
Preventing Collusion Attacks on the One-Way Function
Tree (OFT) Scheme

Xuxin Xu1, Lingyu Wang1, Amr Youssef1, and Bo Zhu2

1 Concordia Institute for Information Systems Engineering
Concordia University

Montreal, QC H3G 1M8, Canada
{xuxin xu,wang,youssef}@ciise.concordia.ca

2 Center for Secure Information Systems
George Mason University

Fairfax, VA 22030-4444, USA
bzhu@gmu.edu

Abstract. The one-way function tree (OFT) scheme proposed by Balenson et al.
is widely regarded as an efficient key management solution for multicast commu-
nication in large dynamic groups. Following Horng’s claim that the original OFT
scheme was vulnerable to a collusion attack, Ku et al. studied the collusion attack
on OFT and proposed a solution to prevent the attack. The solution, however, re-
quires to broadcast about h2 + h (h is the height of the key tree) keys for every
eviction operation, whereas the original OFT scheme only requires about h keys.
This modified OFT scheme thus loses a key advantage that the original OFT has
over the logical key hierarchy (LKH) scheme, that is a halving in broadcast size.
In this paper, we revisit collusion attacks on the OFT scheme. We generalize the
examples of attacks given by Horng and Ku et al. to a generic collusion attack on
OFT, and derive necessary and sufficient conditions for such an attack to exist.
We then show a solution for preventing collusion attacks while minimizing the
average broadcast size. Our simulation results show that the proposed solution
allows OFT to outperform LKH in many cases.

1 Introduction

Multicast communications can greatly save bandwidth and sender resources in deliver-
ing data to groups of recipients. However, cryptographic key management schemes are
required to ensure the confidentiality of a multicast communication. More specifically,
backward security requires that a joining member cannot learn previous messages, and
forward security requires that an evicted member cannot learn future messages. The
adjective perfect can be added to the two properties, if they can be satisfied against an
arbitrary number of colluding members [2].

To satisfy perfect forward and backward security, the group key must be changed
whenever a member is added to or evicted from a group. The new key needs to be
conveyed to all members at the minimum communication cost since the group is usually
large and dynamically changing. Among other methods, the OFT (one-way function
tree) scheme, originally proposed by Balenson et al., is one of the most popular schemes

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 177–193, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

178 X. Xu et al.

for this purpose [1,2,3,4,17]. A key advantage of OFT over another popular method, the
Logical Key Hierarchy (LKH) [6], is that OFT halves the number of bits broadcasted
upon adding or evicting a member. Specifically, if a key has k bits and the key tree
used by OFT and LKH has a height h, then the broadcast size of OFT is hk + h bits,
whereas that of LKH is 2hk + h bits. OFT achieves such a halving in broadcast size by
deriving its key tree in a bottom-up manner, in contrast to LKH’s top-down approach.
Consequently, unlike the independently chosen keys in LKH, the keys in an OFT key
tree are functionally dependent, and this functional dependency allows OFT to save half
of the broadcasted bits.

Unfortunately, the same functional dependency among keys that brings OFT the
reduced communication cost also subjects it to collusion attacks. Although OFT was
claimed to achieve perfect forward and backward security [2], only the collusion among
evicted members was considered. A collusion that includes current members was
claimed to be uninteresting, because a (current) member knows the group key. How-
ever, the claim implicitly assumes the colluding members are trying to learn the current
group key, which is not necessarily true. An evicted member may collude with a current
member to learn group keys that were used after the former was evicted but before the
latter joins the group. In this case, OFT will fail on both forward security and backward
security. In 2002, Horng first showed an example of collusion attacks on OFT [16]. In
2003, Ku and Chen provided new attack examples to show that the two assumptions
required by Horng’s attack were actually not necessary conditions [11]. Ku and Chen
also proposed a modified OFT scheme that is immune to the collusion attack. The solu-
tion, however, needs to broadcast (h2 +h)k bits on every member eviction (and hk bits
on each member addition). Ku and Chen’s scheme thus loses a key advantage which
OFT has over LKH, that is a halving in broadcast size. Because their scheme requires a
broadcast of quadratic size on evicting any member, it is only suitable for applications
where member eviction is rare.

In this paper, we revisit collusion attacks on the OFT scheme. To better understand
collusion attacks on OFT, we first generalize the examples of attacks given by Horng
and Ku et al. to a generic attack. Instead of these examples of two or three members, we
study the collusion among arbitrary number of evicted and joining members with arbi-
trary number of other, non-colluding members leaving or joining in between. Based on
this understanding of the general attack, we derive necessary and sufficient conditions
for a collusion attack on OFT to exist. These conditions reveal that the solution by Ku et
al. is unnecessarily conservative. Their solution prevents potential collusion attacks by
invalidating any knowledge that is brought out of the group by evicted members. How-
ever, our results show that such knowledge is not always useful to a joining member in
colluding.

We study a different approach where such leaked knowledge is not immediately in-
validated but is recorded by a key manager who is responsible for managing the group.
When a member joins the group, the key manager then checks whether it is possible for
this new member to collude with previously evicted members. If a potential collusion
exists, the key manager will update keys as part of the joining operation such that the
collusion becomes impossible. Because additional re-keying is performed only when
a collusion is possible, this solution has the advantage of minimizing broadcast size.

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 179

Following the discussion of a straightforward stateful method that has an unacceptable
storage requirement, we present a modified version of the method whose storage re-
quirement is proportional to the size of the key tree. These methods pose no additional
communication cost on evicting a member but may require more broadcasted bits when
a member joins. We study the average performance of the scheme using experiments,
and the result show that our scheme is more efficient than LKH in many cases.

The contribution of this paper is two fold. First, our study provides a better under-
standing of the collusion attack on the OFT scheme. The previous work by Horng and
Ku et al. have only described specific examples of collusion attacks involving two or
three colluding nodes but left the general case open [16]. Our results show exactly what
can be computed by an arbitrary collection of joining and evicted nodes. Second, the
solution we shall propose makes the OFT scheme secure against general collusion at-
tacks while minimizing the communication overhead. Ku and Chen’s solution renders
OFT strictly less efficient than LKH, whereas our experimental results show that the
solution in this paper enables OFT to outperform LKH in small to medium groups. The
results also reveal that OFT’s approach of using functionally dependent keys actually
renders the scheme less efficient in large groups, if collusion attacks are to be prevented.
The rest of the paper is organized as follows. Section 2 reviews the OFT scheme and
examples of collusion attacks given by Horng and Ku et al. Section 3 generalizes these
examples to a generic attack and derives the necessary and sufficient conditions for
the collusion attack. Section 4 studies a solution that minimizes broadcast size while
preventing collusion attack. Section 5 studies the performance of our solution through
experiments. Section 6 concludes the paper and gives future directions.

2 Related Work

Various aspects of multicast security, including group key management, have been ex-
tensively studied, as surveyed in [5,7,8,12,13]. In [9], an architecture is provided for
the management of cryptographic keys for multicast communications. Various security
aspects, including ephemeral secrecy, long-term secrecy, and perfect forward secrecy,
are outlined in [14]. Popular tree-based group key management schemes include the
Logical Key Hierarchy (LKH) scheme [6,15,22], the One-way Function Tree (OFT)
scheme [1,2,3,4,17], and the One-way Function Chain (OFC) scheme [8]. Unlike many
solutions that depend on a trusted group controller, the authors in [10] propose a group
key management scheme based on El Gamal, which only requires a partially trusted
controller who does not need accesses to the communication keys. The solution in [19]
integrates the one-way key derivation with key trees to reduce the communication
overhead of rekeying operations. In the solution, the total number of encrypted keys
transmitted during a rekeying operation is reduced by not sending new keys to those
members who can derive the keys by themselves. The solution proposed in [20] inher-
its the architecture of the logical key tree algorithm but rekeys the group using a new
algorithm. The batch rekeying scheme in [21] is based on one-way function tree and
minimum exact covering.

The LKH scheme is shown to be immune to collusion attacks in [18]. On the other
hand, Horng first showed that the OFT scheme is vulnerable to a collusion attack in [16].

180 X. Xu et al.

This result was later revisited by Ku et al. in [11]. We first review the original OFT
scheme in Section 2.1 and then review the examples of collusion attack on OFT given
by Horng and Ku et al. in Section 2.2. In this paper, we do not address collusion attacks
on the OFC scheme [8], which comprises an interesting future work.

2.1 The OFT Scheme

The original OFT scheme is an efficient key management scheme for large, dynam-
ically changing groups [1,2,3,4,17]. A key manager maintains a balanced binary key
tree for each group. The key trees are computed bottom up using a one-way func-
tion g() and a concatenation function f() as follows. First, each leaf node v is as-
signed a randomly chosen node key xv , and a blinded node key is computed from the
node key as g(xv). The node key of each interior node v is then computed by con-
catenating the blinded node keys of its left child left(v) and right child right(v) as:
xv = f(g(xleft(v)), g(xright(v))). For example, the key tree in the left hand side of
Figure 1 can be constructed as x4 = f(g(x8), g(x9)), x2 = f(g(x4), g(x5)),x7 =
f(g(x14), g(x15)), x3 = f(g(x6), g(x7)), and x1 = f(g(x2), g(x3)).

Each group member is associated with a leaf node in the key tree, and is given its
node key. For each node v on the path from that leaf node to the root, the group member
is also given the blinded node key of v’s sibling. The group member can thus compute
the group key, that is the node key of the root1. For example, in the left hand side of
Figure 1, a member Alice who is associated with the node 8 will be given the blinded
keys g(x9), g(x5), and g(x3). Alice can then compute the group key as: x4 =
f(g(x8), y9), x2 = f(g(x4), y5), and x1 = f(g(x2), y3).

A new member always joins at a leaf node closest to maintain the balance of the key
tree. After the joining, the existing leaf node becomes the left child of a new interior
node and is assigned a new node key. The right child is a new node associated with the
joining member. The whole path from the interior node to the root will be updated due
to the two new keys, and the updated blinded keys must be conveyed to those members
who need them. For example, in Figure 1, the joining member Bob causes the existing
node 5 to be split into two nodes, with each assigned a new node key. The node keys
of node 5, node 2, and node 1 then need to be updated, and their blinded version will
be broadcasted to the members who need them (for example node 8 and 9 will need the
updated g(x5)). A similar process applies to the other joining member Candy.

The eviction of a member is similar to the addition with following differences. The
sibling of the node associated with the leaving member replaces its parent, and is as-
signed a new node key. Keys on the path leading that node to the root are then updated
and their blinded versions are broadcasted, as in the case of addition. However, if the
sibling of the leaving member is an interior node, then we cannot directly change its
node key due to the functional dependency among keys. Instead, we need to change the
node key of a leaf node in the subtree whose root is that interior node. For example, in
Figure 1, the evicted member Alice causes the node 9 to replace the node 4. The node
keys of nodes 4, node 2, and node 1 will then be updated, and their blinded version will
be broadcasted to those who need them.

1 In a later version of the scheme, the key used for communication is not the node key itself but
is derived from the node key using another one-way function [2].

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 181

1

2

9

5

Alice

4

8

3

15

6 7

14 Bob Candy

1

2

5 4

3

15

6 7

14 13 12 11 10

Bob Candy

Before After

Fig. 1. OFT Key Tree and Collusion Attacks

Let the height of a balanced key tree be h. Then approximately h new blinded keys
must be broadcasted on each member addition or eviction (on the other hand, a unicast
is used to send the joining member its blinded keys). In addition, h bits are broadcasted
to notify members about the position of the joining or eviction. In contrast, the broadcast
size of Logical Key Hierarchy (LKH) is 2h multiplied by the key size (plus the same
h bits for the position of the addition or eviction). The reason that OFT can achieve a
halving in broadcast size is that keys in an OFT key tree are functionally dependent, but
keys in a LKH key tree are all independent. In OFT, an updated node key is propagated
through the sibling of the node, whereas in LKH the key is propagated through the
children of the node. The fact that a node has two children but only one sibling explains
the difference in the broadcast size of LKH and OFT.

2.2 Examples of Collusion Attack on OFT

Horng observed that the functional dependency among keys in an OFT key tree subjects
the OFT scheme to a special collusion attack [16]. Horng gave two conditions for such
an attack to exist. Referring to Figure 1, the attack example given by Horng can be
described as follows. Suppose Alice, associated with the node 8, is evicted at time t1,
and later Candy joins the group at time t2 (ignore Bob’s joining for the time being).
By the OFT scheme, the node key of node 3 is not affected by the eviction of Alice, so
Alice knows the blinded version of this key between t1 and t2. Moreover, the node key
of node 2 is updated when Alice is evicted, and then remains the same even after Candy
joins. Candy can thus see the blinded version of this key between t1 and t2. Knowing
the blinded node key of both node 3 and node 2 between t1 and t2, Alice and Candy
can collude to compute the group key during that time interval. The OFT scheme thus
fails to provide forward security (Alice knows future group key) and backward security
(Candy knows previous group key).

Intuitively, the above example is a result of the unchanging keys of the root’s chil-
dren. Horng thus stated two necessary conditions for such an attack to exist, that is the
two colluding nodes evicted and joining at different side of the root and no key update
happening between time t1 and t3 [16]. Later, Ku and Chen showed through two more
attack examples that Horng’s conditions are actually not necessary [11]. First, referring

182 X. Xu et al.

to Figure 1, if Alice is evicted at time t1 and Bob joins later at time t2, then they can
collude to compute the node key of node 2 between t1 and t2 due to a similar reason.
In addition, both Alice and Bob know the blinded node key of node 3 between t1 and
t2, so they can compute the group key between the same time interval. Second, assume
Alice is evicted at time t1, and Bob and Candy join at time t2 and t3, respectively, with
t1 < t2 < t3. By similar arguments, Alice knows the blinded node key of node 3 be-
tween t1 and t3, and Candy knows the blinded node key of node 2 between t2 and t3.
They can thus collude to compute the group key between t2 and t3. The two examples
show that Horng’s two conditions are actually not necessary.

Ku and Chen also provided a solution to prevent the collusion attack on OFT [11].
Intuitively, an evicted member brings out knowledge about some keys that will remain
the same for a certain time interval after the eviction. Ku and Chen modify the OFT
scheme to change all the keys known by an evicted member upon the eviction. For
example, when Alice is evicted in Figure 1, the node key of node 5 and node 3 will be
updated (in addition to that of node 4, node 2, and node 1, as required by the original
OFT scheme). With this solution, no evicted member can bring out any knowledge
about future keys, so a collusion with future joining members is prevented. However,
the solution updates the node key of all the h siblings on the path of an evicted node
(node 5 and node 3 in above example). Each such update requires the broadcast of h
keys (for example, to update the node key of node 3, we must update one of the leaf
nodes in the subtree rooted as node 3). The broadcast size is thus h2 multiplied by
the key size plus h bits. Because such a broadcast is required for every eviction, the
modified OFT is less efficient than LKH (which broadcast 2h keys on an eviction) in
most cases, unless member eviction is rare.

3 Generic Collusion Attack on OFT

Section 3.1 first studies a special case, that is an evicted node colludes with another node
who joins later. This turns out to be the only interesting case. Section 3.2 then discusses
the general case where multiple evicted nodes and joining nodes may collude.

3.1 Collusion Between an Evicted Node and a Joining Node

We first consider the collusion attack between a node A evicted at time tA and a node
C joining the group at time tC (tA < tC). Without loss of generality, we assume A is
the leftmost node in the key tree, as shown in Figure 2 (notice that this figure actually
combines two different key trees at tA and tC , which will be justified later in this sec-
tion). We also need following notations. For any node v, we use xv[t1,t2] and yv[t1,t2]
for its node key and blinded node key between time t1 and t2, respectively. We shall
also interchangeably refer to a node and the member who is associated with that node.
I is the node where the path of A to the root and that of C merges. Let L, R, I ′, I ′′ be
the left child, right child, parent of I , and parent of I ′, and let R′ and R′′ be the right
child of I ′ and I ′′, respectively. Let B, D, E, and F denote the subtree with the root L,
R, right(I ′), and right(I ′′), respectively. Let tDMIN , tEMIN , and tFMIN be the time
of the first key update after tA that happens in D, E, and F , respectively. Let tBMAX ,

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 183

Root

I’

I

C

……

……

……

……

R

B D

E

R’

…… ……

……
L

……

……

F

R’’

I’’

A

……

Fig. 2. A Generic Collusion Attack on OFT

tEMAX , tFMAX be the time of the last key update before tC that happens in B, E, and
F , respectively. We then have the following result.

Proposition 1. Referring to Figure 2, the only node keys that can be computed by A
and C when colluding are:

– xI in the time interval [tBMAX , tDMIN],
– xI′ in [tBMAX , tDMIN] ∩ ([tA, tEMIN] ∪ [tEMAX , tC]),
– xI′′ in [tBMAX , tDMIN] ∩ ([tA, tEMIN] ∪ [tEMAX , tC]) ∩ ([tA, tFMIN] ∪

[tFMAX , tC]),

and so on, up to the root. Notice that these intervals may be empty.

Proof: When the node A is evicted, it knows the blinded node key of each sibling
on its path to the root before the time tA. This includes yR[−,tA] and yR′[−,tA] (recall
that the dash means the time when each key is last updated before tA). By the OFT
scheme, the node key of R will not change until a new node joins a node in D (that
is, the subtree with the root R) or a node in D leaves, and similarly the node key of
R′ will not change until a key is updated in E. That is, yR[−,tA] = yR[−,tDMIN] and
yR′[−,tA] = yR′[−,tEMIN]. The node A thus knows these values even after it is evicted.
On the other hand, when node C joins, it is given the blinded node key of the siblings
on its path to the root. The node C then knows the values yL[tC ,−] and yR′[tC ,−] (recall
that the dash here means the time of the next update of these keys after tC). By the
OFT scheme, the node key of L and R′ will not be updated when C joins so they have
remained the same since the last key update in B and E, respectively. Then we have
yL[tC,−] = yL[tBMAX,−] and yR′[tC ,−] = yR′[tEMAX ,−], which are both known by C.

When A and C colludes, what can be computed depends on the relationship
between the timestamps. As shown in Figure 3, A and C can first compute the

184 X. Xu et al.

subgroup key xI[tBMAX ,tDMIN] = f(yR[−,tDMIN], yL[tBMAX,−]). We notice that this
statement assumes tBMAX < tDMIN . Under this assumption, nodes A and C
can compute yI[tBMAX ,tDMIN] = g(xI[tBMAX ,tDMIN]). This will enable them
to further compute another subgroup key I ′ in two different time intervals. Let
tDEMIN = MIN(tDMIN , tEMIN) and tBEMAX = MAX(tBMAX , tEMAX). Then
xI′[tBMAX ,tDEMIN)] can be computed by A and C as f(yI[tBMAX ,tDMIN], yR′[−,tEMIN])
and xI′[tBEMAX ,tDMIN] can be computed as f(yI[tBMAX ,tDMIN], yR′[tEMAX ,−]). In an-
other word, they can compute the node key of I ′ in [tBMAX , tDMIN]∩ ([tA, tEMIN]∪
[tEMAX , tC]). Clearly, this result can be easily extended to the parent of I ′ and so on,
up to the root.

tA tC

tBMAX

tEMIN tEMAX

tDMIN

yR’ yR’

yR
yL

Fig. 3. The Timeline of Collusion Attacks

On the other hand, the above result also depicts all that A and C can compute by
colluding. By the OFT scheme, when A is evicted all the node keys along its path to the
root are updated, so A no longer knows them. Similarly, C cannot learn any node key on
its path to the root prior to its joining. Besides the blinded keys of nodes R, R′, and R′′

(and all the sibling nodes on the path from I to the root), A may also know the blinded
node key of sibling nodes in the subtree B for a time interval after tA, and similarly C
may know about nodes in the subtree D for a time interval before tC . However, such
knowledge does not help them in computing any keys. By the OFT scheme, a node key
can only be computed from the blinded key of its two children, but we can never pick a
node from the set B − {L} and another from D − {R} such that they are the children
of the same node. �

One subtlety lies in the dynamics of the key tree. The key tree from which A is evicted
is different from the one that C joins. Although we show A and C in the same key tree
in Figure 2 for simplicity purpose, the tree structure may have been changed after A
leaves and before C joins. However, the key facts that our results depend on will not be
affected by such changes. First, A knows yR[−,tDMIN] and yR′[−,tEMIN] regardless of
any changes that may happen to the subtree with root L, and the definition of tDMIN

and tEMIN excludes any change in the subtree with root R and R′ to happen before
tDMIN and tEMIN , respectively. It is worth noting that the whole subtree with root
L may disappear due to evictions, and consequently the node R will replace its parent
I (and the node R will be replaced by right(R)) by the OFT scheme. In this case, it
seems that A will no longer know yR even when no key update happens in the set D,
invalidating the result that A knows yR[−,tDMIN]. However, this is not true. When the

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 185

node R replaces I , the OFT scheme also requires it to be assigned a new node key,
which means at least one of the leaf nodes in the set D must change its node key. That
is, a key update does happen in D in this operation, and our result still holds. Similarly,
C knows the value yL[tBMAX ,−] regardless of any change in the key tree after the last
key update in the set B.

3.2 The General Case

We first consider other cases of collusion between pairs of evicted and joining nodes
and show that the above eviction-joining scenario turns out to be the only interesting
case, as explained by Proposition 2. We then discuss the collusion among more than
two nodes, and we show that it is sufficient to only consider collusion between pairs of
nodes, which is stated in Proposition 3.

Proposition 2. A pair of colluding nodes A and C cannot compute any node key which
they are not supposed to know by the OFT scheme, if

– A is evicted after C joins.
– A and C both join.
– A and C are both evicted.

Proof: First, we consider the joining-eviction case. In Figure 2, suppose C first joins
the group and later A is evicted. If A and C collude, then they trivially know all node
keys in the intersection of their paths to the root (for example, node I and I ′) and the
siblings (for example, node R′) before C joins and after A is evicted, because A is
in the group before C joins and C stays in the group after A is evicted. In addition,
although A knows the blinded node key of some siblings in the subtree B and C knows
the blinded node key of some siblings in the subtree D, these keys cannot be combined
to compute any node key since no two nodes share a parent. In summary, two nodes
colluding in the joining-eviction case cannot compute any node key besides what they
already know.

Next consider the eviction-eviction case. Suppose in Figure 2 A is first evicted at time
tA and later C is evicted at time tC . Because C stays in the group longer than A does,
their knowledge about the shared keys in the intersection of their paths (such as I and
I ′) and the siblings (such as R′) is the same as C’s knowledge. That is, colluding with
A does not help C with respect to these keys. Similar to the above cases, A’s knowledge
about nodes in the subtree B cannot be combined with C’s knowledge about nodes in D
to compute any node key. The only exception is their knowledge about L and R, which
can potentially be combined to compute I (and consequently I ′ and so on). However,
the OFT scheme updates the node key of R when C is evicted, so A can at best know
yR[−,tA] = yR[tA,tC] (if no other key update happens between tA and tC), which is
useless to C. In summary, two evicted nodes colluding cannot compute any node key in
addition to what is already known by the later-evicted node. The joining-joining case is
similar to the eviction-eviction case and is omitted. �

Proposition 3. An arbitrary collection of evicted nodes and joining nodes can collude
to compute some node key not already known, if and only if the same node key can be
computed by a pair of nodes in the collection.

186 X. Xu et al.

Proof: The if part is trivial, and the only if part can be justified as follows. To com-
pute xv[t1,t2], the colluding nodes must know both yleft(v) and yright(v) for some
time intervals that are supersets of [t1, t2]. Suppose yleft(v) is known by m nodes in
time period [tai, tbi](1 ≤ i ≤ m), and yright(v) is known in [tcj , tdj](1 ≤ j ≤ n).
Because (

⋃m
i=1[tai, tbi]) ∩ (

⋃n
j=1[tcj , tdj]) is a superset of the non-empty time inter-

val [t1, t2], it cannot be empty, either. Consequently, there must exist a pair of i and
j such that [tai, tbi] ∩ [tcj , tdj] �= φ. The pair of nodes that has such knowledge (no
single node can possess this knowledge because we assume xv[t1,t2] is not already
known by the colluding nodes) can thus collude to compute xv during the time interval
[tai, tbi] ∩ [tcj, tdj]. �

We now show that the attack examples given by Ku et al., as described in Section 2.2,
are special cases of our generic attack. Referring to Figure 1, the first example says that
Alice evicted at t1 colludes with Bob joining at t2, and Candy joins at t3 (t1 < t2 < t3).
This corresponds to the case where A = 8, C = 5, I = 2, I ′ = 1 (referring to Figure 2),
and Candy joins at t3 in the set E. We thus have tBMAX = t1, tDMIN = t2, and
tEMIN = tEMAX = t3. It then follows that Alice and Bob can collude to compute
x2[t1,t2] and x1[t1,t2] (notice that [t1, t2] ∩ ([t1, t3] ∪ [t3, t2]) = [t1, t2]). The second
example says that Alice evicted at t1 colludes with Candy joining at t3, with Bob joining
in between at t2. This corresponds to the case where A = 8, C = 6, I = 1 (I ′ does not
exist), and Bob joins in the set B. We thus have tBMAX = t2 and tDMIN = t3, and
consequently Alice colluding with Candy can learn x1[t2,t3].

4 A Solution for Preventing Collusion Attacks

The previous section shows that a joining node may collude with previous evicted nodes
to compute node keys in certain time intervals, which none of them is supposed to
know. However, these results also show that such a collusion is not always possible, and
whether it is possible depends on the temporal relationship among joining and evicted
nodes. As discussed in Section 2.2, Ku and Chen’s solution prevents any evicted node
from bringing out knowledge about future node keys. Although it suffices to prevent
any collusion attack, this conservative approach has a quadratic broadcast size (in the
height of the key tree) on every member eviction and thus is less efficient than the LKH
scheme in most cases.

One apparent way to reduce the broadcast size is to update additional keys only when
a collusion attack is indeed possible. Unfortunately, this cannot be achieved with Ku and
Chen’s approach of updating the siblings along the path of an evicted node, because at
the time a node is evicted, we do not yet know with whom it may collude in the future.
On the other hand, our results in Section 3 make it possible to check whether a joining
node can collude with any previously evicted node. If a collusion is possible, we can
update a minimum number of additional keys to prevent the joining node from com-
bining its knowledge with the evicted node for that specific collusion. This approach
minimizes the communication cost for each joining operation (the eviction operation
has no additional communication cost) because a key is updated only when necessary.

We first describe a stateful method that explicitly records all the knowledge of evicted
nodes. This straightforward method simply applies the results in the previous section to

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 187

check for possible collusions. However, because the method needs to keep information
about all evicted nodes, the storage requirement is proportional to the number of all
evicted nodes, which is not acceptable in most applications. Later in this section, we
modify this method such that its storage requirement becomes proportional to the size
of the key tree. Both methods will eliminate collusion attacks while minimizing the
broadcast size.

A Stateful Method. For the stateful method, the key manager tracks all evicted nodes
and checks whether a joining node can collude with any previously evicted node. If a
collusion is possible, additional key updates are performed to remove the joining node’s
knowledge about past node keys such that the collusion becomes impossible. The key
manager needs to record two kinds of knowledge. First, the knowledge about future
node keys that each evicted node brings out of the group. Second, the knowledge about
past node keys that a joining member is given when it joins. For this purpose, the key
manager stores a modified key tree as follows. Each node in the OFT key tree is now
associated with a pair < tu, L >, where tu is a timestamp and L is a collection of
timestamp pairs < tx1, ty1 >, < tx2, ty2 >, . . ., < txn, tyn >.

The OFT scheme will be modified such that the timestamp tu records the time that
the current node was last updated, and each pair < txi, tyi > records the time interval in
which some evicted node knows the blinded node key of the current node. For example,
Figure 4 shows such a modified OFT tree. Due to space limitation, only the three nodes
I , L, and R have part of their timestamps shown in the figure. In the example, nodes
A, B, and D were evicted at time tA, tB , and tD, respectively. Another node C joined
at time tC . The node R was only updated once between tA and tB , and the update
happened at time t2. The node I was last updated at time t1, which is before tD (t1 is
equal to either t2 or t3). In the table attached to R, the timestamp t2 records the time of
its last update. The first pair < tA, t2 > records the fact that node A knows the value
yR[tA,t2]. The second pair < tB, − > records that B knows the value yR[tB ,−] (that is,
the value of yR from tB until now). In the table attached to I , t1 is the last update time
of I , and < tD, − > records that node D knows the value yI[tD,−]. In the table of L,
the timestamp t3 records the time of its last update.

The OFT scheme is modified as follows to update the timestamps and to stop collu-
sions when they become possible. When a node v is evicted at time t, the key manager
will also insert a pair < t, − > into each sibling node along the path of v to the root.
For example, in Figure 4 the pair < tB, − > is inserted to the table attached to node R
when node B is evicted at time tB because R is a sibling of L and L is on the path of B
to the root. After a node v joins the group, the key manager will check if v can collude
with any previously evicted node to compute any node key along the path of v to the
root. In Figure 4, after the node C joins the group, for each node on the path of C to the
root (excluding C), the key manager needs to do the following. Taken R as an exam-
ple, the key manager will check whether the intersection [t3, −] ∩ ([tA, t2] ∪ [tB, −])
is empty. If the intersection is not empty, then the node key xL will be updated, such
that C can no longer collude with A and B to compute the node key xI (in applications
where only the root’s key needs to be secure, the key manager can ignore the collusion
of a subgroup key here).

188 X. Xu et al.

t3

……
t2

<tA,t2>
<tB,- >
……

I’

C

……

……

R

R’

…… ……

……
L

……

B

D

……

A

t1

<tD,->
……

I

tA tB

tD

tC

Fig. 4. A Stateful Method for Preventing Collusion Attack

Whenever the key manager updates the node key of a node v, regardless of the reason
of this update, it will take following two additional actions. First, it will change the
corresponding timestamp tu associated with v to be the time of the current update.
Second, it will scan all pairs of timestamps associated with v and change every dash in
these pairs to the current time. The second action records the fact that the key update has
invalidated the evicted node’s knowledge about this node key. For example, in Figure 4
when the node A leaves, a pair < tA, − > is inserted into the table attached to R. Later
at time t2 the node key R is updated for some reason, and the dash in < tA, − > is
replaced by the current time t2, leading to the pair < tA, t2 > shown in the figure. This
reflects the fact that A no longer knows the new node key of R after time t2.

An Improved Method With Linear Storage Requirement. The stateful method keeps all
necessary information for checking possible collusions. This requires the key manager
to build up an infinitely increasing list of evicted nodes, which is not acceptable in most
applications. A closer look at the method reveals that it is not necessary to keep the
whole list, if no collusion is to be tolerated. Actually for each node, it suffices to only
keep at most one pair of timestamps (plus the timestamp for its last update). The storage
requirement is thus linear in the size of the key tree, because for each node at most three
timestamps need to be stored. Following two observations jointly lead to this result.

First, in Figure 4, if tA < tB < t2, then after B is evicted the list of timestamps
associated with R will be < tA, − >, < tB, − >. However, the pair < tB, − > is re-
dundant and can be removed because [tB, −] is a subset of [tA, −]. In another word,
after the first pair of timestamps with a dash appears in the list, no other pair of times-
tamps needs to be stored until the next key update happens to the current node. Second,
suppose in Figure 4 tA < t2 < tB is true, so none of < tA, − > and < tB, − > is
redundant. We then have that t2 < tB ≤ t3 (tB ≤ t3 holds, because t3 is the time when
xL is last updated and the eviction of B will update xL). Now that we know t2 < t3,
the pair < tA, t2 > can be safely removed, because the interval [tA, t2] will never have
a non-empty intersection with [t3, −].

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 189

Based on these two observations, we modify the eviction operation and key update
operation of the stateful method as follows. First, when a node v is evicted at time t and
a pair of timestamps < t, − > is to be inserted into each sibling node along the path
of v to the root, the key manager inserts this pair only if the pair of timestamps already
associated with v does not contain a dash. Second, whenever the node key of a node v
is updated, the key manager deletes any pair of timestamps associated with the sibling
of v that does not contain a dash. For example, in Figure 4 if another node in the subtree
with root R′ is evicted after tD but before I is updated, then nothing will be inserted
into the table shown in the figure. If I is updated and the dash in < tD, − > is replaced,
then this new pair will stay until the next key update in the subtree with root R′.

5 Empirical Results

This section compares the average communication overhead of our solution, the LKH
scheme, the original OFT scheme, and Ku and Chen’s modified OFT scheme. Among
the four schemes, the original OFT scheme is vulnerable to collusion attacks, and it is
included as a baseline to show the additional overhead for preventing collusion attacks.
Both our scheme and the modified OFT scheme by Ku and Chen can prevent collusion
attacks. The keys in an LKH key tree are independently chosen, so LKH is not vul-
nerable to the collusion attack discussed in previous sections. We expect our scheme
to outperform Ku and Chen’s scheme in most cases, because the latter has a quadratic
broadcast size for every eviction operation. We also expect our scheme to have a smaller
average-case broadcast size than the LKH scheme in some cases.

The communication overhead is measured as the total number of keys broadcasted
during a random sequence of joining and eviction operations. We do not consider the
unicast of keys to a new member. As discussed in previous sections, collusions depend
critically on the order of joining and eviction operations (on the other hand, the specific
time duration between these operations is not significant). Starting from an initial key
tree of G nodes, a sequence of totally N operations are performed using each of the
four schemes. The probability that each operation is the eviction of a member is P (and
that of a joining operation 1 − P). As required by the OFT scheme, the position for
each joining operation is chosen to be a leaf node closest to the root. For each eviction
operation, the node to be evicted is randomly chosen among all existing leaf nodes.

The left hand side of Figure 5 shows the total broadcast size (the number of keys
to be broadcasted) versus the size of the key tree. Totally 20000 operations are per-
formed (about half of them are evictions). As expected, the communication overhead of
our solution is much less than that of Ku and Chen’s scheme (their scheme broadcasts
about five times more keys). Compared to the original OFT scheme, our scheme only
has small additional overhead until the key tree size increases over 20000 nodes. The
broadcast size of our scheme is also smaller than LKH when the key tree size is smaller
than 40000. Table 1 shows a more detailed comparison between the two schemes.

For larger key trees, our scheme is less efficient than LKH. As shown in the second
row of Table 1, the broadcast size of our scheme is about double the size of LKH when the
key tree has 80000 or more nodes. This can be explained by the fact that more collusions
are possible in a larger tree, as shown in Table 1, and the larger height of the tree also

190 X. Xu et al.

increases the number of keys to be broadcasted upon each key update. Ku and Chen’s
scheme also has a similar trend as ours, which confirms that to prevent collusion attacks,
both modified OFT schemes are less scalable than LKH. However, because our scheme
only perform additional key updates when necessary, the broadcast size for each oper-
ation is already minimal. This indicates an inherent disadvantage of using functionally
dependent keys in the face of collusion attacks. For large groups where perfect forward
and backward security is important, the LKH scheme will be a better choice.

Table 1. Comparing Our solution to LKH

Key Tree Size 2000 5000 8000 10000 20000 40000 60000 80000 100000
Our Solution/LKH 0.59 0.60 0.62 0.70 0.84 1.08 1.61 2.19 2.24
No. of Collusions 242 1063 2113 5154 10385 18991 38417 54720 61799
Height of The Tree 10 12 12 13 14 15 15 16 16

The right hand side of Figure 5 shows the total broadcast size versus the number of
operations, with about half of the operations being evictions, on a key tree with 10000
keys. Because collusion attacks depend on the order of operations but not on the spe-
cific time durations, we can also regard the number of operations as the intensity of
operations, and Figure 5 thus also shows the broadcast size versus the degree of group
dynamics. The broadcast size of all four schemes increases with the number (inten-
sity) of operations. The original OFT scheme, the LKH scheme, and our modified OFT
scheme all scale in roughly the same manner, whereas Ku and Chen’s scheme is less
scalable. The column chart inside Figure 5 shows the total number of collusions. Inter-
estingly, while the number of collusions remains roughly the same when the number
of operations goes over 6000, Ku and Chen’s scheme still shows a significant increase
in the broadcast size, because their scheme requires additional key updates for every
eviction operation even when such operation do not cause collusion (in contrast, our
scheme scales in the same way as the original OFT).

P=0.5, N=20000

0

500000

1000000

1500000

2000000

2500000

3000000

20
00

50
00

80
00

10
00

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

G: Size of The Key Tree

T
ot

al
 B

ro
ad

ca
st

 S
iz

e

LKH OFT Ku and Chen Our Solution

G=10000, P=0.5

10000

510000

1010000

1510000

2010000

10
00

20
00

30
00

50
00

60
00

80
00

10
00

0

15
00

0

20
00

0

N: the number of operations

T
o

ta
l

B
ro

ad
ca

st
 S

iz
e

LKH OFT Ku and Chen NEW Solution

No. of Collusions

Fig. 5. The Broadcast Size Versus Key Tree Size and The Number of Operations

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 191

G=10000, N=10000

0

200000

400000

600000

800000

1000000

1200000

1400000

30% 40% 50% 60% 70%
P: the Percentage of Eviction

T
o

ta
l

B
ro

ad
ca

st
 S

iz
e

LKH OFT Ku and Chen Our Solution

G=5000, N=3000

10000

60000

110000

160000

210000

260000

310000

360000

10% 20% 30% 40% 50% 60% 70%

P: the Percentage of Eviction

T
o

ta
l

B
ro

ad
ca

st
 S

iz
e

LKH OFT Ku and Chen Our Solution

No. of Collusions

Fig. 6. The Broadcast Size Versus the Ratio of Eviction

Figure 6 shows the total broadcast size versus the ratio of evictions among all oper-
ations. The two experiments differ in the key tree size and in the total number of per-
formed operations. In both experiments, the original OFT scheme and the LKH scheme
have a constant broadcast size because in both schemes the joining and eviction re-
quire the same amount of keys to be broadcasted. The broadcast size of Ku and Chen’s
scheme increases linearly in the ratio of eviction, because their scheme requires addi-
tional key updates and hence additional broadcasted bits on every eviction operation
but not on the joining operation. Our scheme shows an interesting pattern. The broad-
cast size first increases with the eviction ratio and then decreases after the ratio reaches
about 40%. This is explained by the column chart inside the figure, which shows the
total number of collusions. Because a collusion requires both joining nodes and evicted
nodes, the total number of collusions reaches a maximal value when about half of the
operations are evictions. The maximal broadcast size shifts a little to the left (40% in-
stead of 50%) because our scheme requires additional key updates for joining nodes,
but not for evicted nodes. Each joining node thus contributes to the overall broadcast
size slightly more than an evicted node does.

6 Conclusion

We studied collusion attacks on the one-way function tree (OFT) scheme. The OFT
scheme achieves a halving in broadcast size in comparison to the LKH scheme. How-
ever, OFT’s approach of using functionally dependent keys in the key tree also renders
the scheme vulnerable to collusion attacks between evicted members and joining mem-
bers. We have generalized previous observations made by Horng and Ku et al. [16]
into a generic collusion attack on OFT. This generalization also gave a necessary and
sufficient condition for the collusion attack on OFT. Based on this condition, we have
proposed a modified OFT scheme. The scheme is immune to the collusion among an
arbitrary number of joining and evicted members, and it minimizes the broadcast size
for each operation. The scheme has a storage requirement proportional to the size of
the key tree. Experiments show that our scheme has smaller communication overhead

192 X. Xu et al.

than the LKH scheme for small to medium groups. For large groups, the increasing
number of collusions renders the OFT scheme a less efficient choice than LKH. As
future work, we will investigate cases where the compromise of some sub-group keys
is an acceptable risk. Such a relaxed security requirement will likely lead to reduced
communication overhead.

Acknowledgements. The authors are grateful to the anonymous reviewers for their
valuable comments.

References

1. D. McGrew, A. David, T. Alan, and A. Sherman, Key establishment in large dynamic groups
using one-way function trees, TIS Report 0755, TIS Labs at Network Associates, Inc., Glen-
wood, MD, 1998.

2. A.T. Sherman, D.A. McGrew, Key establishment in large dynamic groups using one-way
function trees, IEEE Transactions on Software Engineering, Volume 29, Issue 5, Pages
444-458, May 2003.

3. D.M. Balenson, D.A. McGrew, and A.T. Sherman, Key Management for Large Dy-
namic Groups: One-Way Function Trees and Amortized Initialization, InternetDraft(work
in progress), Internet Engineering Task Force, draft-irtf-smug-groupkeymgmt-oft-00.txt.,
August 2000.

4. D.M. Balenson, D.A. McGrew, and A.T. Sherman, Key Management for Large Dy-
namic Groups: One-Way Function Trees and Amortized Initialization, InternetDraft(work
in progress), Internet Engineering Task Force, draft-balenson-groupkeymgmt-oft-00.txt.,
February 1999.

5. K. Peter, A survey of multicast security issues and architectures, In Proceedings of 21st
National Information Systems Security Conference, Pages 408-420, October 1998, Arlington,
VA.

6. D. Wallner, E. Harder, R. Agee, Key Management for Multicast: Issues and Architectures,
IETF, Request for Comments (RFC) 2627, June 1999.

7. M.J. Moyer, J.R. Rao, P. Rohatgi, A survey of security issues in multicast communications,
IEEE Network, Volume 13, Issue 6, Pages 12-23, 1999.

8. R. Canetti, J. Garey, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, Multicast security:
A taxonomy and efficient constructions, In Proceedings of IEEE InfoComm’99, vol. 2, Pages
708-716, Mar. 1999.

9. H. Harney, C. Muckenhirn, and T. Rivers, Group key management protocol architecture,
IETF, RFC2093, 1997.

10. H. Khurana, R. Bonilla, A. Slagell, R. Afandi, H.S. Hahm, and J. Basney, Scalable Group
Key Management with Partially Trusted Controllers, In Proceedings of International Con-
ference on Networking, 2005.

11. W.C. Ku, S.M. Chen, An improved key management scheme for large dynamic groups
using one-way function trees, In Proceedings of 2003 International Conference on Parallel
Processing Workshops, Pages 391-396, October 2003.

12. D. Matthew, J. Moyer, J.R. Rao, and P. Rohatgi, A Survey of Security Issues in Multicast
Communications, IEEE Network Magazine, November/December 1999.

13. T. Hardjono, and L.R. Dondeti, 2003. Multicast and Group Security. Artech House, Boston,
London, ISBN 1-58053-342-6.

14. R. Canetti and B. Pinkas, A taxonomy of multicast security issues, dracanetti-secure-
multicast-taxonomy-00.txt, IETF Internet Draft (work in progress), 1998.

Preventing Collusion Attacks on the One-Way Function Tree (OFT) Scheme 193

15. H. Harney and E. Harder, Logical Key Hierarchy Protocol, Internet Draft (work in progress),
draft-harney-sparta-lkhp-sec-00.txt, Internet Engineering Task Force, Mar. 1999.

16. G. Horng, Cryptanalysis of a Key Management Scheme for Secure Multicast Communica-
tions, IEICE Trans. Commun., vol. E85-B, no. 5, Pages 1050-1051, 2002.

17. A.T. Sherman, A proof of security for the LKH and OFC centralized group keying algo-
rithms, NAI Labs Technical Report No. 02-043D, NAI Labs at Network Associates, Inc.,
2002.

18. J. Fan, P. Judge, M. Ammar, HySOR: Group Key Management with Collusion-Scalability
Tradeoffs Using a Hybrid Structuring of Receivers, In Proceedings of the IEEE International
Conference on Computer Communications Networks, Miami, 2002.

19. J.C. Lin, F. Lai, H.C. Lee, Efficient Group Key Management Protocol with One-Way Key
Derivation, In Proceedings of The 2005 IEEE Conference on Local Computer Networks,
Pages 336-343, 2005.

20. Y. Wang, J. Li, L. Tie, H. Zhu, An efficient method of group rekeying for multicast commu-
nication, In Proceedings of the 6th IEEE Circuits and Systems Symposium, Pages 273-276,
June 2004.

21. S. Xu, Z. Yang, Y. Tan, W. Liu, S. Sesay, An efficient batch rekeying scheme based on one-
way function tree, In Proceedings of The IEEE International Symposium on Communications
and Information Technology, Pages 490- 493, 2005.

22. C.K. Wong, M. Gouda, and S.S. Lam, Secure group communications using key graphs, ACM
Computer Communication Review, vol. 28, no. 4, Pages 68-79, September 1998.

	Introduction
	Related Work
	The OFT Scheme
	Examples of Collusion Attack on OFT

	Generic Collusion Attack on OFT
	Collusion Between an Evicted Node and a Joining Node
	The General Case

	A Solution for Preventing Collusion Attacks
	Empirical Results
	Conclusion

