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Abstract. Recently there has been a significant amount of work on
privacy-preserving set operations, including: set intersection [14,6,21,9],
testing set disjointness [17], multi-set operations [18], and set union
[16,1,18]. In this paper, we introduce novel protocols for privacy-
preserving set union in the malicious adversary model. More specifically,
each participant inputs a set of values, and at the end of the protocol,
each participant learns the items that are in at least one participant’s
set without learning the frequency of the items or which participant(s)
contributed specific items. To our knowledge our protocol is the most ef-
ficient privacy-preserving set union protocol for the malicious adversary
model to date.

1 Introduction

Recently there has been a significant amount of work on privacy-preserving set
operations, including: set intersection [14,6,21,9], testing set disjointness [17],
multi-set operations [18], and set union [16,1,18]. In this paper, we introduce
a new protocol for privacy-preserving set union (PPSU) in the malicious ad-
versary model. We are only aware of one other PPSU protocol that is secure
in the malicious adversary model, which was introduced in [18], and our new
protocol is more efficient than this protocol. An application of this work is the
following scenario: Suppose several hospitals treat a rare disease and that a re-
search group needs various information about patients with the disease in order
to develop alternative treatments. Because cases of the disease are so sparse, the
research group needs more than a single hospital’s data. Unfortunately, some
patients may have gone to multiple hospitals and these patients’ information
will taint the quality of the collected data. By using a secure set union proto-
col the research group can gather the information from multiple hospitals while
omitting duplicate patients without learning the identity of the patients. Fur-
thermore, PPSU has been used as a building block in some privacy-preserving
data mining protocols [16,23] and privacy-preserving graph algorithm protocols
[1], and thus we believe that improved protocols for PPSU will be useful in
many application domains.

Contributions: The contributions of this work are not only in a preliminary
protocol for PPSU, but also in several extensions of this protocol. We now
summarize our results:
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– Preliminary Protocols: Our preliminary protocols securely compute the set
union for: i) two parties in the honest but curious adversary model with
O(n) communication, ii) multiple parties in the honest-but-curious adversary
model with O(k2n) communication, and iii) multiple parties in the malicious
adversary model with O(n2k2 + k3n) communication (for sets of size n and
k participants). This is described in section 5. Note that for the complexities
given in this paper there is always an implicit security parameter.

– Padding: Our preliminary protocols reveal the number of items in each par-
ticipant’s sets. In section 6.1 we introduce modifications to our preliminary
protocol that allow participants to pad their sets with “dummy” items in
order to obfuscate this information. This is described in section 6.1.

– Cardinality: For some applications computing the size of the set union with-
out revealing the actual union is preferred. In section 6.2 we introduce a
protocol that reveals only the cardinality of the set union.

– Empty-set attack: One problem with any set union protocol is that a dishon-
est participant can use the empty-set as their input set. This is particularly
damaging if there are few participants; e.g., when there are only two partic-
ipants then this reveals the honest party’s set. In section 6.3 we introduce
counter-measures against this attack.

– Over-threshold set union: As discussed in [18] there are some situations where
participants want to know all items that are in at least t sets. In section 6.4
we introduce protocols that compute this “over-threshold” set union.

Outline: The rest of this paper is organized as follows. In section 2 we for-
mally describe the set union problem and the security models considered in this
paper. In section 3 we provide a detailed summary of previous work in privacy-
preserving set operations. In section 4, we introduce several building blocks that
are used in our protocols, but which are not contributions of this paper. In sec-
tion 5 we introduce preliminary protocols for privacy-preserving set union. In
section 6, we describe several extensions to the preliminary protocols. Finally,
we conclude our paper in section 7.

2 Problem Definition

There are k participants, labeled P1, . . . , Pk, that have respective sets S1, . . . , Sk

that are drawn from a universe of items U . As a shorthand notation, we use ηi

to represent |Si|. To denote the specific items in a set Si we use the notation
(Si)1, . . . (Si)ηi . Note that the above notation implies an ordering on the items,
but this is just for ease of notation; that is, we do not assume the items are in
any specific order. To simplify the notation when giving the complexity analysis
of our protocols we use n = maxn

i=1 ηi and we assume that every party has n
items. The desired output of the protocol is that the participants learn ∪k

i=1Si.
We define security in the standard way (see [10] for more details), that is we

define an ideal model (using a trusted third party) and show that any polynomial-
time adversary in our protocol can be simulated by a polynomial-time adversary
in the ideal model.
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Ideal Model: In the ideal model the participants send their sets to a trusted third
party T , and then this party broadcasts the union of the sets along with the size
of each individual set to all of the participants. Note that this reveals slightly
more than the set union, specifically each participant’s set size is revealed.

Honest-But-Curious Adversaries: In this adversary model the participants will
faithfully follow the prescribed protocol, but will try to learn additional infor-
mation after the protocol. To prove security in this model, we show that the
transcript that is produced by our protocol could be simulated by an adversary
that has the output of the protocol. More specifically, we require that the simu-
lator be able to generate a transcript that is computationally indistinguishable
from the real transcript.

Malicious Adversaries: In the malicious adversary model the adversary will de-
viate from the protocol in an arbitrary fashion. The purpose of this deviation
can be several things, including: i) to learn more information about honest par-
ticipants’ values, ii) to change the result of the protocol, or iii) to terminate
the protocol prematurely. In this paper we do not consider early termination to
be a problem (although our protocols could be modified to prevent this using
standard techniques such as [11]). Thus to show our protocol is secure in this
model we show that: i) any transcript generated by the protocol can be simu-
lated given the results of the protocol and ii) that any result-changing action by
an adversary could be achieved by changing the adversary’s inputs in the ideal
protocol.

3 Related Work

The PPSU problem can be solved with the generic results of secure multiparty
computation [24,11]. While recent advances in malicious circuit evaluation [3]
show that it is possible to simulate a circuit efficiently in the malicious model,
the communication complexity of such a the scheme will still be the number
of gates in the circuit times a security parameter times a polynomial of k (the
specific polynomial depends on the scheme being used). The straight-forward
circuit for set union has O(k2n2 log |U|) gates (when given k parties whose sets
each contain n elements).

As mentioned earlier, many privacy-preserving protocols have been introduced
for set operations other than set union, including: set intersection [14,6,21,9],
testing set disjointness [17], and multi-set operations [18]. One might think that,
because of DeMorgan’s Law, a secure protocol for set union follows directly
from a secure protocol for set intersection. Specifically, one can compute ∪n

i=1Si,
by computing ∩n

i=1Si = U − (∩n
i=1(U − Si)). While this method does correctly

compute the set union, when U is significantly larger than ∪n
i=1Si this method

is inefficient. Thus, the results of this paper are most beneficial for applications
where the sets are chosen from large domains.

There have also been several protocols that privately compute set union
[16,1,18]. However, the previous solutions have not been fully satisfactory
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solutions. In [16], the protocol reveals superfluous information, such as the car-
dinality of the intersection between some participants’ sets, in order to improve
efficiency. The protocols in [1] was proven secure only in the honest-but-curious
adversary model (this protocol was for two parties and required O(n log |U |)
communication). Finally, the protocol given in [18] is secure in the malicious
model, but according to our analysis1 the communication complexity of their
honest-but-curious approach is O(k3n2), whereas our scheme has communica-
tion complexity O(k2n2 + k3n).

4 Building Blocks

In this section we outline the building blocks that are used by our protocols.

4.1 Homomorphic Encryption

In this paper we use a public-key semantically-secure [12] additively homomor-
phic encryption scheme, such as [22]. Throughout this paper we will denote the
encryption and decryption functions by Epk and Dsk respectively. Recall that
it is possible to add the plaintexts of two encrypted values by multiplying the
ciphertexts; that is, when given the encryptions Epk(x) and Epk(y), we can com-
pute Epk(x + y) by computing Epk(x) ∗ Epk(y). Also, when given Epk(x) it is
possible to compute Epk(c∗x) for any constant c by computing Epk(x)c. Finally,
we use homomorphic schemes where it is possible to re-encrypt a ciphertext value
to generate another ciphertext with the same plaintext value.

We utilize a threshold version of Paillier’s scheme throughout this paper, such
as the one presented in [2,4,8]. More specifically, we require a (k, k)-threshold
decryption algorithm, that is, the decryption key is distributed among all k
players, and the participation of all k players are required to decrypt a value.
We use the same model as [18], and we assume that the threshold keys have
already been distributed amongst the participants. The communication required
to perform a joint decryption is O(k).

4.2 Polynomial Representation of Sets

Several previous set operation results use polynomials to represent sets or multi-
sets [9,18]. Specifically, to represent a multi-set S = {s1, . . . , sn} we use the
polynomial (x−s1)(x−s2) · · · (x−sn), which we denote by fS(x). An important
property of this representation is that a value y is in the set S if and only if
fS(y) = 0.

To hide the value of a polynomially-represented set, it is often useful to encrypt
the set’s polynomial using homomorphic encryption. Suppose we are given a
polynomial f(x) = anxn + an−1x

n−1 + · · · + a1x + a0, then the encryption of

1 Based on our analysis of the THRESHOLD-PERFECT-HBC protocol given in [18].
An explicit protocol for the malicious model was not given, but by adding zero-
knowledge proofs to the steps such a protocol could be constructed.
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f , denoted by Epk(f), is the encryption, using Epk on the coefficients of f , i.e.,
Epk(an), . . . , Epk(a0). As described in previous work [9,18] when given Epk(f) it
is possible to perform many operations on f . In this paper, we use the following
operations:

1. Polynomial Evaluation: Given Epk(f), the public parameters of Epk and a
value x it is possible to compute Epk(f(x)).

2. Polynomial Addition: Given Epk(f) and Epk(g) for two polynomials f and
g, then it is possible to compute Epk(f + g).

3. Polynomial Multiplication: Given Epk(f) and g for two polynomials f and g
it is possible to compute Epk(f ∗ g).

4. Polynomial Derivation: Given Epk(f) it is possible to compute the encrypted
polynomial of the derivative of f , i.e. it is possible to compute Epk(f ′).

4.3 Zero Knowledge Proofs

To extend our protocols to the malicious adversary model, we utilize zero knowl-
edge proofs. In what follows, we outline the proofs of knowledge that are used in
this paper. These proofs are similar to those used in [18] and can be efficiently
realized using [2] and [5]. These proofs can be made non-interactive using the
Fiat-Shamir heuristic [7].

In what follows, Epk is a threshold additive-homomorphic encryption scheme.

1. POPK(Epk(x)) represents a proof that the prover knows the plaintext x
(i.e., it is a proof of plaintext knowledge). Furthermore, this proof can be
done with O(1) communication complexity.

2. Proof of Correct Multiplication: Given Epk(x) (where x may be unknown
to the prover) and a value y, it is possible to publish values Epk(y) and
Epk(z) and prove that z = xy. We denote this proof by ZKPK(y|a =
Epk(y) ∧ b = Epk(z) ∧ z = x ∗ y). Furthermore, this proof can be done with
O(1) communication complexity.

3. Proof of Correct Polynomial Evaluation: When the prover is given Epk(f) for
some polynomial f , then the prover can generate values Epk(x) for a known
value x and Epk(z) along with a proof that z = f(x). If the polynomials have
degree n then, this proof requires O(n) proofs of correct multiplication. We
denote this proof by ZKPK(x|y = Epk(f(x)) ∧ z = Epk(x)).

4. Proof of Correct Polynomial Multiplication: When a prover is given Epk(f)
for some polynomial f and another polynomial g, then the prover can gen-
erate Epk(g) and Epk(h) along with a proof that h = f ∗ g. If the poly-
nomials f and g have respective degree m and n, then this protocol re-
quires O(mn) proofs of correct multiplication. We denote this proof by
ZKPK(f |h = f ∗ g ∧ y = Epk(f)).

5. Proof of Correct Polynomial Construction: If a prover has posted encryp-
tions of a list of values Epk(x1), . . . , Epk(xn). Then the prover can post the
encrypted polynomial (x − x1) · · · (x − xn) along with a proof that it was
constructed properly. This requires O(n2) proofs of correct multiplication.
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4.4 Mixes and Shuffles

In our protocols we use a cryptographic protocol for shuffling (e.g., mixing) a list
of encrypted values. Specifically, a shuffle protocol uses list of encrypted values
Epk(x1), . . . , Epk(xn) as input and the output of the protocol is another list of
encrypted values Epk(y1), . . . , Epk(yn). Furthermore, the y-list is a permutation
of the original x-list and any group of participants that is not a quorum (of
the threshold encryption scheme) cannot associate a specific y-value back to a
specific x-value. In our protocols we utilize a robust shuffling protocol where
the participants obtain proof(in zero-knowledge) that the shuffle was performed
correctly. Such a robust mix can be made from standard protocols [20,19,15]. We
actually use a slight variation of a standard mix, in that our protocols shuffle
tuples. That is, the input to the protocol is a list of tuples of encrypted values
and the output is a permuted list of re-encrypted tuples that have a different
tuple order, but the individual values inside of a tuple are in the same order.
This can be achieved with techniques from [13]. The communication required to
robustly mix n tuples with k participants is O(k2n).

4.5 Bulletin Board

Our protocols use a bulletin board abstraction (i.e., all parties post informa-
tion to a common area) that can be constructed using standard cryptographic
techniques. We measure the communication requirements of our protocols as
the amount of information posted on the bulletin board. It is worth noting that
we do not need a robust bulletin board for our application (we are not trying
to be secure against adversaries that try to force early termination). Thus our
protocols could just utilize standard broadcast techniques.

5 Preliminary Protocols

In this section we give preliminary protocols for the honest-but-curious adversary
model and the malicious adversary model. As a starting point we introduce a
protocol for the two-party honest but curious adversary model, then we extend
this to multiple parties, and we then extend it to the malicious model. It is worth
noting that the malicious protocol is similar to the honest-but-curious protocol,
but the protocols are presented as two separate protocols to enhance readability.
As not to clutter this initial presentation, we postpone the discussion of several
extensions to these protocols until the next section.

5.1 Two-Party Honest But Curious

In this section we propose a two-party protocol for set union in the honest but
curious adversary model where only one party learns the result. This protocol
is the most efficient such protocol to date that the authors are aware of, and
requires only O(n) communication. The main idea of this technique is as follows:
Suppose that a participant has the encrypted polynomial, denoted by Epk(fS)
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for some set S, then this participant can blindly evaluate this polynomial on
each of his set items; we will denote a specific such value by Epk(fS(s)). Now
fS(s) = 0 if and only if s ∈ S (with high probability). So if we create a tuple of
the form: (Epk(fS(s) ∗ s) ; Epk(fS(s))), then this tuple will be (0 ; 0) if s ∈ S
and otherwise s can be recovered from the decrypted tuple values.

Thus a high level protocol for the two-party case is as follows: Participant
P1 encrypts his set as a polynomial and sends it to P2 (using a homomorphic
scheme that is chosen by P1). P2 then computes the above tuples and sends them
back to P1 in a random order. P1 then decrypts the tuples to learn the values
in S2 that are not in S1, these values are then added to the items in S1 to pro-
duce the output of the protocol. The full description of the protocol is given in
Figure 1.

Setup: Participant P1 chooses a homomorphic encryption scheme, and denote
the public encryption function by Epk.
1. P1 sends Epk(fS1) along with the public parameters of Epk to P2.
2. For each value s ∈ S2, P2 chooses a random value r (chosen uniformly) and

computes a tuple (Epk(fS1(s) ∗ s ∗ r) ; Epk(fS1(s) ∗ r)). P2 randomly per-
mutes all of the tuples and sends them to P1.

3. P1 initially sets the output set to be S1. For each tuple (Epk(x) ; Epk(y))
from the previous step, P1 decrypts x and y. If both values are 0, then P1

continues to the next tuple. Otherwise, P1 adds x ∗ y−1 to the output set.

Fig. 1. Two-party HBC protocol for Set Union

Complexity Analysis: Step 1 of the protocol requires O(n) communication and
computation. It requires O(n) computation to compute the value fS1(s) for
a single value s, and so Step 2 requires O(n2) computation. However, Step 2
requires only O(n) communication. Finally, Step 3 requires O(n) computation.
Thus this protocol requires O(n2) computation, O(n) communication, and O(1)
rounds. The computation can be reduced to O(n log log n) using the bucketing
techniques of [9]2.

Security Analysis: We must show that the communication transcript from this
protocol is simulatable from the results of the protocol alone along with one of the
participant’s inputs. This is trivial to do in the case of P2 since all communication
from P1 is encrypted with a semantically-secure homomorphic encryption scheme
(where the private key is known only to P1). The proof to show that the protocol
is secure against P1 is also straightforward, but is not as trivial. Suppose that
a simulation algorithm has: |S2|, S1, and S1 ∪ S2. Clearly, the simulator can
compute S2 − S1 from the above information. The simulator then proceeds as
follows: i) it computes |S2| − |S2 − S1| tuples of the form (Epk(0) ; Epk(0)), ii)
it computes a tuple (Epk(s ∗ r) ; Epk(r)) for a randomly chosen value r for each
item s ∈ S2 − S1, and iii) it randomly permutes the tuples from the previous

2 This requires minor modifications to the protocol.
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two steps and outputs this as the simulated transcript. It is straightforward to
show that this simulated transcript is indistinguishable from the values sent to
P1 in Step 2 of the protocol.

5.2 Multi-party Honest But Curious

In this section we introduce the preliminary protocol for the honest-but-curious
adversary model for multiple participants. To compute the union of the individ-
ual sets, the protocol computes the multi-set union (using techniques of [18]) for
each of the following sets of participants {P1}, {P1, P2}, . . . , {P1, . . . , Pn}. Then
each participant Pi reports every item in Si that is not in the multi-set union of
S1, . . . , Si−1 using the reporting technique from the previous section. The tuples
are then mixed, to hide the source of each tuple, and then are decrypted to
reveal the items in the set union. The full description of the protocol is given in
Figure 2.

Complexity Analysis: In what follows we list the communication requirements
of each step of the protocol:

1. Step 1.a: This requires O(n) communication for each participant, and thus
this requires O(kn) total communication.

2. Step 1.b: This requires O(in) communication for participant Pi, and thus
this requires O(k2n) total communication.

3. Step 1.c: Each participant has to post O(n) tuples, and thus this requires
O(kn) total communication.

4. Step 2.b: Each participant has to post O(kn) tuples, and thus this requires
O(k2n) total communication.

5. Step 3: Since we are mixing O(kn) values in a non-robust manner this re-
quires O(k2n) total communication.

6. Step 4: Each decryption requires O(k) communication, and so this requires
O(k2n) total communication.

In summary, this protocol requires O(k2n) communication and O(k) rounds.

Security Analysis: We must show that the communication transcript from this
protocol is simulatable from the results of the protocol alone. This is a relatively
straight-forward simulation, and so we are a bit informal throughout this discus-
sion. Suppose that a simulation algorithm is given η1, . . . , ηk along with ∪k

i=1Si.
Now the simulation algorithm can easily create k simulation sets SS1, . . . , SSk

such that |SSi| = ηi and ∪k
i=1SSi = ∪k

i=1Si. Now the simulation algorithm sim-
ply mimics the protocol in Figure 2 (for the shuffling phase it acts as all of the mix
servers) and outputs the transcript of this session. We claim that this simulated
transcript is indistinguishable from transcript generated by the real protocol to
any adversary that does not establish a quorum of participants. First, in steps 1
and 2 everything is encrypted with a semantically-secure cryptosystem so these
values will be indistinguishable. Step 3 is indistinguishable because both are runs
of a mix protocol. Finally, Step 4 is indistinguishable because both are randomly
permuted lists tuples, and we claim that decrypted tuples that reveal a set value



Privacy-Preserving Set Union 245

Setup: The participants have agreed on a threshold Homomorphic encryption
scheme, and denote the public encryption function by Epk.
1. Build tuples:

(a) Post polynomial representation of sets: Participant Pi posts Epk(fSi) to
the bulletin board.

(b) Post polynomials: Participant Pi (for i = 2, . . . , k) posts Epk(
∏i

j=1(fSj ))
to the bulletin board.

(c) Post tuples: Participant Pi posts the following tuples to the bulletin
board:

i. P1 posts (Epk(s) ; (Epk(1)) for each value s ∈ S1.
ii. Participants Pi (for i = 2, . . . , k) posts tuples for every s ∈ Si as

follows:
(
Epk(

∏i−1
j=1(fSj (s) ∗ s) ; Epk(

∏i−1
j=1(fSj (s))

)
.

2. Randomize tuple values: For each tuple in (Epk(x) ; Epk(y)) that was posted
by any participant in the previous step, the participants do the following
(Note that this step can be done in parallel for all tuples):
(a) Each participant, Pi chooses a non-zero random values ri chosen uni-

formly.
(b) The participants multiply the tuple’s values by their random value. That

is, Pi posts
(
Epk(x ∗

∏i
j=1 rj) ; Epk(y ∗

∏i
j=1 rj)

)
to the bulletin board.

Note that Pi must wait until Pi−1 has posted his tuples before Pi can
post his tuples.

3. Shuffle: The parties engage in a secure shuffle protocol for all of the tuples
generated by Pk in the previous step.

4. Decrypt results: For each tuple (Epk(x) ; Epk(y)), the parties jointly decrypt
x and y. If both values are 0, then the parties continue to the next tuple.
Otherwise, the parties add x ∗ y−1 to the output set.

Fig. 2. Multi-party HBC protocol for Set Union

s are indistinguishable from a tuples (s ∗ r ; r) for some random value r. This
follows from Step 2 of the protocol, because as long as one participant is honest
the values will be multiplied by a random value unknown to the adversary.

5.3 Malicious Model

In this section we introduce the protocol for the malicious model. This protocol
is similar to the honest-but-curious protocol, however there are a few crucial
differences. The main difference is that the parties commit to their set values
and then at each step of the protocol the parties prove in zero knowledge that
they are following the protocol correctly. The full description of the protocol is
in Figure 3.

Complexity Analysis: In what follows we list the communication requirements
of each step of the protocol:

1. Step 1: Each participant has to post O(n) values, and thus the total com-
munication is O(kn).
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Setup: The participants have agreed on a threshold Homomorphic encryption
scheme, and denote the public encryption function by Epk.
1. Commit to sets: Participant Pi posts the following values to the bulletin board

Epk((Si)1), . . . , Epk((Si)ηi
) along with a proof of plaintext knowledge.

2. Build tuples:
(a) Post polynomial representation of sets: Participant Pi posts Epk(fSi) to

the bulletin board along with a proof of correct polynomial construction
(using the commitments from the previous step).

(b) Post polynomials: Participant Pi (for i = 2, . . . , k) posts Epk(
∏i

j=1(fSj ))
to the bulletin board along with a proof of correct polynomial multipli-
cation.

(c) Post tuples: Participant Pi posts the following tuples to the bulletin
board:

i. P1 posts (Epk(s) ; (Epk(1)) for each value s ∈ S1 along with a proof
of correct construction.

ii. Participants Pi (for i = 2, . . . , k) posts tuples for every s ∈ Si as
follows:

(
Epk(

∏i−1
j=1(fSj (s) ∗ s) ; Epk(

∏i−1
j=1(fSj (s))

)
along with zero

knowledge proofs that this tuple is formed correctly. Specifically, the
participant posts a proof of correct polynomial evaluation and a proof
of correct multiplication.

3. Randomize tuple values: For each tuple in (Epk(x) ; Epk(y)) that was posted
by any participant in the previous step, the participants do the following
(Note that this step can be done in parallel for all tuples):
(a) Each participant, Pi chooses a random values ri. Pi also posts a com-

mitment of this random value Epk(ri) to the bulletin board along with a
proof that ri is non-zero.

(b) The participants multiply the tuple’s values by their random value. That
is, Pi posts

(
Epk(x ∗

∏i
j=1 rj) ; Epk(y ∗

∏i
j=1 rj)

)
to the bulletin board

along with a proof of correct construction. Note that Pi must wait until
Pi−1 has posted his tuples before Pi can post his tuples.

4. Shuffle: The parties engage in a secure shuffle protocol for all of the tuples
generated in the previous step by Pk.

5. Decrypt results: For each tuple (Epk(x) ; Epk(y)), the parties jointly decrypt
x and y. If both values are 0, then the parties continue to the next tuple.
Otherwise, the parties add x ∗ y−1 to the output set.

Fig. 3. Malicious protocol for Set Union

2. Step 2.a: Each participant has to post O(n2) data (the size of the correct
polynomial construction proof), and thus the total communication is O(kn2).

3. Step 2.b: This requires O(in2) communication for participant Pi (who must
do a proof of correct polynomial multiplication between a polynomial of size
O(in) and a polynomial of size O(n)), and thus this requires O(k2n2) total
communication.

4. Step 2.c: This requires O(in2) communication for participant Pi (who must
do a proof of correct polynomial evaluation for a polynomial of size O(in)
on O(n) values), and thus this requires O(k2n2) total communication.
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5. Step 3.a: This requires each participant to post O(kn) communication, and
thus the total communication is O(k2n).

6. Step 3.b: This requires each participant to post O(kn) communication, and
thus the total communication is O(k2n).

7. Step 4: This requires a robust mix of O(kn) values with k participants. Thus
this requires O(k3n) total communication.

8. Step 5: Each decryption requires O(k) communication, and so this requires
O(k2n) total communication.

In summary, this protocol requires O(k2n2 + k3n) communication and O(k)
rounds.

Security Analysis: In this section we give an argument for security for the ma-
licious model protocol. All of the communication in steps 1-4 are either values
encrypted with a homomorphic encryption scheme or are zero knowledge proofs.
It is easy to verify that the zero knowledge proofs do not reveal anything other
than predicates of the form: was this step done properly. Thus all of these steps
can easily be simulated in a way that is indistinguishable from the real transcript.
However, we must show that the decrypted values in Step 5 of the protocol can
be simulated from the output of the protocol in a manner that is indistinguish-
able from the values in the protocol (even if a group of participants deviates
from the protocol). If any of the zero knowledge proofs fail, then the protocol
terminates and Step 5 is not reached, and so in what follows we assume that the
zero knowledge proofs have all passed.

In Step 1 of the protocol the participants submit of list of committed values.
Clearly, this same set of values could be injected into the ideal model (assuming
that the ideal model allows multi-set inputs). We must show that the simula-
tor with the result from the ideal model will produce a list of values that are
indistinguishable from these values. To do this, we first define the simulation
algorithm. Suppose that S =

⋃k
i=1 Si, and that N =

∑k
i=1 |Si|. The simulation

then proceeds as follows: i) it produces N − |S| tuples of the form (0 ; 0) and
for each value s ∈ S it creates a tuple of the form (s ∗ r ; r) for a randomly
chosen value r. The simulation algorithm randomly permutes these N tuples
and outputs this as the transcript for Step 5.

The following list enumerates the state of the N tuples that are produced in
each of the steps of the protocol

1. Step 2: Participant Pi’s jth tuple will be (0 ; 0) if (Si)j is in one of the

sets S1, . . . , Si−1. Otherwise, it will be
(
(Si)j ∗ v ; v

)
for a value v that may

reveal information.
2. Step 3: This step multiplies the values in each tuple by a random non-zero

value using a standard protocol (i.e., everyone multiplies it by their own
random non-zero value). Thus participant Pi’s jth tuple will be (0 ; 0) if
(Si)j is in one of the sets S1, . . . , Si−1. Otherwise, it will be

(
(Si)j ∗ r ; r

)

for a randomly chosen value r. Thus at the end of this protocol there will
be N − |S| tuples of the form (0 ; 0) and for each value s ∈ S it creates a
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tuple of the form (s ∗ r ; r) for a randomly chosen value r. This is just like
the simulation algorithm except that the order of the tuples in the protocol
at the end of this step reveals information.

3. Step 4: The tuples are randomly shuffled with a robust mix. Thus, the tuples
will be the same as in the previous step but are in a random order.

6 Extensions

In this section we introduce various extensions of the preliminary protocols in the
previous section, including: padding sets, computing the cardinality, countering
the empty-set attack, and computing the over-threshold set union.

6.1 Padding

As mentioned earlier, the preliminary protocols leak the number of values that
each party has in their set. In this section we introduce a method for padding a
list to obfuscate this value, and thus all that is revealed is an upper bound on the
cardinality of each party’s set. Suppose that a participant Pi wants to report a set
Si and a size ηi where ηi ≥ |Si|. In the HBC protocol Pi would make the following
changes: i) The participant would use a polynomial gSi,ηi = fSj ∗ xηi−|Si| and
would use this as his polynomial in Step 2 and ii) when reporting his “dummy”
values in Step 3 of the protocol the participant posts (Epk(0) ; Epk(0)).

The changes to the malicious protocol are a little more involved (to prevent
the participants from failing a zero knowledge proof). The main change is that
the subject will commit to a larger set of values where the dummy values set
to a value not in U and a dummy item’s random hiding factor in Step 3 is set
to 0. It is also required that the proofs that a random values are non-zero are
removed for a participant’s own values. The rest of the protocol then remains
unchanged.

6.2 Cardinality

There are some situations where the goal is to reveal only the cardinality of the
set union. It is relatively straight-forward to modify the preliminary protocols
to compute the cardinality. In Step 1 (of the HBC protocol) and Step 2 (in
the malicious protocol) all that needs to be changed is that when creating the
tuples, participant Pi used 1 instead of (Si)j . Now, when the tuples are decrypted
duplicate items will still be (0 ; 0) but first-time items will be (r ; r) (for some
random value r). Thus, the number of tuples that are not (0 ; 0) is the cardinality
of the set union.

6.3 Empty-Set Attack

It is possible for a malicious party to set their set to the empty-set. This
is particularly damaging when there are only two participants, as this will
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reveal the honest participant’s exact set. We now outline several strategies for
countering this attack:

1. A simple solution is to require that each participant’s set is not the empty-
set. One way of doing this is to make sure that the leading coefficient of
the polynomial is non-zero. However, this has limited effectiveness, because
the adversary can use n items that are very infrequent as their input set.
Or worse, the adversary could use a non-decomposable polynomial (i.e., one
that is never 0, for the protocol).

2. A more complicated approach would be to make sure that each party’s set
has certain properties. However, these requirements would vary from domain
to domain, and so each new domain would require a separate protocol for
determining if a set is valid. Thus, this is not a general solution.

3. Another approach is for participants to require some overlap between the
other participant’s set and their own. Thus in the two party-case the par-
ticipants would first engage in a cardinality of set intersection protocol and
would continue only if this cardinality was over a threshold. This check can
be done without revealing the actual cardinality. This is not a perfect ap-
proach, because an adversary can still test if an honest participant has a
specific item (or small set of items), but it does help prevent complete reve-
lation of the honest party’s set in a single run of the protocol.

6.4 Over-Threshold Set Union

In this section we introduce a protocol for computing all items that appear t or
more times. This protocol does not reveal how many times an item appears (even
if it is in the result). A similar protocol was given in [18], but the given protocol
reveals how many times an item in the result appeared. Of course, many of the
ideas from [18] could be combined to make such a protocol, we believe that the
following protocol will be more efficient than such a protocol. However, some
of the ideas in the following protocol were also presented in [18] (specifically
taking the (t − 1)th derivative to determine if an item has appeared t or more
times). We present this protocol for the honest-but-curious model in Figure 4; a
malicious model protocol will be given in the full version of the paper3.

The main idea behind this protocol is that each participant first learns which of
its items appears t or more times, and then these values are used in a standard set
union protocol to merge the items and to hide the multiplicity of the items. Clearly,
this intermediate result is simulateable from the output alone (i.e., given all items
that appear t or more times a participant can compute which items in its set appear
t or more times). To compute which items are in t or more sets the participants
compute the (t − 1)th derivative of the polynomial for the multi-set union of every
participant’s set. Note that when this polynomial evaluates to 0 for a specific set
item then the item will have appeared t or more times with high probability.

3 It is worth noting that the protocol in Figure 4 would not work by simply adding zero
knowledge proofs, because this would not prevent a party from submitting multiple
copies of the same value.
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Setup: The participants agree on a threshold Homomorphic encryption scheme,
and denote the public encryption function by Epk.
1. Compute multi-set union: Using Step 1 of the protocol in Figure 2 the par-

ticipants compute Epk(
∏k

j=1(fSj )), which we denote my Epk(m).
2. The participants then compute the value Epk(m(t−1)) (i.e., the (t − 1)th

deriviative of the multi-set union).
3. For each value s ∈ Si participant Pi posts the following tuple(

Epk(m(t−1)(s)) ; Epk(s)
)

to the bulletin board.
4. Using Step 2 of the protocol in Figure 2 the participants multiply the first

value of each tuple by a random value and post the new values to the bulletin
board.

5. For each tuple
(
Epk(m(t−1)(s) ∗ r) ; Epk(s)

)
that was posted in the previous

step (the participants compute Epk((m(t−1)(s) ∗ r) + s) and jointly decrypt
this value so that only the participant that contributed the value will learn
the plaintext.

6. For each item that a participant posted in Step 3 they obtain either the
value itself or a random value. Each participant then builds a new set of the
items that survived elimination and pads the list to its original size. The
participants then engage in a privacy-preserving protocol for Set Union with
these new sets.

Fig. 4. HBC protocol for Over-Threshold Set Union

7 Conclusions

In this paper we introduced protocols for privacy-preserving set union that are
more efficient than previous such protocols. We believe that these new proto-
cols will have many applications in data mining and other domains. We also
introduced a new over-threshold set union protocol.
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