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Abstract. Protocols for group key exchange (GKE) are cryptographic
algorithms that describe how a group of parties communicating over a
public network can come up with a common secret key. Due to their
critical role in building secure multicast channels, a number of GKE
protocols have been proposed over the years in a variety of settings.
However despite many impressive achievements, it still remains a chal-
lenging problem to design a secure GKE protocol which scales very well
for large groups. Our observation is that all constant-round authenti-
cated GKE protocols providing forward secrecy thus far are not fully
scalable, but have a computation complexity that scales only linearly in
group size. Motivated by this observation, we propose a new and the first
forward-secure authenticated GKE protocol that achieves both constant
round complexity and logarithmic computation complexity. In particu-
lar, our GKE protocol is fully scalable in all key metrics when considered
in the context of a broadcast network. The scalability of the protocol is
achieved by using a complete binary tree structure combined with a so-
called “nonce-chained authentication technique”. Besides its scalability,
our protocol features provable security against active adversaries under
the decisional Diffie-Hellman assumption. We provide a rigorous proof
of security for the protocol in a well-defined formal model of communi-
cation and adversary capabilities. The result of the current work means
that forward-secure generation of session keys even for very large groups
can be now done both securely and efficiently.

Keywords: Cryptography, group key exchange, scalability, binary tree,
nonce-chained authentication, provable security.

1 Introduction

The primary goal of cryptography is to provide a means for communicating
confidentially and with integrity over a public channel. Roughly speaking,
� This work was supported by the Korean Ministry of Information and Communica-

tion under the Information Technology Research Center (ITRC) support program
supervised by the Institute of Information Technology Assessment (IITA).

�� Corresponding author.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 158–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Constant-Round Authenticated Group Key Exchange 159

confidentiality ensures that communications and messages are kept secret be-
tween authorized parties, and integrity guarantees that any unauthorized mod-
ifications to the transferred data will be detected. In practice, these two main
security properties are best achieved with key exchange protocols which allow the
parties communicating over an insecure network to establish a common secret
key called a session key. Typically, the communicating parties, who want confi-
dentiality and integrity, first generate a session key by running an appropriate key
exchange protocol and then use this key together with standard cryptographic
algorithms for message encryption and authentication. Thus, the problem of
establishing confidential and integrity-preserving communication is commonly
reduced to the problem of getting a right protocol for session key generation.
Needless to say, a tremendous amount of research effort has been devoted to the
design and analysis of key exchange protocols in a variety of different settings
(e.g., [19,24,37,8,25] and their follow-ups).

The first priority in designing a key exchange protocol is placed on ensur-
ing the security of session keys to be established by the protocol. Even if it
is computationally infeasible to break the cryptographic algorithms used, the
whole system becomes vulnerable to all manner of attacks if the keys are not se-
curely established. But unfortunately, the experience has shown that the design
of secure key exchange protocols is notoriously difficult; there is a long history
of protocols for this domain being proposed and later found to be flawed (see
[16] for a comprehensive list of examples). Thus, key exchange protocols must
be subjected to a thorough and systematic scrutiny before they are deployed
into a public network, which might be controlled by an adversary. This concern
has prompted active research on formal models [6,7,40,5,11,15,2,28] for security
analysis of key exchange protocols, and highlighted the importance of proofs of
protocol security in a well-defined model. Although rigorously proving a proto-
col secure can often be a lengthy and complicated task, proofs are advocated
as invaluable tools for obtaining a high level of assurance in the security of key
exchange protocols [27,11,29,2,33,17].

Efficiency is another important consideration in designing key exchange pro-
tocols. In particular, it may become a critical practical issue in the group setting
where quite a large number of parties are likely to get involved in session key
generation. The efficiency of a group key exchange (GKE) protocol is typically
measured with respect to communication cost as well as computation cost in-
curred by the protocol. Three common measures for gauging the communication
cost of a protocol are (1) the round complexity, the number of rounds until the
protocol terminates, (2) the message complexity, the maximum number of mes-
sages both sent and received per user in the protocol, and (3) the bit complexity,
the maximum number of bits (i.e., the maximum combined length of messages)
both sent and received per user in the protocol. In order for a GKE protocol
to be scalable, it is desirable in many real-life applications that the protocol
be able to complete in a constant number of rounds. The computation cost of
a protocol is directly related to the computation complexity which we define
as the maximum amount of computation done by a single user in the protocol.
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By computation, we do not mean simple traverses of the identities of the
protocol participants, but mean any kinds of cryptographic operations such as
public-key and symmetric-key operations, modular arithmetic operations, hash
function evaluations, etc. Although the above definitions of various complexities
are largely based on those given in the full version of [29]1, there is a notewor-
thy difference in defining message and bit complexities. Our definitions for these
complexities counts both the sent and received traffics whereas those in the full
version of [29] considers only the sent one. We believe this modification provides
a more accurate way to measure the communication efficiency of any distributed
protocols.

Motivation. Efficient and secure generation of session keys for large groups is
a difficult problem that needs more work to solve it. The difficulty of the prob-
lem is well indicated by the fact that it took nearly two decades before we got
the first provably-authenticated GKE protocol [11] even with round complexity
O(n) in a group of size n. Still up to now, there are only a very limited num-
ber of constant-round protocols [9,29,30,21] carrying a claimed proof of security
against active adversaries in a formal model. However, all these constant-round
protocols suffer from the number of public-key operations that scales linearly in
group size, and thus exhibit O(n) computation complexity under the definition
above. These best-known protocols are categorized as key agreement protocols,
but the situation is not much different for authenticated key transport protocols
[23,35,26]. Indeed, we are unaware of any, provably secure or not, authenticated
GKE protocols achieving both constant round complexity and logarithmic com-
putation complexity. The protocols of [23,35,9,26] requires one distinct user to
perform O(n) modular exponentiations or public-key encryptions. The other pro-
tocols from [29,30,21] is all a novel extension of the protocol (i.e., protocol 3) by
Burmester and Desmedt [12], but commonly require each user to perform O(n)
signature verifications. For moderate size groups, these previous solutions are
clearly appealing. But for large groups, many applications will likely demand a
protocol whose computation complexity scales logarithmically with group size.
It is this observation that prompted the present work aimed at designing an
authenticated GKE protocol which scales very well for large groups.

Contribution. The result of this work is the first forward-secure authenticated
GKE protocol that achieves O(1) round complexity and O(log n) computation
complexity. In Tables 1 and 2, we summarize the computation and commu-
nication requirements of our protocol and other authenticated GKE protocols
[23,35,9,29].2 (By the tables, we are not arguing that one is overall superior to
another, but meant to provide an asymptotic analysis for comparing scalabil-
ity of different protocols.) Like the protocols of [23,35], our GKE protocol is
categorized as a key transport protocol. The protocol of [9]3 features optimal

1 The full version of [29] is available at http://www.cs.umd.edu/∼jkatz
2 Although the protocols from [30,21] may perform better in practice than the protocol

of [29], they fall into the same category from the computation complexity perspective.
3 We refer to [17] for a security enhancement to this protocol.
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Table 1. Computation requirements of authenticated GKE protocols

Exp Sig/Dec Ver/Enc Div Mul
Boyd-Nieto [9] O(1)/ /O(n)
Katz-Yung [29] O(1) O(1)/ O(n)/ O(1) O(n log n)

Hirose-Yoshida [23] O(n) O(n)/ O(n)/ O(n)
Mayer-Yung [35] O(1)/ O(n)/O(n)

Here O(log n) O(1)/ O(log n)/ O(1) O(log n)

Note. “Mayer-Yung [35]” refers to a-MKT with Consistency 1 of [35].
Exp: the maximum number of modular exponentiations performed per user.
Sig/Dec: the maximum numbers of signature generations and public-key decryptions performed per
user.
Ver/Enc: the maximum numbers of signature verifications and public-key encryptions performed per
user.
Div: the maximum number of modular divisions performed per user.

Mul: the maximum number of modular multiplications performed per user.

Table 2. Communication requirements of authenticated GKE protocols

Rounds Messages Bits
PtP Broadcast PtP Broadcast

Boyd-Nieto [9] 1 O(n) O(n) O(n2) O(n)
Katz-Yung [29] 3 O(n) O(n) O(n) O(n)

Hirose-Yoshida [23] 3 O(n) O(n) O(n) O(n)
Mayer-Yung [35] 4 O(n) O(n) O(n2) O(n)

Here 3 O(n) O(log n) O(n) O(log n)

Note. “Mayer-Yung [35]” refers to a-MKT with Consistency 1 of [35].
Rounds: the number of communication rounds required to complete the protocol.
Messages: the maximum number of messages both sent and received per user.
Bits: the maximum number of bits both sent and received per user.
PtP: the point-to-point network model.
Broadcast: the broadcast network model.

round complexity [4], but lacks perfect forward secrecy [20]. As Table 1 shows,
the maximum computation rate per user is bounded by O(log n) in our proto-
col, whereas this rate per user rises up to O(n) in the other protocols. Thus
from a theoretical point of view, our main contribution is to show the possibility
of achieving logarithmic computation complexity in constructing forward-secure
constant-round protocols for authenticated group key exchange. However, it is
also important from a practical viewpoint to notice that for reasonable values of
n, the actual computation in our protocol can be heavier than that in the other
protocols.

Our result can be even stronger in a broadcast network model, where each
message sent is assumed to be received by all parties in the network. In the
broadcast model, our protocol distinguishes itself from the other protocols in that
it achieves O(log n) message and bit complexities as shown in Table 2. (Recall
that both the sent and received traffics are considered for estimating message and
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bit complexities.) Thus if we assume a broadcast network, our protocol can be
regarded as the first forward-secure authenticated GKE protocol that not only
achieves O(1) round complexity but also bounds all other complexities (i.e., bit,
message, and computation complexities) by O(log n).

Furthermore, our protocol is provably secure against a powerful active ad-
versary under the decisional Diffie-Hellman assumption. We provide a rigorous
proof of security for the protocol in a refinement of the standard security model
[11,9,29,30,21]. From the standpoint of the adversary’s capabilities, our security
model is a unique combination of previous results from [11,10,2,36], which are in
turn based on earlier work of Bellare, Pointcheval, and Rogaway [5]. In partic-
ular, our model maximizes the overall attacking ability of the adversary in two
ways. Firstly, we allow the adversary to query the Test oracle as many times as
it wants [2]. Secondly, we incorporate strong corruption [5] into the model by al-
lowing the adversary to ask users to release any short-term and long-term secret
information. A detailed discussion on this is deferred to Section 2. Our security
proof of course captures important security notions of perfect forward secrecy
and known key security [18]. In addition since security is proved in the strong
corruption model, our protocol also guarantees that the release of short-term
secrets used in some sessions does not jeopardize the security of other sessions.

Tree-Based Protocols. A number of GKE protocols, including ours, have
leveraged a tree structure in order to provide better scalability. As is widely
known, the protocols of Wallner et al. [41] and Wong et al. [42] are based on a
logical tree of key encryption keys. These protocols make substantial progress
towards scalable key management in very large groups, by reducing the cost of
rekeying operations associated with group updates from O(n) to O(log n). But,
these group rekeying methods (and their many optimizations and extensions,
e.g., [39]) fail to provide (perfect) forward secrecy, requiring long-term pairwise
secure channels between a key server and all users.

The approach using logical key trees has been extended by Kim et al. [31,32]
to the forward-secure case. Their protocols require no secure channels of any kind
and offer distributed functionality. Later, Lee et al. [34] present a pairing-based
variant of the TGDH protocol of [31]. All these works [31,32,34], however, provide
no explicit treatment of key exchange for initial group formation, focusing only
on key updates upon group membership changes.

Ren et al. [38] make use of a binary key tree in their generic construction
where an authenticated GKE protocol is built upon any authenticated protocol
for two-party key exchange. Barua et al. [3] and Dutta et al. [22] construct their
protocols by combining a ternary tree structure with the one-round tripartite
protocol of Joux [25]. Back in 1994, Burmester and Desmedt [12] also proposed a
tree-based GKE protocol. This protocol (i.e., protocol 2 of [12]) seems to be the
first GKE protocol utilizing a binary tree structure, and differs from all other
protocols mentioned above in that there exists a bijective mapping between
protocol participants and tree nodes. But, this protocol, in common with other
protocols from [3,38,22], has round complexity O(log n), in contrast to O(1) in
our protocol.
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After the first version of this paper was written, we became aware that in 1996,
Burmester and Desmedt [13] presented a graph-based protocol called CKDS. The
CKDS protocol (more precisely, the multicast version of CKDS) has a potential
to achieve the same level of complexities as our protocol, in the sense that the
minimum spanning tree of the graph it used could have a height of O(log n).
But unlike our provably-authenticated protocol, this protocol assumes a passive
adversary and justifies its security on purely heuristic grounds without providing
no formal analysis of security.

2 Formal Setting

Any form of security analysis of a cryptographic construction should be preceded
by clear definitions of its security goals and tools. In this section we provide such
a preliminary formalism for group key exchange.

2.1 Communication and Adversary Model

Participants. Let U be a set of all users who are potentially interested in
participating in a group key exchange protocol. The users in any subset of U
may run the group key exchange protocol at any point in time to establish a
session key. Each user may run the protocol multiple times either serially or
concurrently, with possibly different groups of participants. Thus, at a given
time, there could be many instances of a single user. We use Ππ

i to denote the
π-th instance of user Ui. Before the protocol is executed for the first time, each
user Ui ∈ U creates a long-term public/private key pair (PKi, SKi) by running a
key generation algorithm K(1κ). All instances of a user share the public/private
keys of the user even if they participate in their respective sessions independently.
Each private key is kept secret by its owner while the public keys of all users are
publicized.

Partners. Intuitively, the partners of an instance is the set of all instances that
should compute the same session key as the instance in an execution of the
protocol. Like most of previous works, we use the notion of session IDs to de-
fine partnership between instances. Literally, a session ID (denoted as sid) is a
unique identifier of a communication session. Following [14,15,28], we assume that
session IDs are assigned and provided by some higher-level protocol. While this
assumption is unnecessary in some protocols [9,29] which use only broadcast mes-
sages (in these protocols, a session ID can readily be defined as the concatenation
of all message flows), it seems very useful in other protocols where some proto-
col messages are not broadcast and thus not all participants have the same view
of a protocol run. Supporting this assumption, Katz and Shin [28] have recently
made an interesting observation: since a user may be running many instances of
a key exchange protocol concurrently, users in practice need a means to identify
the sessions to which incoming messages belong. Therefore, in some sense, pre-
defined session IDs are implicit even in the models [11,9,29] that use a customized
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definition of session IDs. We let SID be the algorithm used by the higher-level
protocol to generate session IDs, and assume that SID is publicly available.

We also need the notion of group IDs to define partnership properly. A group
ID (denoted as gid) is a set consisting of the identities of the users who intend to
establish a session key among themselves. This notion is clearly natural because
it is impossible (not even defined) to ever execute a group key exchange protocol
without participants. Indeed, a group ID is a both necessary and important input
to any protocol execution.

In order for an instance to start to run the protocol, we require that both sid
and gid should be given as input to the instance. We use sidπ

i and gidπ
i to denote

respectively sid and gid provided to instance Ππ
i . Note that gidπ

i should always
include U itself. Session IDs and group IDs are public and hence available to the
adversary. Indeed, the adversary in our model generates these IDs on its own; it
generates a session ID by running SID and a group ID by choosing a subset of
U . However, there is an important point regarding the generation of session IDs.
Our model does not require the adversary to be honest in generating session IDs.
This means that the adversary may try to replay a session ID as many times as
necessary for its attack, but only at its own risk. In other words, the uniqueness
of a session ID is not guaranteed by the model but should be checked by users
themselves.

An instance is said to accept when it successfully computes a session key in
a protocol execution. Let accπ

i be a boolean variable that evaluates to true if
Ππ

i has accepted, and false otherwise. We say that any two instances Ππ
i and

Πω
j are partners of each other, or equivalently, partnered iff all the following

three conditions are satisfied: (1) sidπ
i = sidω

j , (2) gidπ
i = gidω

j , and (3) accπ
i =

accω
j = true. We also say that two instances Ππ

i and Πω
j are potential partners

of each other, or equivalently, potentially partnered iff the first two conditions
above hold. We use pidπ

i and ppidπ
i to denote respectively the partners and the

potential partners of the instance Ππ
i . Then it follows by the definitions that

pidπ
i ⊆ ppidπ

i .

Adversary. The adversary in our model controls all message exchanges in the
protocol and can ask participants to open up access to any secrets, either long-
term or short-term. These capabilities of the adversary are modeled via various
oracles to which the adversary is allowed to make queries. Unlike most previous
models for group key exchange, we allow the adversary to query the Test oracle
as many times as it wants4. This approach was recently suggested by Abdalla
et al. [2] for password authenticated key exchange in the three-party setting and
was also proved there to lead to a stronger model (for more details, see Lemmas 1
and 2 in Appendix B of [2]). What we found interesting is that allowing multiple
Test queries is very useful in proving Theorem 1 which claims the security of our
unauthenticated protocol against a passive adversary. We also strengthen the
model by incorporating strong corruption [5] in which the adversary is allowed

4 The model in [1] appears to be the first one for group key exchange that does not
restrict the adversary to ask only a single Test query.
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to ask user instances to release both short-term and long-term secrets. We treat
strong corruption in a different manner than [5]5, and follow [36] in that we
provide the adversary with an additional oracle called Dump which returns all
short-term secrets used by an instance. Other oracles (Execute, Send, Reveal,
and Corrupt) are as usual. In the following, we describe these relatively familiar
oracles first and then Dump and Test oracles.

– Execute(sid, gid): This query prompts an honest execution of the protocol
between a set of instances consisting of one instance for each user in gid,
where the instances are all given the session ID sid and the group ID gid
as their input. The transcript of the honest execution is returned to the
adversary as the output of the query. This models passive attacks on the
protocol.

– Send(Ππ
i , M): This query sends message M to instance Ππ

i . The instance Ππ
i

proceeds as it would in the protocol upon receiving message M ; the instance
updates its state performing any required computation, and generates and
sends out a response message as needed. The response message, if any, is the
output of this query and is returned to the adversary. This models active at-
tacks on the protocol, allowing the adversary to control at will all message
flows between instances. A query of the form Send(Ππ

i , sid‖gid) prompts Ππ
i

to initiate an execution of the protocol using session ID sid and group ID gid.
– Reveal(Ππ

i )6: This query returns to the adversary the session key held by
Ππ

i . This oracle call captures the idea that exposure of some session keys
should not affect the security of other session keys [18]. The adversary is not
allowed to ask this query if it has already queried Test(Πω

j ) for some Πω
j in

pidπ
i (see below for the description of the Test oracle).

– Corrupt(Ui): This query returns to the adversary all long-term secret infor-
mation of Ui including the private key SKi

7. This models the adversary’s
capability of breaking into a user’s machine and gaining access to the long-
term data set stored there. The adversary can issue this query at any time
regardless of whether Ui is currently executing the protocol or not. This or-
acle call captures the idea that damage due to loss of Ui’s long-term secrets
should be restricted to those sessions where Ui will participate in the future.

– Dump(Ππ
i ): This query returns all short-term secrets used in the past or

currently being used by instance Ππ
i

8. But, neither the session key computed
by Ππ

i nor any long-term secrets of Ui are not returned. This models the
adversary’s capability to embed a Trojan horse or other form of malicious

5 In the strong corruption model of [5], the Corrupt oracle returns both long-term and
short-term secrets.

6 While the Reveal oracle does not exist in the so-called ROR model of Abdalla et
al. [2], it is available to the adversary in our model and is used to enable a modular
approach in the security proof of our protocol. Anyway, allowing Reveal queries
causes no harm, but rather provides more clarity.

7 This definition of the Corrupt oracle corresponds to the so-called weak corruption
model [5].

8 This combined with the Corrupt oracle represents strong corruption.
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code into a user’s machine and then log all the session-specific information
of the victim. The adversary is not allowed to ask this query if it has already
queried Test(Πω

j ) for some Πω
j in ppidπ

i .
– Test(Ππ

i ): This query provides a means of defining security. The output of
this query depends on the hidden bit b that the Test oracle chooses uniformly
at random from {0, 1} during its initialization phase. The Test oracle returns
the real session key held by Ππ

i if b = 1, or returns a random session key
drawn from the key space if b = 0. The adversary is allowed to query the
Test oracle as many times as necessary. But, the query can be asked only
when instance Ππ

i is fresh (see Section 2.2 for the definition of freshness).
All the queries to the oracle are answered using the same value of the hidden
bit b that was chosen at the beginning. Namely, the keys returned by the
Test oracle are either all real or all random.

Remark 1. The Dump oracle is essentially similar to the Session-state reveal ora-
cle introduced in the model of Canetti and Krawczyk [14]. But as noted in [36],
there is a technical difference between these two oracles. The Session-state reveal
oracle can be queried only to obtain the internal state of an incomplete session,
whereas the Dump oracle allows the adversary to obtain the recording of local
history of an either incomplete or complete session.

Definition 1. An adversary is called active iff it is allowed to access all the
oracles described above, and called passive iff it is allowed to access all but the
Send oracle.

We represent the amount of queries used by an adversary as an ordered sequence
of six non-negative integers, Q = (qexec, qsend, qreve, qcorr, qdump, qtest), where the
six elements refer to the numbers of queries that the adversary made respectively
to its Execute, Send, Reveal, Corrupt, Dump, and Test oracles. We call this usage
of queries by an adversary the query complexity of the adversary. Note that by
Definition 1, the query complexity of a passive adversary is always represented
as a sequence of the form Q = (qexec, 0, qreve, qcorr, qdump, qtest).

2.2 Security Definition and Assumptions

Freshness. The notion of freshness is used in the definition of security to pro-
hibit the adversary from asking the Test query against an instance whose session
key (or some information about the key) can be exposed by trivial means.

Definition 2. The instance Ππ
i is considered unfresh iff any of the following

conditions hold:

1. accπ
i = false.

2. The adversary queried Corrupt(Uj) for some Uj in gidπ
i before some instance

in ppidπ
i accepts.

3. The adversary queried Dump(Πω
j ) for some Πω

j in ppidπ
i .

4. The adversary queried Reveal(Πω
j ) or Test(Πω

j ) for some Πω
j in pidπ

i .

All other instances are considered fresh.
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Remark 2. By “Test(Πω
j )” in the fourth condition of Definition 2, we require that

for each different set of partners, the adversary should access the Test oracle only
once. One may think that this restriction weakens the ability of the adversary.
However this is not the case because when all information on partnering is public,
obtaining the same data multiple times (from the instances partnered together)
is no different than obtaining it once.

Security. The security of a group key exchange protocol P against an adversary
A is defined in terms of the probability that A succeeds in distinguishing random
session keys from real session keys established by the protocol P . That is, the
adversary A is considered successful in attacking P if it breaks the semantic
security of session keys generated by P . This notion of security is defined in the
context of the following two-stage game, where the goal of adversary A is to
correctly guess the value of the hidden bit b chosen by the Test oracle.

– Stage 1: A makes any allowed oracle queries at will as many times as it
wishes.

– Stage 2: Once A decides that Stage 1 is over, it outputs a bit b′ as a guess
for the value of the hidden bit b used by the Test oracle. A wins the game if
b = b′.

In the game above, the adversary can keep querying the oracles even after it
asked some Test queries. However, when there was the query Test(Ππ

i ) asked,
the adversary is prohibited from querying Dump(Πω

j ) for some Πω
j ∈ ppidπ

i and
from querying Reveal(Πω

j ) for some Πω
j ∈ pidπ

i . This restriction reflects the fact
that the adversary can win the game unfairly by using the information obtained
via the query Dump(Πω

j ) or Reveal(Πω
j ).

Given the game above, the advantage of A in attacking the protocol P is
defined as AdvP (A) = |2 · Pr[b = b′] − 1|. Note that this definition is equivalent
to say that the advantage of A is the difference between the probabilities that
A outputs 1 in the following two experiments constituting the game: the real
experiment where all queries to the Test oracle are answered with the real session
key, and the random experiment where all Test queries are answered with a
random session key. Thus, if we denote the real and the random experiments
respectively as Expreal

P (A) and Exprand
P (A), the advantage of A can be equivalently

defined as AdvP (A) = |Pr[Expreal
P (A) = 1] − Pr[Exprand

P (A) = 1]|, where the
outcomes of the experiments is the bit output by A.

We say that the group key exchange protocol P is secure if AdvP (A) is negligi-
ble for all probabilistic polynomial time adversaries A. To quantify the security
of protocol P in terms of the amount of resources expended by adversaries,
we let AdvP (t, Q) denote the maximum value of AdvP (A) over all A with time
complexity at most t and query complexity at most Q.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic (multi-
plicative) group of prime order q. Since the order of G is prime, all the
elements of G, except 1, are generators of G. Let g be a random fixed gen-
erator of G and let x, y, z be randomly chosen elements in Z

∗
q where z �= xy.
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Informally stated, the DDH problem for G is to distinguish between the distri-
butions of (gx, gy, gxy) and (gx, gy, gz), and the DDH assumption is said to hold
in G if it is computationally infeasible to solve the DDH problem for G. More
formally, we define the advantage of D in solving the DDH problem for G as
Advddh

G (D) = |Pr[D(G, g, gx, gy, gxy) = 1] − Pr[D(G, g, gx, gy, gz) = 1]|. We say
that the DDH assumption holds in G (or equivalently, the DDH problem is hard
in G) if Advddh

G (D) is negligible for all probabilistic polynomial time algorithms
D. We denote by Advddh

G (t) the maximum value of Advddh
G (D) over all D running

in time at most t.

Signature Schemes. Let Σ = (Kgen, Sign, Vrfy) be a signature scheme,
where Kgen is the key generation algorithm, Sign is the signature generation
algorithm, and Vrfy is the signature verification algorithm. Let SuccΣ(A) de-
note the probability that A succeeds in generating an existential forgery under
adaptive chosen message attack. We say that a signature scheme Σ is secure if
SuccΣ(A) is negligible for every probabilistic polynomial time adversary A. We
use SuccΣ(t) to denote the maximum value of SuccΣ(A) over all A running in
time at most t.

3 A Scalable Protocol for Unauthenticated Group Key
Exchange

This section presents a new group key exchange protocol called SKE (Scalable
Key Exchange). Let G = {U1, U2, . . . , Un} be a set of n users wishing to establish
a session key among themselves. As stated in the Introduction, our goal is to
design a forward-secure GKE protocol with round complexity O(1) and compu-
tation complexity O(log n). Towards the goal, we arrange the users in a complete
binary tree where all the levels, except perhaps the last, are full; while on the
last level, any missing nodes are to the right of all the nodes that are present.
Fig. 1 shows an example of a complete binary tree of height 3 with 6 leaves and
6 internal nodes. Users in G are placed at nodes in a straightforward way that
Ui has U2i as its left child and U2i+1 as its right child. Let Ni denote the node
at which Ui is positioned and let Gi denote the subgroup consisting of all users
located in the subtree rooted at node Ni. Each internal node Ni is associated
with a node key ki. In the protocol, the node key ki is first generated by Ui and
then shared as the subgroup key among the users in Gi. Accordingly, k1 serves
as the group key (i.e., session key) shared by all users in G.

3.1 Description of SKE

In describing the protocol, we assume that the following public information has
been fixed in advance and is known to all parties in the network: (1) the structure
of the tree and the users’ positions within the tree, (2) a cyclic multiplicative
group G of prime order q, where the DDH assumption holds, and a generator g
of G, and (3) a function I mapping elements of G to elements of Zq. A standard
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2

Fig. 1. A complete binary tree for G = {U1, . . . , U12}

way of generating G where the DDH assumption is assumed to hold is to choose
two primes p, q such that p = kq +1 for some small k ∈ N (e.g., k = 2) and let G

be the subgroup of order q in Z∗
p. For our purpose, we require that I : G → Zq

be bijective and (for any element in G) efficiently computable. Whether there
are appropriate bijections from G into Zq depends on the group G. If p is a
safe prime (i.e., p = 2q + 1), then such a bijection I can be constructed as
follows:

I(x) =

{
x if x ≤ q

p − x if q < x < p.

The protocol SKE runs in two communication rounds.

Round 1: All users, except U1 at the root, send a message to their parent as
follows:

– Each user Ui at a leaf node chooses a random ri ∈ Zq, computes zi = gri ,
and sends M1

i = Ui‖1‖zi to its parent.
– Each user Ui at an internal node chooses two random si, ti ∈ Zq, com-

putes ki = gsiti , ri = I(ki) and zi = gri , and sends M1
i = Ui‖1‖zi to its

parent.

Meanwhile, U1 chooses two random s1, t1 ∈ Zq and computes k1 = gs1t1 .
Round 2: Each internal user Ui (including U1) sends a message to its descen-

dants (i.e., the users in Gi \ {Ui}) as follows:

1. First, Ui computes x2i = zsi

2i and y2i = kix
−1
2i . If Ui has the right child

(this is the case for all internal users, except possibly for the last one),
it also computes x2i+1 = zsi

2i+1 and y2i+1 = kix
−1
2i+1.

2. Then, Ui computes wi = gsi and sends M2
i = Ui‖2‖wi‖y2i‖y2i+1 (or

M2
i = Ui‖2‖wi‖y2i if Ui has only the left child) to its descendants.
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Key computation: Using messages from ancestors, each user Ui �= U1 com-
putes every node key kj on the path from the parent to the root as follows:

while i ≥ 2
do j ← 
i/2�

kj = yi · wri

j

if j > 1
then rj = I(kj)

i ← j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Having derived the root node key k1, all users in G simply set the session
key K equal to k1.

Consider, for example, the user U11 in Fig. 1. (For simplicity, let us exclude user
identities and sequence numbers from consideration.) U11 sends z11 = gr11 to U5
in the first round and receives w5‖y10‖y11, w2‖y4‖y5 and w1‖y2‖y3 respectively
from U5, U2 and U1 in the second round. U11 then computes, in sequence, k5 =
y11 · wr11

5 , r5 = I(k5), k2 = y5 · wr5
2 , r2 = I(k2) and k1 = y2 · wr2

1 . Finally, U11
sets its session key to k1.

It can be easily verified that the SKE protocol achieves the complexity bounds
claimed in Section 1. Notice in SKE that the users at level � perform about �
operations of any kind. This means that the maximum amount of computation
done by a user scales linearly with the height of the tree, i.e., logarithmically
with the number of users in G. Hence, the computation complexity of SKE is
O(log n) as claimed. The message and bit complexities of SKE in a broadcast
network are also O(log n), since the maximum numbers of messages and bits
both sent and received by a user increase linearly as the tree height grows. In a
point-to-point network, the message and bit complexities rise up to O(n) because
the root user has to send a same message n − 1 times. (Hereafter, for brevity
of exposition, all statements regarding message and bit complexities assume a
broadcast network.)

Of course, the SKE protocol is not authenticated, and is categorized as a
key transport protocol because the session key is generated by one user (i.e.,
U1) and then transferred to all other users. In the next section, we will show
how to convert this unauthenticated protocol into an authenticated one without
compromising the protocol’s scalability.

3.2 Security Result for Protocol SKE

The following theorem presents our result on the security of protocol SKE. It
says, roughly, that the group key exchange protocol SKE is secure against passive
adversaries under the DDH assumption for G.

Theorem 1. Let Q = (qexec, 0, qreve, qcorr, qdump, qtest). Then for any ad-
versary with time complexity at most t and query complexity at most Q, its
advantage in breaking the security of protocol SKE is upper bounded by:

AdvSKE(t, Q) ≤ qtestqexec(2�log |U|�+1 − 1)Advddh
G (t′),
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where t′ = t + O(|U|qexectSKE) and tSKE is the time required for execution of
protocol SKE by any party.

At a high level, the proof of Theorem 1 proceeds by a mathematical induction
on the height of the binary tree used in protocol SKE. Let SKEh denote the
protocol SKE but with the height of its input tree restricted to some fixed value
h > 0. Namely, SKEh is exactly the same as SKE, except that it can be run only
for those groups such that 2h ≤ n < 2h+1. Then the basis step is to show that
protocol SKE1 is secure against passive adversaries. The induction step is to
prove that for each h ≥ 1, protocol SKEh+1 is secure against passive adversaries
under the assumption of the security of protocol SKEh against passive adver-
saries. The actual proof of the theorem is omitted here due to lack of space, and
will be given in the full version of this paper.

4 A Scalable Protocol for Authenticated Group Key
Exchange

Perhaps one of the most pleasing results of research on group key exchange
is the one-round compiler presented by Katz and Yung [29] (in short, the KY
compiler). The KY compiler shows how we can transform any group key exchange
protocol secure against a passive adversary into one that is secure against an
active adversary. It certainly is elegant in its scalability, usefulness, and proven
security. The transformation itself is quite simple: it first adds an additional
round for exchanging nonces among users and then lets all the messages of
the original protocol be signed and verified with the nonces. In this section,
we convert the unauthenticated protocol SKE into the authenticated protocol
SKE+ by using a modified version of the KY compiler.

4.1 Description of SKE+

Let again G be the set of users wishing to establish a common session key.
During the initialization phase of SKE+, each user Ui ∈ G generates its long-
term verification/signing keys (PKi, SKi) by running Kgen(1κ) and makes the
verification key PKi public. Recall that each user Ui receives as input a pair of
session and group IDs (sidi, gidi) to start to run the protocol. Upon receiving
(sidi, gidi), Ui verifies that (1) sidi is currently not in use for some active instance
of it and (2) there is a bijective mapping between users in gidi and nodes of the
tree to be used. By checking the first condition, Ui is ensuring that the session
ID is unique for all its active instances. This means that as far as security is
concerned, reusing a session ID previously assigned to a closed session is legal
and thus session IDs can be erased once their corresponding sessions have ended.
If either of both conditions above is untrue, then Ui declines to participate in
the protocol run associated with (sidi, gidi). Otherwise, Ui performs the protocol
SKE+ as follows:
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Round 1: Each user Ui ∈ G chooses a random nonce φi ∈ {g0, g1, . . . , gq−1}
and sends M̃0

i = Ui‖0‖φi to its parent, sibling, descendants, and sibling’s
descendants. Let ncsi be an ordered sequence defined as follows:

ncsi =

⎧⎪⎨
⎪⎩

((Ui, φi), (U2i, φ2i), (U2i+1, φ2i+1)) if Ui has two children
((Ui, φi), (U2i, φ2i)) if Ui has only the left child
((Ui, φi)) otherwise.

Let ϕ(i) = 
i/2�. Then, after receiving all nonces (from its children, sibling,
ancestors, and ancestors’ siblings), each Ui computes the ordered sequences
ncsi, ncsϕ(i), ncsϕ(ϕ(i)), . . ., ncs1 as defined above. Notice that the maximum
number of nonces received by any single user is at most 2
logn�.

Round 2: This round proceeds like the first round of protocol SKE, except that
users have to sign their outgoing messages:
– Each user Ui �= U1 computes zi as specified in SKE and generates a

signature σ1
i = SignSKi

(Ui‖1‖ zi‖sidi‖ncsϕ(i)‖ncsϕ(ϕ(i))‖ · · · ‖ncs1). Then
Ui sends M̃1

i = Ui‖1‖zi‖σ1
i to its parent.

– The operation of U1 is exactly the same as in SKE. That is, U1 chooses
two random s1, t1 ∈ Zq and computes k1 = gs1t1 .

Round 3: All users operate as in Round 2 of SKE, but verifying the correctness
of incoming messages and signing outgoing messages. We describe this round
only for users who have both left and right children; users with left child only
behave correspondingly.
– When user Ui receives M̃1

j = Uj‖1‖zj‖σ1
j from Uj for j = 2i and j = 2i+

1, it first checks that VrfyPKj
(Uj‖1‖zj‖sidi‖ncsi‖ncsϕ(i)‖ · · · ‖ncs1, σ1

j ) =
1. If any of the verifications fail, Ui aborts the protocol without ac-
cepting (i.e., without computing a session key). Otherwise, Ui computes
x2i, y2i, x2i+1, y2i+1 and wi as in protocol SKE, generates a signature
σ2

i = SignSKi
(Ui‖2‖wi‖y2i‖y2i+1‖ sidi‖ncsi‖ncsϕ(i)‖ · · · ‖ncs1), and sends

M̃2
i = Ui‖2‖wi‖y2i‖y2i+1‖σ2

i to its descendants.
Key computation: Each user Ui �= U1, for all messages M̃2

j from its ancestors
in the tree, checks that VrfyPKj

(Uj‖2‖wj‖y2j‖y2j+1‖sidi‖ncsj‖ncsϕ(j)‖ · · · ‖
ncs1, σ2

j ) = 1. If any of the verifications fail, Ui terminates without accepting.
Otherwise, Ui derives the root node key k1 as in SKE and sets the session
key K equal to k1.

The above transformation from SKE to SKE+ requires round complexity to
be increased by a constant factor and the other (bit, message, and computation)
complexities by a factor of log n. The latter part of these increases is because
the users at (or close to) leaves additionally have to receive about 2 logn nonces
and to perform about log n signature verifications. Consequently, the asymptotic
bounds for the complexities remain unchanged between SKE and SKE+. This
unchanged scalability well explains why the KY compiler could not be directly
applicable to SKE: as soon as we invoke the KY compiler on an arbitrary GKE
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protocol, the message and bit complexities of the resulting protocol rise at least
up to O(n) because the compiler requires each user to receive nonces from all
other users.

The primary idea behind the KY compiler is to use the set of n nonces shared
by users as a unique session identifier for all time points. Based on this idea, the
KY compiler mandates the users to always include their nonce set in signing and
verifying protocol messages. In this way, not only the freshness of any exchanged
message is guaranteed but also no message can be relayed between user instances
holding different sets of nonces. It is this observation that the KY compiler
exploits to achieve provable security of the compiled protocol.

Our transformation, though similar in spirit as that by the KY compiler,
reduces the number of nonces to be received per user to the order of log n while
achieving provable security of the protocol SKE+. The two main observations
underlying this result are that: (1) at a given point of time, each pre-defined
session ID is unique for all concurrent runs of SKE+ (see Section 2.1 for the
justification of pre-defined session IDs) and (2) even with at most O(log n) nonces
per user, SKE+ is able to guarantee the freshness of the messages exchanged
among users. The first observation is clear from the description of SKE+; no
two active instances of a user possess a same session ID. The second observation
becomes quite obvious once we notice that there is a chain of nonces in SKE+: for
all 2 ≤ i ≤ n, two ordered sequences ncsi and ncsϕ(i) are linked by the common
element φi. This chain of nonces enables each user Ui to verify the freshness of
all messages from its ancestors, even when those messages are not signed with
φi. In other words, the use of the nonce chain ensures that no singed message is
replayed between two sessions even with a same session ID. We call this technique
nonce-chained authentication. These two observations, taken together, suggest
that a pre-defined session ID combined with the nonce-chained authentication
technique serves as a unique session identifier for all time points and thereby
obviates the need for each user to receive n nonces.

4.2 Security Result for Protocol SKE+

Here we claim that the group key exchange protocol SKE+ is secure against
active adversaries under the security of protocol SKE against passive adversaries.
The following theorem makes this claim precise.

Theorem 2. Let Q = (qexec, qsend, qreve, qcorr, qdump, qtest) and Q′ = (qexec +
qsend/2, 0, qreve, qcorr, qdump + qsend/2, qtest). For any adversary with time com-
plexity at most t and query complexity at most Q, its advantage in breaking the
security of protocol SKE+ is upper bounded by:

AdvSKE+(t, Q) ≤ AdvSKE(t′, Q′) + |U| · SuccΣ(t′) +
q2
send + qexecqsend

|G| ,

where t′ = t + O(|U|qexectSKE+ + qsendtSKE+) and tSKE+ is the time required for
execution of SKE+ by any party.
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Proof Idea. We can prove the theorem by finding a reduction from the security
of protocol SKE+ to the security of protocol SKE. Assuming an active adversary
A+ who attacks protocol SKE+, we construct a passive adversary A that uses
A+ in its attack on SKE. As in a typical reductionist approach, the adversary
A simply runs A+ as a subroutine and answers the oracle queries of A+ on
its own. The idea in constructing A is to use the fact that in attacking SKE+,
the adversary A+ is able to relay messages only between user instances with
the same session ID and the matching nonce sequences. Based on this idea,
the adversary A obtains a transcript T of SKE for each unique combination of
session ID and nonce sequences by calling its own Execute oracle, and generates
a transcript T+ of SKE+ by patching T with appropriate signatures. A then use
the messages of T+ in answering A+’s Send queries directed to user instances
which have the same session ID and nonce sequences as used in generating T+.
In this way, A+ is limited to sending messages already contained in T+, unless
signature forgery and nonce repetition occur. In essence, A is ensuring that A+’s
capability of attacking protocol SKE+ is demonstrated only on the session key
associated with the patched transcript T+ and thus is translated directly into
the capability of attacking protocol SKE. Due to space limitations here, we will
provide the proof of the theorem in the full version of this paper.
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