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Abstract. In this paper we propose a formal language for writing elec-
tronic contracts, based on the deontic notions of obligation, permission,
and prohibition. We take an ought-to-do approach, where deontic op-
erators are applied to actions instead of state-of-affairs. We propose an
extension of the μ-calculus in order to capture the intuitive meaning
of the deontic notions and to express concurrent actions. We provide a
translation of the contract language into the logic, the semantics of which
faithfully captures the meaning of obligation, permission and prohibition.
We also show how our language captures most of the intuitive desirable
properties of electronic contracts, as well as how it avoids most of the
classical paradoxes of deontic logic. We finally show its applicability on
a contract example.

1 Introduction

With the imminent use of Internet as a means for developing cross-organizational
collaborations and virtual communities engaged in business, new challenges arise
to guarantee a successful integration and interoperability of such virtual orga-
nizations. Service-oriented architectures (SOA) is becoming more and more the
trend in this arena. Entities participating in a SOA have no access to com-
plete information, including information for checking the reliability of the ser-
vice provider and/or service consumer. For instance, a service consumer has no
access to the code implementing the service, and is therefore unable to examine,
much less verify, the service implementation to have assurance of its compliance
with his/her needs. This motivates the need of establishing an agreement before
any transaction is performed, through a contract, engaging all participants in
the transaction under the commitments stipulated in such a document, which
must also contain clauses determining penalties in case of contract violations. A
service provider may also use a contract template (i.e., a yet-to-be-negotiated
contract) to publish the services it is willing to provide. As a service specification,
a contract may describe many different aspects of a service, including functional
properties and also non-functional properties like quality of service (QoS).

In order to advance towards a reliable SOA, we need to be able to write
contracts which can be “understood” by the software engaged in the negotiation
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process, and later may be used by virtual organizations responsible for ensuring
that the contract is respected. In other words, contracts should be amenable to
formal analysis and thus written in a formal language.

There are currently several different approaches aiming at defining a formal
language for contracts, the most promising approach, in our opinion, being the
one based on logics. A logic for contracts not necessarily has to be based on, or
extend, deontic logic, but must contain notions like obligation, permission, and
prohibition, and preserve their intuitive properties. Formalizing the usual nor-
mative (deontic) notions of obligation, permission and prohibition is not an easy
task as witnessed by the extensive research conducted by the deontic community
both from the philosophical and the logical point of view, starting as early as
1926 [17].1 In what follows we discuss some of the problems and challenges that
appear when defining electronic contracts (e-contracts).

In early papers (e.g. [33]) the approach was to relate the normative notions
of obligation, permission and prohibition in a similar way as the quantifiers all,
some and no, and the modalities necessary, possible and impossible. This was
the bases of the so-called Standard Deontic Logic (SDL) which builds up on
propositional classical logic, leading to a nice formalization but also to many
paradoxes which still continue to challenge philosophers, logicians and computer
scientists.

Besides avoiding paradoxes, one of the first issues to take into account when
formalizing normative notions is whether we want to represent (names of) human
actions or (sentences describing) states of affairs, product of a human action.
The former is usually known as ought-to-do and the latter as ought-to-be. For
example “Jones ought to pay the money” is an ought-to-do sentence, while ”It
ought to be the case that Jones pays the money” is an ought-to-be sentence. In
general the relationship between both representations is not as obvious as in the
above example and the translation from one to the other is much more involved.
The discussion among philosophers and logicians is far from an end in what
concerns the decision of whether one approach is better than the other, or even
if both should coexist in the same reasoning system. In many e-contracts it is
more natural to find statements of ought-to-do kind; where the subject is stated
explicitly (the supplier, the client), the actions (that are permitted or forbidden)
are visible, and also in many cases there might be an object. There may also be
cases where an ought-to-be approach gives a more concise expression, like in QoS
contracts where we may have statements expressing quantitative restrictions like
the average bandwidth should be more than 20kb/s.

Contracts contain clauses which by definition are violable (if we have the
guarantee that nobody will violate them, contracts would be useless). Hence,
contrary-to-duty obligations (CTD) and contrary-to-prohibitions (CTP) are im-
portant aspects to be considered. CTDs are statements that represent the fact
that obligations might not be respected where CTPs are similar statements
which deal with prohibitions that might be violated. Both constructions specify

1 Mally’s work is considered a precursor of Deontic Logic, though it is widely accepted
that modern Deontic Logic started with the work by G.H. von Wright [33].
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the obligation/prohibition to be fulfilled and which is the reparation/penalty to
be applied in case of violation.

Other problems to be considered when formalizing deontic notions are the
study of their interrelation (duality and definition in terms of each other), the
understanding of their truth-value (even the discussion whether it is reasonable
to talk about the truth-value of such notions), and the difference between “must”
and “ought”.

Since we are concerned with formal definition of e-contracts we are definitely
on a terrain where many of the philosophical problems of the deontic logic are
not present. In this paper we take a first step towards the definition of a formal
contract language following an ought-to-do approach. Our starting point is [5],
where a fix-point characterization of obligation, permission and prohibition is
given, based on the modal μ-calculus, allowing the definition of the deontic
notions over regular actions.

The main contribution of this paper is the definition of a contract language
with the following properties:
1. The language avoids most of the classical paradoxes of deontic logic;
2. It is possible to express in the language obligations, permission and prohibi-

tion over concurrent actions keeping their intuitive meaning;
3. Obligation of disjunctive and conjunctive actions is defined compositionally;
4. The definition and semantics of obligation does not contain action negation;
5. It is possible to express CTDs and CTPs;
6. The language has a formal semantics given in a variant of the propositional

μ-calculus.

Other side contributions are:
1. We revisit the relations between the deontic notions, providing new insights

into how they should be related in the context of e-contracts;
2. We give special attention to the disjunction on obligations, to which we

provide a natural and precise interpretation;
3. We extend the propositional μ-calculus with the possibility of expressing

concurrent and deterministic actions.

The paper is organized as follows. In Section 2 we start by presenting an
example of a partial contract, we then informally discuss some of the desirable
properties a contract language should have, and finally present our formal lan-
guage for writing contracts. In Section 3 we present a variant of the μ-calculus,
with its syntax and semantics, and we give a translation of the contract lan-
guage into the logic. In Section 4 we show that our language avoids many of
the paradoxes and that it satisfies most of the desirable properties listed in Sec-
tion 2. Before concluding, we present in Section 5 the modeling of the example
of Section 2 using our contract language.

2 A Formal Language for Contracts

We start by presenting an example, we then list desirable properties for defining
a contract language and we describe informally the kind of actions that are
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needed for our language. In the last subsection we present the syntax of the
language for writing e-contracts and the intuition behind it.

2.1 A Contract Example

In what follows we provide part of a contract between a service provider and
a client, where the provider gives access to Internet to the client. We consider
two parameters of the service: high and low, which denote the client’s Internet
traffic. We abstract away from several technical details as how it is measured
the Internet traffic. We will consider only the following clauses of the contract:

1. Whenever the Internet traffic is high then the client must pay x $ imme-
diately, or the client must notify the service provider by sending an e-mail
specifying that he will pay later.

2. In case the client delays the payment, after notification he must immediately
lower the Internet traffic to the low level, and pay later 2 ∗ x $.

3. If the client does not lower the Internet traffic immediately, then the client
will have to pay 3 ∗ x $.

4. The provider is forbidden to cancel the contract without previous written
notification by normal post and by e-mail.

5. The provider is obliged to provide the services as stipulated in the contract,
and according to the law regulating Internet services.

A formalization of the above will be presented in Section 5.

2.2 Desirable Properties of a Language for Contracts

In what follows we use + for choice among actions, O(a) to denote the obligation
of performing a given action a, and similarly for permission P (a) and prohibition
F (a). A more precise definition will be given later.

General Requirements: We list first some general intuitive properties we should
have, and others we should avoid, when formalizing deontic notions in contracts.

We want to avoid as many logical paradoxes as possible2, in particular: the
Ross paradox (i.e., O(a) ⇒ O(a + b))3, and the free choice paradox (i.e.,
P (a) ⇒ P (a + b)). Syntactically disallow the classical disjunction between de-
ontic modalities. Obligation should be defined only on actions, not on formulas
(which, as argued in the deontic community, would avoid several of the present
paradoxes). Conjunction on obligations should imply executing the obliged ac-
tions at the same time (not to violate any of the obligations). Obligation of a
sequence of actions should imply the obligation of all the subsequent actions.
Allow specification of reparations for violations of obligations and prohibitions.
Allow the definition of conditional obligations (i.e., ϕ ⇒ O(a)). Obligation
2 For a list of classical paradoxes see [28].
3 The symbol “ ⇒ ” is not part of our contract language and we use it informally as a

shortcut for “if-then” or “implies”.
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should imply permission. Do not define permission and obligation in terms of
each other (see von Wright’s argument [34]). Defining permission in terms of
prohibition is natural and desirable.

Properties of Electronic Contracts: In the philosophical and pure logic contexts
we find many reasonable discussions related to deontic operators, which we claim
can be avoided given that we are restricted to e-contracts. In what follows we
provide arguments for restricting syntactically the occurrence in the contract
language of certain expressions involving obligation, permission and prohibition
applied to actions.

It is not natural to have in contracts statements like one is NOT obliged to
perform an action, thus ¬O(a) should not occur in a contract. A statement like
one is NOT permitted to do something can be rewritten as one is forbidden
to do something; ¬P (a) ≡ F (a). Also one is NOT forbidden to do an action
can be rewritten as one is permitted to do the action; thus we should consider
¬F (a) ≡ P (a). We adhere thus to the usual approach of defining permission and
prohibition as one being the negation of the other.

It is not intuitive to have the + under the F operator. Consider for example
the following norm: In Europe it is forbidden one of the following actions (but
not both): to drive on the left side of the road (dl), or to drive on the right side
(dr) which can be represented as F (dl + dr). The problem is that it is not clear
under which circumstances each one of the actions can be taken. The natural
way to exclusively forbid the choice between two actions is to relate each of
the actions with its context. So, the above sentence could be rewritten as: In
the United Kingdom it is forbidden to drive on the right side of the road. In the
rest of Europe (except United Kingdom) it is forbidden to drive on the left side
of the road. Which can be formalized as: ϕUK ⇒ F (dr) and ϕREU ⇒ F (dl).
Where ϕUK and ϕREU are mutually exclusive. On the other hand, it is possible
to forbid two actions a and b simultaneously by imposing F (a) ∧ F (b).

Moreover, we argue that in contracts it is not common to find statements that
may be formalized using an exclusive OR operator ⊕ between prohibitions. If we
take the formula F (a)⊕F (b) to mean that either is forbidden a or forbidden b but
not forbidden both then one case of the statement is F (a) ∧ ¬F (b) which, using
the above equivalence between P and ¬F is F (a) ∧ P (b). This means that one
has the permission to do b. Similar from the second case, one may conclude that
it is permitted to do a. In the end, the formula F (a) ⊕ F (b) does not explicitly
prohibit anything, making its use completely meaningless and dangerous.

2.3 Actions

Our practical requirements to represent actions found in e-contracts force us
to make some changes to the classical dynamic algebra [27]. We first drop the
Kleene star (iteration) as it is unnatural to have it under the deontic operators.
A second difference involves the inclusion of concurrent actions.

Our action algebra has a set of atomic actions denoted by L, a set B of formulas
in the Boolean algebra, and the action operators which define the compound
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actions: + for choice of two actions4, · for sequence of actions, & for concurrent
execution of two atomic actions. The test operator ? is applied to elements of B
and generates actions of L. For brevity we often drop the sequence operator and
instead of α ·β we just write αβ. We also define action negation α of a compound
action α as the action given by all the immediate traces that take us outside the
trace of α [5] and is formally defined using a canonic form of the actions.

2.4 The Contract Language

We aim at the definition of a precise syntax of a contract language, with a
translation into a logic in order to be able to reason about it. We define the
contract language CL, and provide a set of rewriting rules in order to simplify
and minimize the number of expressions in the language.

Definition 1 (Contract Language Syntax). A contract is defined by:

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CF

The syntax of CL closely resembles the syntax of a modal (deontic) logic. Though
this similarity is clearly intentional since we are driven by a logic-based approach,
CL is not a logic. In what follows we provide an intuitive explanation of the CL
syntax; a more precise meaning will be given later through the translation into
an extension of the propositional μ-calculus.

A contract consists of two parts: definitions (D) and clauses (C). Note that we
deliberately let the definitions part underspecified in the syntax above. D speci-
fies the assertions (or conditions) and the atomic actions present in the clauses.
φ denotes assertions and ranges over Boolean expressions including arithmetic
comparisons, like the budget is more than 200$. For now we let the atomic ac-
tions underspecified, which for our purposes can be understood as consisting of
three parts: the proper action, the subject performing the action, and the target
of (or, the object receiving) such an action. Note that, in this way, the partners
involved in a contract are encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obligation,
permission, and prohibition clauses. ∧ and ⊕ may be thought as the classical
conjunction and exclusive disjunction, which may be used to combine obligations
and permissions. For prohibition CF we have ∨, again with the classical meaning
of the corresponding operator. α is a compound action with syntax as given in
Section 2.3, while δ denotes a compound action not containing any occurrence of
+. Operationally, we consider that atomic actions do not require time for their
execution, i.e., the atomic actions are instantaneous. A concurrent action is also
instantaneous, so it can be seen as atomic. Note that syntactically ⊕ cannot
4 We do not distinguish between internal (free) choice and external (imposed) choice.
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Table 1. Compositional rules

(1) O(α + β) ≡ O(α) ⊕ O(β)
(2) O(a&b) ≡ O(a) ∧ O(b)
(3) O(αβ) ≡ O(α) ∧ [α]O(β)
(4) P (α + β) ≡ P (α) ⊕ P (β)
(5) P (αβ) ≡ P (α) ∧ 〈α〉P (β)
(6) F (αβ) ≡ F (α) ∨ [α]F (β)

Table 2. Rewriting rules for obligation O

(1) O(a) ∧ O(b) � O(a&b)
(2) O(a) ∧ O(a&b) � O(a&b)
(3) O(a) ∧ (O(a) ⊕ O(b)) � O(a)
(4) O(a) ∧ O(a) � O(a)
(5) O(a) ⊕ O(a) � O(a)
(6) O(c) ∧ (O(a) ⊕ O(b)) � (O(c) ∧ O(a)) ⊕ (O(c) ∧ O(b))
(7) (⊕iO(ai)) ∧ (⊕jO(bj)) � ⊕i,j(O(ai) ∧ O(bj)) ai 	= bj

appear between prohibitions and + cannot occur under F , as we have discussed
in Section 2.2.

We borrow from Propositional Dynamic Logic (PDL) the syntax [α]φ to rep-
resent that after performing α (if it is possible to do so), φ must hold. The [·]
notation allows having a test, where [φ?]C must be understood as φ ⇒ C. 〈α〉φ
captures the idea that there must be the possibility of executing α, in which case
φ must hold afterwards. Following temporal logic (TL) [23] notation we have U
(until) and © (next) with intuitive semantics as in TL. Thus C1 U C2 states that
C1 should hold until C2 holds. ©C intuitively states that the C should hold in
the next moment, usually after something happens. We can define �C (always)
and ♦C (eventually) for expressing that C holds everywhere and sometimes in
the future, respectively.

The rules of Table 1 are guided by common usage in electronic contracts and
provides an equivalence relation between different syntactic expressions, which
might also be interpreted as a means to define certain constructs compositionally.
Note that concurrent actions are compositional only under obligation; there are
no similar rules for F and P . Note that F has no rule for + because exclusive
choice does not appear under F . For an intuition and examples for these rules
we refer to the extensive discussions in the technical report [28].

We give in Table 2 a set of rewriting rules for simplifying CO expressions.
Rules (1)-(3) are guided by the common examples found in real contracts, rules
(4)-(5) are the usual contraction rules, and the rules (6)-(7) basically give the
distributivity of conjunction over the exclusive disjunction.

To express CTDs we provide the following notation, Oϕ(α), which is syn-
tactic sugar for O(α) ∧ [α]ϕ stating the obligation to execute α, and the repa-
ration ϕ in case the obligation is violated, i.e. α is not performed. The reparation



A Formal Language for Electronic Contracts 181

may be any contract clause. Similarly, CTP statements Fϕ(α) can be defined as
Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in case the prohibition is violated.
Notice that it is possible to express nested CTDs and CTPs.

In CL, we can write conditional obligations, permissions and prohibitions in
two different ways. Just as an example let us consider conditional obligations.
The first kind is represented as [α]O(β), which may be read as “after performing
α, one is obliged to do β”. The second kind is modeled using the test operator ?:
[ϕ?]O(α), representing “If ϕ holds then one is obliged to perform α”. Similarly
for permission and prohibition.

3 The Underlying Logic for the Contract Language

3.1 Yet Another Propositional μ-Calculus

We take the classical propositional μ-calculus as defined by Kozen [13] and we
extend it with concurrent actions and special propositional constants. We call
this extension Cμ. We consider a special set L, which we call atomic actions and
denote by a, b, c, . . .. We add a set of propositional constants which we denote
by Pc. To capture true concurrency we extend the set L with concurrent sets
which are finite subsets of atomic actions with the intuitive meaning that all the
atomic actions inside a concurrent set are executed concurrently (at the same
time).

Definition 2 (concurrent sets). A concurrent action set, denoted by γ (pos-
sibly indexed), is a finite subset of the set of atomic actions L, γ = {a1, . . . , an}
where ai ∈ L. The concurrent sets γ ∈ 2L are the labels of Cμ.

The syntax of Cμ is given by:

ϕ := P | Z | Pc | � | ¬ϕ | ϕ ∧ ϕ | [γ]ϕ | νZ.ϕ(Z)

where P represents propositional variables, Z represents state variables, � is the
constant proposition denoting true, and [γ]ϕ is the formula stating that after ex-
ecuting the concurrent set γ, ϕ holds. νZ.ϕ(Z) is the greatest fix-point, and the
other syntactic constructs come from propositional logic. The constant propo-
sitions are added in order be able to capture the deontic operators of CL. Pc

contains two distinguished kind of constants: obligation constants Oa and pro-
hibition constants Fa, which are uniquely indexed by the atomic actions a ∈ L.
The constant propositions are interpreted in the same way as the propositional
variables of P as a set of states where the constant proposition holds. The intu-
ition of the obligation constants is that when the system is in a state s and by
action a it gets to a state t where Oa holds then we may conclude that in the
state s the system has the obligation to execute action a. Similarly, Fa denotes
the fact that action a is prohibited.

Note that Cμ includes the classical μ-calculus because if γ = {a} then [γ]ϕ ≡
[a]ϕ, and Pc can be considered as a subset of P . We also have the usual dualities:
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ϕ ∨ ψ
def
= ¬(¬ϕ ∧ ¬ψ)

〈γ〉ϕ def
= ¬[γ]¬ϕ

μZ.ϕ(Z)
def
= ¬νZ.¬ϕ(¬Z)

The interpretation of the above syntactic constructs follows the standard set-
theoretical approach [13]. The formulas are interpreted over a structure denoted
by T . Given a set Prop = P ∪ Pc of propositions, and a set of atomic actions L,
T = (S, R2L , VProp, V), where S is the set of states (worlds), R2L : 2L → S × S
is the function assigning to each concurrent set γ of 2L a relation over S (i.e.,
R2L(γ) ⊆ S × S, γ ∈ 2L), VProp : Prop → 2S is the interpretation of the
propositions, and V is a valuation function assigning to each state variable a set
of states. The valuation V [Z := S] maps variable Z to the states set S and in
the rest it agrees with V . For the sake of notation instead of R2L(γ) we write
Rγ . The semantics of each syntactic construct of Cμ over a structure T is:

‖�‖TV = S ; ‖P‖TV = VProp(P ) ; ‖Z‖TV = V(Z) ; ‖Pc‖TV = VProp(Pc)

‖¬ϕ‖TV = S \ ‖ϕ‖TV
‖ϕ ∧ ψ‖TV = ‖ϕ‖TV ∩ ‖ψ‖TV
‖[γ]ϕ‖TV = {s | ∀t ∈ S. (s, t) ∈ Rγ ⇒ t ∈ ‖ϕ‖TV }
‖νZ.ϕ‖TV =

⋃
{S ⊆ S | S ⊆ ‖ϕ‖TV[Z:=S]}

‖ϕ ∨ ψ‖TV = ‖ϕ‖TV ∪ ‖ψ‖TV
‖〈γ〉ϕ‖TV = {s | ∃t ∈ S. (s, t) ∈ Rγ ∧ t ∈ ‖ϕ‖TV }
‖μZ.ϕ‖TV =

⋂
{S ⊆ S | S ⊇ ‖ϕ‖TV[Z:=S]}

Note that R2L for singleton concurrent sets behaves the same as RL for actions
of μ-calculus. In this case, for the sake of brevity instead of R{a} we just write Ra.
Also, we often use as shorthand for a concurrent set inside dynamic operators
and we write [a, b]ϕ instead of [{a, b}]ϕ. Furthermore, we have the following
restriction for the constant propositions of the form Fa and Oa: Constants Fa

and Oa are incompatible, that is their interpretations as sets is disjoint:

‖Fa‖TV ∩ ‖Oa‖TV = ∅, ∀a ∈ L. (1)

The intuition drawn from e-contracts is that it is not possible to be obliged to
do something and at the same time be forbidden to do the same thing. The above
description gives the following natural result: 1) Oa ⇒ ¬Fa and 2) Fa ⇒ ¬Oa.

Action logics like PDL, and consequently propositional μ-calculus, are usually
non-deterministic. From the point of view of modeling contracts it is natural to
adopt a deterministic variant of an action logic because it does not make sense
to specify different outcomes for the same action in a contract. The determinism
of Cμ requires to have only one transition from one state labeled with a concur-
rent set. Formally we restrict R2L to assign to each concurrent set only partial
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Table 3. The translation function fT from CL to Cμ

(1) fT (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)
(2) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)
(3) fT (P (&n

i=1ai)) = 〈{a1, . . . , an}〉(∧n
i=1¬Fai)

(4) fT (CP ⊕ CP ) = fT (CP ) ∧ fT (CP )
(5) fT (F (&n

i=1ai)) = [{a1, . . . , an}](∧n
i=1Fai)

(6) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))
(7) fT (C1 ∧ C2) = fT (C1) ∧ fT (C2)
(8) fT (©C) = [any]fT (C)
(9) fT (C1 U C2) = μZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉�)
(10) fT ([&n

i=1ai]C) = [{a1, . . . , an}]fT (C)
(11) fT ([(&n

i=1ai)α]C) = [{a1, . . . , an}]fT ([α]C)
(12) fT ([α + β]C) = fT ([α]C) ∧ fT ([β]C)
(13) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

functions (not relations), i.e., for any (s, t), (s, t′) ∈ Rγ then t = t′. Naturally a
compound action may have several ending worlds, both in the interpretation of
the actions as relations [9] or the actions as trajectories [26]. Note that (s, t) ∈
Ra and (s, t′) ∈ R{a,b} does not introduce non-determinism.

3.2 Translating the Language into the Logic

Because of the special status of the concurrent actions, the compositionality
rules of Table 1, and the rewriting rules of Table 2, we choose to translate O,
P , and F over both atomic actions a and concurrent actions a&b. We also need
to translate the ⊕ over obligation and permission as well as the ∨ operator over
prohibition.

We consider a translation function fT from expressions of CL into formulas
of Cμ. In Table 3 lines (1)-(6) we give the translation of the basic deontic con-
structs of CL (CO, CP and CF ). Note that the translation of concurrent actions
a&b uses concurrent sets and we use a concise notation which, for example, for
atomic actions under O would give fT (O(a)) = 〈a〉Oa —we abuse the notation
and denote the atomic actions as conjunction over only one ai. Lines (7)-(13)
show the translation of the other CL expressions, where any is the special action
which is interpreted as the union of all actions in L with the intuition of doing
any action. The conjunction is translated as the corresponding conjunction op-
erator of Cμ, next © uses the action any, and until U is translated using a
fix-point expression as usual. We give separate translations for each compound
action inside the dynamic box operator of CL. The translation is similar to the
translation of PDL into μ-calculus.

Note that with this translation one cannot give a truth value to an obligation
O(a) of an action (or a permition or prohibition), because the truth value of its
translation 〈a〉Oa can be determined only after the execution of the action. This
is in accordance with the classical semantics of the deontic modalities [33].
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4 Properties of the Contract Language

In this section we show some of the properties CL enjoys, as well as how the
language avoids most of the important deontic paradoxes and the undesirable
properties listed in Section 2.2. Most of the proofs are omitted and can be found
in [28].

Proposition 1 ensures that it is not needed to use negation on deontic oper-
ators, while Proposition 2 establishes the standard relation between obligations
and permissions.

Proposition 1. The following statements are valid in CL:

a) P (α) ≡ ¬F (α)
b) F (α) ≡ ¬P (α).

Proof: The proof follows from the translation of P (α) and F (α) into the logic
and the duality between the μ-calculus operators [·] and 〈·〉. �

Proposition 2. The following statement is valid in CL: O(α) ⇒ P (α).

Proof: The proof follows from the translations of O(α) and P (α) into the logic.
Moreover, the proof makes use of the equation (1) of the incompatibility of Oa

and Fa constants. �

The following two results express that CL does not allow the derivation of certain
undesirable properties.

Proposition 3. The following implications do not hold in CL:

a) P (a) ⇒ P (a&b)
b) F (a) ⇒ F (a&b).

Proof: We give a counter example to show that the implication is not possible,
i.e., we give a model in the logic which is a model for the translation of the first
CL formula and is not a model for the translation of the second CL formula.

For a) consider (s, t) ∈ Ra and (s, t′) ∈ R{a,b} with t �∈ ‖Fa‖TV and t′ ∈
‖Fa‖TV ∩ ‖Fb‖TV . Consider the model M which has states S = {s, t, t′} and two
relations: for action a, Ra = {(s, t)} and for action {a, b}, R{a,b} = {(s, t′)}. M
is a model for the first formula but is not a model of the second formula.

For b) we change the above model such that t ∈ ‖Fa‖TV and t′ �∈ ‖Fa‖TV . M
is a model of the first formula but is not a model for the second formula. �

Proposition 4. The following implications do not hold in CL:

a) F (a&b) ⇒ F (a)
b) P (a&b) ⇒ P (a).



A Formal Language for Electronic Contracts 185

Proof: The proof is similar to the proposition above. �

The following proposition expresses that the most important paradoxes of de-
ontic logic are avoided in our contract language, either because there are not
expressible in the language or because they are simply excluded by the transla-
tion into the underlying logic.

Proposition 5. The following paradoxes are avoided in CL:

– Ross’s paradox
– The Free Choice Permission paradox
– Sartre’s dilemma
– The Good Samaritan paradox.
– Chisholm’s paradox
– The Gentle Murderer paradox

5 Example

We formalize here the example introduced in Section 2.1. As part of the formal-
ization of a contract in CL we first have to define the assertions and actions:

φ = the Internet traffic is high
p = client pays x $
d = client delays payment
n = client notifies by e-mail
l = client lowers the Internet traffic
s = provider provides the service as stipulated in the contract
c = provider cancels the contract
e = provider sends a written notification to the client by e-mail
w = provider sends a written notification to the client by normal post

The five clauses of the example are written in CL as follows:

1. �(φ ⇒ O(p + (d&n)))
2. �([d, n](O(l) ∧ [l]♦(O(p) ∧ [p]O(p))))
3. �([{d, n} · l ]♦(O(p) ∧ [p]O(p) ∧ [p · p]O(p)))5

4. �(F (c) ∧ [w, e]P (c))
5. �O(s).

Remarks: 1) Formulas 2. and 3. are rather long because we can not represent in
CL quantitative information like pay two times. We could use the & operator over
actions with the same intuition as in logics of resources (e.g. linear logic [10]) and
for obliged to pay twice we could write in CL O(p&p) instead of O(p) ∧ [p]O(p)
which is more concise and natural.
5 The formulas 2 and 3 may be combined in a single formula using CTDs:
�([d, n](Oϕ(l) ∧ [l]♦(O(p) ∧ [p]O(p)) where ϕ = O(p) ∧ [p]O(p) ∧ [p · p]O(p).
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2) Though it is not apparent at first sight the contract allows the client to go from
low to high Internet traffic many times and pay the penalty (2 ∗x $) only once.6
The problem is that after the client lowers the Internet traffic, he might get a
high traffic again and postpone the payment till a future moment. To avoid this
situation we should add a clause specifying that “after getting a high Internet
traffic, if the client postpones the payment then he can get a high traffic again
only after having paid”. In CL this might be expressed by changing formulas 2
and 3 above as:

2’ �([d, n](O(l) ∧ [l]¬φU (O(p) ∧ [p]O(p)))
3’ �([{d, n} · l ](¬φU (O(p) ∧ [p]O(p) ∧ [p · p]O(p))).

This example shows the importance of being able to model check a contract,
which may be done only if the contract is written in a formal language, e.g. CL.

3) Notice that our contract language lacks the possibility of expressing time
constraints. More involved clauses like the client must pay within 7 days, or
the client is forbidden to pass more than 10 times per month from low to high
Internet traffic, can only be expressed here by introducing time, special variables
and simulate a counter. For model checking purposes we would like to include
the possibility to express these properties directly in the logic and an extension
with real-time would be desirable.

6 Conclusion

In this paper we have presented a formal language for writing contracts, and
have provided a formal semantics through the translation of the language into
a variant of the propositional μ-calculus extended with concurrent actions. The
use of a variant of the μ-calculus as a semantic framework for our language is
not casual. The logic has nice properties: it is decidable [15], has a complete
axiomatic system [32], and a complete Gentzen-style proof system [31]. Our
language avoids most of the classical paradoxes, and enjoys all the nice properties
listed in Section 2.2. To our knowledge no other work in the field has achieved
such goals. Given that our application domain is that of electronic contracts, we
have also given arguments for restricting syntactically and semantically certain
uses of (and relations between) obligations, permissions and prohibitions, usually
considered in philosophical and logical discussions.

Related Work: There are currently several different approaches aiming at defining
a formal language for contracts. Some works concentrate on the definition of
contract taxonomies [1,2,30], while others look for formalizations based on logics
(e.g. classical [8], modal [7], deontic [12,22] and defeasible logic [11,29]). Other
formalizations are based on models of computation (e.g. FSMs [21] and Petri
Nets [6]). None of the above has reached enough maturity as to be considered

6 See the technical report [28] for a more detailed explanation.
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the solution to the problems of formal definition of contracts. Some provide a
good framework for monitoring but lack a formal semantics and a reasoning
system; others have nice proof systems and model theory, but not mechanism
for monitoring or negotiation; many of the deontic-based approaches put too
much emphasis on the logical properties and neglect the practical side, including
monitoring. None of them captures all the intuitive properties of e-contracts we
have described, while avoiding the most important paradoxes.

The idea of using a propositional constant in an action-based logic for giving
semantics to the deontic notions was first presented in [19], where the special
constant V (corresponding to our Fa) was added to denote an “undesirable state-
of-affairs” in the current state. We have, in addition, the constants Oa which are
used to define obligation not in terms of action negation but using the diamond
modal operator, deviating from other approaches (e.g., [4,19]).

Our work is closely related to those based on logic, and in particular to [5].
Due to lack of space and since part of the motivation of our work is to overcome
some of the problems of the approach of Broersen et al in [5], we contrast our
approach in detail only w.r.t. this paper. Broersen et al introduce a very in-
teresting characterization of obligation, permission and prohibition by following
an ought-to-do approach based on a deontic logic of regular actions. The idea
is to use the μa-calculus as a basis and then define obligation, permission and
prohibition over regular expressions on actions. The main differences w.r.t. our
approach are the following. (a) There is no notion of contract language, only
characterization of obligation, permission and prohibition in the logic. (b) The
only deontic primitive is permission over atomic actions; obligation is defined as
an infinite conjunction of negation of permission over actions not in the scope
of the negation. We avoid this infinite conjunction by defining both prohibition
and obligation as primitive (and using the propositional constants Oa and Fa at
the semantic level) and prohibition as negation of permission. (c) All the deontic
operators are defined over regular actions, including the Kleene star. We con-
sider it is not natural to have starred actions under the deontic notions, we have
thus dropped it. (d) Obligation on the choice of actions is not compositional; it
is compositional in our case. (e) There is no conjunction over actions, i.e., it is
not possible to express concurrent actions, which is the case in our approach. (f)
The approach uses disjunction over actions. We have decided to use the exclu-
sive or instead. (g) Negation on actions (meaning “not performing an action”)
is defined as a complement of the (infinite) set of actions. In our case the set
of actions is finite, at the language level. (h) CTDs cannot be defined unless an
extension of the μa-calculus is considered. In our setting both CTDs and CTPs
are easily defined. (i) The semantics of obligation, permission and prohibition
is given in terms of properties over traces, instead of over an extension of the
Kripke structure as in our case.

For a nice overview of the history, problems and different approaches on de-
ontic logic see [34]. The chapter of McNamara in the Handbook of the History of
Logic contains a general description of the topic, mainly the different paradoxes
arising under SDL [20]. For a discussion on CTDs see [24] and references therein.
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Future Work: Our work is a first step towards a more ambitious task, and we be-
lieve the formalism chosen will allow us to achieve the following goals. The first
extension is to add real-time to be able to express and reason about contracts with
deadlines. Other immediate extension is the syntactic distinction in the signature
of the definition part of CL between subjects, proper actions and objects. This
would permit to make queries (and model check properties) for instance about
all the rights and obligations of a given subject, or determine under which con-
ditions somebody is obliged/forbidden to perform something. We have not con-
sidered in this paper the problem of negotiation nor monitoring of contracts. We
believe these are important features of a contract language which must be taken
into account in future work. Concerning actions, we got inspiration from the works
on dynamic logics [25]. We would like to deepen the study of the action algebra to
make the distinction between the intuitive meaning of conjunction under obliga-
tion, permission and prohibition. Further investigation is also needed to charac-
terize negation on actions, both for capturing and distinguishing the ideas of “not
doing something” and “doing something but a given action”, which are not dif-
ferentiated in our current approach. We want to explore the proof system of the
Cμ logic, and to extend existing model checkers for μ-calculus [3,18] to analyze
contracts as mentioned in the remarks of our example.
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