users’ requirements, (ii) avoid missing
possible requirements, (iii) refining progressively the final product requirements, and
(iv) updating the PL assets.

In the matching process, users’ needs can be elicited using classical methods.
Then, rules must be applied to construct a valid (i.e. unambiguous, consistent, trace-
able and verifiable) collection of product requirements. Once this is achieved, users’
requirements can be fetched and marked in the PL model.

If users’ requirements can not be found in the PL requirements model, then either
(i) they are new requirements and they should be added to the PL model as well as
links among them and in relation with old requirements, or (ii) they are the same
requirements expressed differently, and then consensus should be made on the
requirement formulation.

286 O. Djebbi and C. Salinesi

Requirements’ matching is guided by using similarity analysis techniques. Two
kinds of similarity analysis techniques can be used: surface level and deep level. First
techniques are based on lexical similarity where two requirements are considered
similar when they use the same term or the same linguistic structures. Conversely,
deep level techniques use a structural and a semantic proximity. These techniques
need more sophisticated tools such as dictionaries and linguistic parsers. Our similar-
ity analysis approach also uses refinement, as suggested by goal modeling, to progres-
sively improve the quality of the matching and to focus on requirements that are con-
sidered more important [11].

Our approach exploits the 30 generic similarity metrics adapted to Dice, Jaccard
and Cosine’s ratios. As shown below, similarity can be automatically computed by
applying a weighted ratio between a number of similarities found between two re-
quirements and the number of elements that define these requirements.

[] []
{ } { }BA

B
BA

A
A

BA
B

m
D TermesTermes

TermesTermesSIMMAXTermesTermesSIMMAX
BAS

+

+
=

∑∑),(),(
),(

(Formula 1) Adapted Dice ratio

After similarity study, marked requirements and all the associated requirements can
then be retrieved from the PL model. This collection of requirements should corre-
spond to a fragment of the PL requirements model, i.e. a sub-tree of requirements that
satisfy users’ requirements. However, the PL requirements model also contains re-
quirements that are not yet marked. These requirements may be either (i) undesired,
they must then be explicitly marked as such, (ii) mandatory then they must be consid-
ered in the collection of product requirements, or (iii) variable (optional/ alternative).
As long as the tree contains unmarked optional and alternative requirements, a deci-
sion must be made on which additional PL requirements to select for the product.
Arbitrations must therefore be investigated and discussed with users, as explained in
the next sub-section.

3.2 The Arbitration Process

The output of the matching process consists in a PL requirements model composed of
wanted/unwanted mandatory, optional and alternative requirements. The model frag-
ment composed of desired requirements represents a set of possible releases as it can
also contain optional and alternative requirements.

Only wanted optional and alternative requirements are considered in the following
to express preferences since mandatory requirements must anyway be included in the
collection of product requirements.

Preferences can be expressed by users under the form of weights associated to op-
tional and alternative requirements. A 0 weight means that the requirements should
not be selected, a 1 weight means that it should be included in the product require-
ments collection. The sum of weights of a bunch of alternative requirements must be
equal to 1. Implicitly, each mandatory requirement has a 1 value weight.

Users can indicate their constraints on each requirement in terms of costs and bene-
fits. Likewise, managers can state their development constraints on each requirement
in terms of human resources, revenues, costs, and implementation/integration time.
Although we knew they are important, other constraints such as skills of development

 RED-PL, a Method for Deriving Product Requirements 287

teams, team transfers, deadline extension, external resources, were voluntarily ignored
because they were too difficult to evaluate and we didn't know if they would really
influence arbitration significantly.

Once requirements, priorities and constraints are completely defined, they are for-
malized using an Integer Linear Programming (ILP) notation. The Akkar approach
[12] was selected and adapted to solve the problem at hand. The adapted version al-
lows to define the subset of requirements that composes the optimal release while
doing a what-if analysis on a dashboard. The ILP approach generates a collection of
requirements that satisfies the constraints values, and is optimal with respect to the
optimization criterion.

The following presents our proposal for modeling PL requirements dependencies
using Akkar’s approach. In Akkar’s approach, a requirement xa∈{0,1} with xa=1 if xa
is selected, and xa=0 otherwise. Five kinds of dependencies can be considered: com-
position, requires, optional composition, exclusion, and alternative. While the four
former dependencies were already considered in Akkar's approach under the names
‘combination’, ‘implication’ and ‘exclusion’, the fifth kind had to be created to deal
with the specific semantics of PL requirements modeling notations.

Requires. If requirement xb is selected, then requirement xa must be selected too. In
the ILP model, it must be ensured that: xb=1 => xa=1

The ILP model is extended by the linear inequality xb ≤ xa (xa cannot be implemented
without implementing xb). In Akkar's initial approach, the corresponding dependency
was ‘implication’. In terms of PL requirements modeling, “requires” dependencies can
be found from the alternative, the optional and the requires relationships.

xb ≤ xa (1)

Composition. If two requirements xa and xb cannot be implemented separately, then it
must be ensured that xa = xb. Composition dependencies can be found in the PL re-
quirements models from composition relationships. In Akkar's terms, it corresponds
to the combination dependency.

xa = xb (2)

Exclusion. If Ra and Rb cannot both be selected, in the ILP model then the inequality:
xa + xb ≤ 1 must be verified. In the PL modeling, exclusion dependencies can be found
from “mutex” relationships.

xa + xb ≤ 1 (3)

Alternative. In PL engineering, a requirement can be realized by one or more re-
quirements among a set. It is partly ensured by the implication relationship from a
requirement xa to its sub-requirements xb.. xk, but needs to be more detailed to model
the relationship between sub-requirements themselves. So, the alternative dependency
(which does not exist in Akkar's model) is defined in ILP model by the following
inequality:

xa*Cardmin ≤ xb+..+xk ≤ Cardmax (4)

288 O. Djebbi and C. Salinesi

The following table summarizes the mathematical formulae used to develop the
ILP model.

Table 1. Recapitulation of requirements dependencies and their representation in the ILP

Dependency
relationship

Explication Mathematical
formula

(composition)

If a requirement is selected then all mandatory
requirements composing it must be selected
 Ra = 1 ⇒ Rb = 1 Ra = 0 ⇒ Rb = 0
 Rb = 1 ⇒ Ra = 1 Rb = 0 ⇒ Ra = 0

Ra = Rb

(Combination)

(option)

If a requirement is selected then its optional sub-
requirements may be selected
 Ra = 1 ⇒ Rb ∈ {0,1} Rb = 1 ⇒ Ra = 1
 Ra = 0 ⇒ Rb = 0 Rb = 0 ⇒ Ra ∈ {0,1}

Rb ≤ Ra

(implication)

(alternative)

If a requirement is selected then alternative sub-
requirements must be selected respecting the speci-
fied cardinality
 Ra = 1 ⇒ Rb..d ∈ {0,1} and

 Rb + Rc + Rd ≤ Cardmax and
 Rb + Rc + Rd ≥ Cardmin

 Ra = 0 ⇒ Rb..d = 0
 Rb..d = 1 ⇒ Ra = 1
 Rb..d = 0 ⇒ Ra ∈ {0,1}

Rb..d ≤ Ra

(implication)

Ra*Cardmin ≤
Rb+..+Rd ≤ Card-

max

(alternative)

(requires)

If a requirement is selected then all required re-
quirements must be selected
 Ra = 1 ⇒ Rb = 1 Rb = 1 ⇒ Ra ∈ {0,1}
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra = 0

Ra ≤ Rb

(implication)

(mutex)

If a requirement is selected then all requirements
that are mutually exclusive with it must not be
selected
 Ra = 1 ⇒ Rb = 0 Rb = 1 ⇒ Ra = 0
 Ra = 0 ⇒ Rb ∈ {0,1} Rb = 0 ⇒ Ra ∈ {0,1}

Ra + Rb ≤ 1

(exclusion)

The ILP modeling approach presented in the former section was tested in a Stago

project with satisfying results. The experience is reported in the next section.

Ra

Rb

Ra

Rb

Ra

Rb Rc Rd

Card

Ra

Rb

« requires »

Ra

Rb

« mutex »

 RED-PL, a Method for Deriving Product Requirements 289

3.3 The Case Study

Once user requirements elicited, they were matched with PL requirements as recom-
mended in the RED-PL matching process. The resulting requirements collection is a
subset of the PL requirements model. The matching process revealed that users were
decided neither on the measurement technique nor on whether the instrument to build
should enable indoor constituents separation. Decisions had to be made to generate
the optimal collection of requirements for a complete product. The arbitration process
presented in section 3.2 was thus used to solve this problem.

First, the PL requirements model was analyzed and a ILP model was developed as
defined in section 3.1. All the constraints were recorded in a Microsoft Excel spread-
sheet, and analyzed with the Microsoft Excel solver (Fig. 4).

Two criteria were used to guide arbitration, namely cost and revenue. Revenue was
evaluated by enquiring salespeople about the perceived value of the functionalities
implementing the requirements. Cost evaluations were made by the engineering team
who was asked to consider development and integration costs, need for resources
(material and human), management costs, test costs, maintenance cost, and installa-
tion costs. These evaluations are an ordinary activity of salespeople and engineers, e.g
in the context of risk analysis while elaborating the feasibility of the project. Several
methods can be used to do this. Our approach does not focus on a particular one as it
considers these evaluations as an input.

For confidentiality reasons, revenue and cost are defined in the next figure as rela-
tive values rather than under the form of the absolute values that were actually defined.

Optimal

requirements

set

Mini

mal cost

Maxim

al revenue

Cost and

dependencies

constraints

Fig. 4. Screenshot of Stago ILP problem after solving

290 O. Djebbi and C. Salinesi

Two goals were considered for optimization: either minimize cost while consider-
ing minimal revenue, or maximize revenue taking into account a global cost limita-
tion. Sales and engineer teams agreed to focus on the second goal which is closer to
their daily concerns. The collection of requirements generated by the solver using
these parameters was found realistic in the sense that the resulting products did corre-
spond to products already developed at Stago. Besides, the product did respond to the
users’ expressed at the beginning of the project and did correspond to products al-
ready identified as being of low cost. It was however difficult to assess if the gener-
ated product did really correspond to an optimal product or not.

Some difficulties were observed too while applying the method. First, the matching
process was difficult to handle due to a lack of precision in the formulation of users’
requirements. The difficulty was due not only to terminology, but also to a conceptual
mismatch between users’ requirements and the PL requirements (different levels of
abstractions, different views). Besides, the ILP technique seemed to be not scalable to
large systems, and is limited to optimization requests. We believe that this approach
can be replaced by more adequate, flexible and scalable technique such as Constraint
Programming. Further applications to other industrial projects are planed to enhance
the method and favor its repeatability.

4 Related Works

Many different methods interested in constructing SPL assets are available in litera-
ture [13] [14] [15] [16] [17] [18]. Product derivation methodologies are on the con-
trary rather scarce [4] [19] [20]. Besides, while derivation affects the whole product
line artifacts, from requirements to code, the derivation issues are mainly addressed in
terms of design and implementation [4] [6].

At the requirement engineering level, how to create the right requirements assets of
the PL and dependencies among them to develop the right products have been exten-
sively studied [7] [21] [22] [23] [24] [25], but understanding the derivation process
itself has received little attention.

In existing approaches, the derivation of the product architecture, code or test arti-
facts from the product and the PL specifications is performed using the following
techniques:

• Model transformation: static and dynamic models are instantiated for products
from the PL models, using a model transformation language [4] [26] [27] [28].

• Design patterns: for instance the method introduced by Jezequel which consists
in using the ‘Abstract Factory’ pattern as interface to create objects of each
product in the product line [29] [30].

• Variability bounding: generative approaches (e.g. Generative Programming
approach [19]) suggest automatic derivation by code generation. Selecting
desired product features is sufficient to allow assembling correspondent SPL
elementary reusable components and generate the application code. Other
approaches introduce aspect programming techniques to assemble components
by waving features [31] [32].

Mostly, derivation methods consider as input a collection of PL requirements se-
lected from the SPL requirements model. However, industry experience suggests that
simply having the right assets is not sufficient to facilitate its selection and assembly.

 RED-PL, a Method for Deriving Product Requirements 291

So some works tried to propose guidelines to select the appropriate set of assets, but
they are still reduced to technical levels.

Namely, the specific assets needed could be specified in a production plan which
describes how the core assets are used to develop products [33]. Hunt considers
software components and studies the optimal organization proceedings to facilitate
finding and selecting them [34]. [35] discusses automating component selection using
artificial intelligence techniques. [3] [5] provide a framework of terminology and
concepts regarding product derivation as well as a generic software derivation
process. It is organized on iterative phases in order to determine the final
configuration of the derived product. Once again, the derivation process has by
default as input a subset of requirements that originate from customers, legislation,
hardware and product family organization. Details about how these requirements are
aggregated are not given. [4] also establishes a derivation framework. It indicates that
the product requirements derivation is made through a decision process. But, it does
not include more details about this process.

Nevertheless, a necessary step in product derivation is to determine the set of
requirements to use in order to build the particular product out of the possible
products in the product line. This requires some description of the customer needs that
allows it to be distinguished from others in the SPL. This description provides a set of
product requirements. Someone must then find and select the assets that are needed to
meet the product requirements. As presented in the existing approaches, it is often the
product developer that makes these decisions as the product is assembled. The role of
the user is dumped and mistreated.

While the focus provided by scoping develops mechanisms handling technical
derivation, we are interested in instructing requirements derivation processes that
originate from users needs, and involve users choices while tacking decisions; which
is not typically available in general derivation approaches.

5 Conclusions and Future Work

A major addition to existing reuse approaches since the 1990s are software product
lines that have been the long standing notion to solve the cost, quality and time-to-
market issues associated with development of related software applications.

Over the past few years, domain engineering has received substantial attention
from the software engineering community. Most of the researches, however, fail to
provide detailed derivation processes namely for deriving requirements, which has
been restricted to the selection of a requirements subset.

The idea behind the proposed approach is that the user, the main stakeholder to
whom the final product is intended, should be involved in specifying product
requirements, in a way that efforts expended in constructing the reusable requirements
in domain engineering are outweighed by the benefits in deriving the right individual
products that satisfy their mission.

RED-PL includes two processes that are the matching and the arbitration
processes. The first establishes the set of possible requirements that meet users’
needs. The latter, arbitrate on these requirements in order to derive a consistent
requirements set that is optimal for a defined set of users and company constraints
(e.g. revenue, cost, resources, time, etc.).

292 O. Djebbi and C. Salinesi

We have thought these processes (namely the mathematical model) based on
feature models. But, it is obvious that it may be applied for the different PL modeling
languages (Use cases, goals, UML, aspects). That is because these types of
dependencies represent fundamental concepts that are implemented by all existing
variability languages. Only visual representation is different depending on the
language constructs (use cases, classes, etc.) and stereotypes. Besides, the approach
viability was tested on real projects developing blood analyzers within a French
company named Stago. Obtained results were verified and appreciated.

Further research will focus on the refinement of the approach processes. We aim at
defining matching and arbitration processes of variable requirements in correlation
with variable PL physical architecture. It is worthwhile in Stago context since it
produces instruments where technical requirements impact heavily the decision on
functional requirements depending on technology costs and revenues.

We intend next to implement a tool support that interfaces with existing modeling
tools and enables such a matching and arbitration processes.

Moreover, the repeatability of the approach will be studied. The purpose is to
define a systematic process allowing modeling PLs and deriving products suitable to
different companies’ contexts. We are confident that if the Integer Linear
Programming is not scalable to large systems, it can be replaced by another more
adequate Multi Criteria Decision Making method.

References

1. SEI Product Line Hall of Fame web page, http://www.sei.cmu.edu/productlines/plp_
hof.html.

2. Linden, F.: Software Product Families in Europe: The Esaps & Café Projects (2002)
3. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a

case study. The Journal of Systems and Software, pp.183–204 (2004)
4. Haugen Ø., Møller-Pedersen B., Oldevik J., Solberg A.: An MDA®-based framework for

model-driven product derivation. Software Engineering and Applications, USA (2004)
5. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., COVAMOF,: A Framework for Modeling

Variability in Software Product Families. The 3rd Software Product Line Conference (2004)
6. Lee, J., Kang, K.C.: A Feature-Oriented Approach to Developing Dynamically Recon-

figurable Products in Product Line Engineering. SPLC (2006)
7. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to cus-

tomers. In: Proceedings of the Software and Systems Modeling. vol. 2, Springer, Heidel-
berg (2003)

8. Maiden, N., Gizikis, A., Robertson, S.: Provoking Creativity: Imagine What Your Re-
quirements Could Be Like. IEEE Software 22(5), 68–75 (2004)

9. Michael, G., Kang, K.C.: Issues in Requirements Elicitation. Technical Report (1992)
10. www.stago.fr. Diagnostica Stago Web page
11. Salinesi, C., Etien, A., Zoukar, I.: A Systematic Approach to Express IS Evolution Re-

quirements Using Gap Modelling and Similarity Modelling Techniques. CAiSE Confer-
ence, Riga, Latvia. Springer Verlag, Heidelberg (2004)

12. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Flexible Release Plan-
ning Using Integer Linear Programming. In: Proceedings of REFSQ, pp.257-272 (2005)

13. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison Wesley Object Technology Series (2004)

 RED-PL, a Method for Deriving Product Requirements 293

14. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-M.:
Pulse: a methodology to develop software product lines. In: Proceedings of the SSR (1999)

15. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. Addison
Wesley Professional (2001)

16. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability Issues in
Software Product Lines. The International Workshop on Product Family Engineering (2001)

17. Dobrica, L., Niemelä, E.: UML Notation Extensions for Product Line Architectures Mod-
eling. Australasian Workshop on Software and System Architectures, Australia (2004)

18. Robak, S., Franczyk, B., Politowicz, K.: Extending the UML for modelling variability for
system families. International Conference on Algorithmic Mathematics and Computer Sci-
ence, pp. 295–308 (2002)

19. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison Wesley, New York (2000)

20. Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process. In: Proceed-
ings of the 9th International Conference on Software Reuse (2006)

21. Thompson, J., Heimdahl, M.: Structuring Product Family Requirements for n-Dimensional
and Hierarchical Product Lines. Requirements Engineering Journal, vol-8(1) (2002)

22. Streitferdt, D.: Family-Oriented Requirements Engineering. PhD Thesis, Technical Uni-
versity Ilmenau (2003)

23. Kang, K., Lee, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In: Proceedings of the 7th International Conference on Software
Reuse: Methods, Techniques, and Tools, pp. 62 - 77 (2002)

24. Gibson, J.P.: Feature Requirements Models: Understanding Interactions. In: Feature Inter-
actions, in Telecommunications IV, Montreal, Canada, IOS Press, Amsterdam (1997)

25. Buhne, S., Lauenroth, K., Pohl, K.: Modelling requirements variability across product
lines. In 14th IEEE International Conference on Requirements Engineering (2005)

26. Perez Garcia, J., A. Laguna, M., Gonzalez-Carvajal, Y. C., Gonzalez-Baixauli, B.: Re-
quirements variability support through MDD and graph transformation. International
Workshop on Graph and Model Transformation, Tallinn, Estonia, pp.171-183 (2006)

27. Ziadi, T.: Manipulation de Lignes de Produits en UML. PhD thesis, Université de Rennes
1, équipe IRISA-TRISKELL, directeur Jean-Marc Jézéquel (2004)

28. Ziadi, T., Hélouët, L., Jézéquel, J-M.: Towards a uml profile for software product Lines.
In: the Fifth Internationl Workshop on Product Familly Engineering, Springer Verlag,
Heidelberg (2003)

29. Jézéquel, J-M.: Reifying configuration management for object-oriented software. In: Pro-
ceedings of the 21th international conference on Software engineering, pp.250–259 (1998)

30. Jézéquel, J-M.: Reifying variants in configuration management. ACM Transaction on
Software Engineering and Methodology, pp.294–305 (1999)

31. Jansen, A., Smedinga, R., van Gurp, J., Bosch, J.: First class feature abstractions for prod-
uct derivation. Special issue on Early Aspects: Aspect-oriented Requirements Engineering
and Architecture Design, IEE Proceedings Software, pp.197-207 (2004)

32. Mezini, M., Ostermann, K.: Variability Management with Feature Oriented Programming
and Aspects. Foundations of Software Engineering, ACM SIGSOFT (2004)

33. Chastek, G., McGregor, J. D.: Guidelines for developing a product line production plan.
Software Engineering Institute, Technical Report CMU/SEI-2102-TR-006 (2002)

34. Hunt, J.M.: Organizing the asset base for product derivation. In 10th SPLC (2006)
35. Asikainen, T., Mnnist, T., Soininen, T.: Using a configurator for modelling and configur-

ing software product lines based on feature models. Software Variability Management for
Product Derivation - Towards Tool Support at International Workshop of SPLC (2004)

	Introduction
	Problem Statement in Stago’s Context
	The RED-PL Approach
	The Matching Process
	The Arbitration Process
	The Case Study

	Related Works
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

