
E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 779–788, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Semantic Turkey: A Semantic Bookmarking Tool
(System Description)

Donato Griesi, Maria Teresa Pazienza, and Armando Stellato

AI Research Group, Dept. of Computer Science, Systems and Production
University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy
{griesi,pazienza,stellato}@info.uniroma2.it

Abstract. In this work we introduce Semantic Turkey, a Semantic Extension for
the popular web browser Mozilla Firefox. Semantic Turkey can be used to keep
track of relevant information from visited web sites and organize collected
content according to a personally defined ontology. Clear separation between
knowledge data (the WHAT) and web links (the WHERE) is established into
the knowledge model of the system, which allows for innovative navigation of
both the acquired information and of the pages where it has been collected. This
paper describes the architecture of the Semantic Turkey extension for Firefox,
analyzes its development, shows its most interesting features and presents our
plans for future improvements of the tool.

1 Introduction

In this work we introduce Semantic Turkey, a Semantic Extension for the popular
web browser Mozilla Firefox [3], which can be used to annotate information from
visited web sites and organize this information according to a personally defined
ontology. Semantic Turkey should not be addressed as a “Semantic Web Browser”
(whatever the nature of this term, which will probably take shape in the next future);
it is intended as a personal desktop solution for organizing and managing the relevant
information which is observed during web navigation, an advanced replacement for
the traditional “Favorites” menu, offering clear separation between knowledge data
(the WHAT) and web links (the WHERE), thus allowing for innovative navigation of
the acquired information as well as of the pages where it has been observed.

2 Motivations and Approach Followed

Our research work, funded by the FILAS (Finanziaria Laziale di Sviluppo) agency

under contract C5748-2005, has been centred on providing innovative methodologies
and instruments for browsing the web and for organizing information of interest
gathered during navigation. A specific point which emerged in our interviews inside
FILAS is the emerging great need for efficient recovery of already visited pages (and,
more in general, of already accessed knowledge): people are often exposed to large

780 D. Griesi, M.T. Pazienza, and A. Stellato

quantities of information, which are not always useful when seen for the first time,
though difficult to recover when needed. The result is that people often become
frustrated by the classical “I’ve seen it somewhere, but I don’t remember where!”
problem. We thus focused on finding interesting solutions for collecting, managing
and retrieving data observed during web navigation. Our key goal was to overcome
the limited usability of bookmarks lists, which:

− see weblinks as first class citizens. They can be categorized by implicitly adding
them to a bookmarks folder, but they are no way separated from the knowledge
they represent. More links could be related to the same subject, but there is no way
to represent this aspect, except from considering the subject as a folder itself, thus
betraying the intended equation: folder = category. Also, in some cases, it could be
important to identify the portion of a page which contains the relevant information
which caused it to be bookmarked. (e.g., “John Doe” is cited in a long web
document which is very generic and not directly related to John Doe; we would
like to take note of the page, still maintaining the focus on the real subject of our
interest and immediately recognize where it has been identified).

− do not foresee any kind of multiple categorization. Any folder cannot belong to
two or more different folders (a kind of multiple inheritance between categories),
nor can any single weblink belong (with the possible exception of new systems
adopting virtual foldering) to more than one folder (multiple instantiation).

− single knowledge resources cannot assume any kind of structure. It is not possible
to further characterize a weblink, or to relate it with other ones (except putting
them in the same folder/category).

Our project headed towards the development of a sort of “semantic notepad”1 offering
basic functionalities for:

1. capturing information from web pages, both by considering the page as a whole, as
well as by annotating portions of their text

2. editing a personal ontology for categorizing the annotated information and,
possibly, to exchange information with other people and exporting to other tools.

3. navigating the structured information as an underlying semantic net which,
populated with the many relationships which bind the annotated objects between
them, eases the process of retrieving the knowledge which was buried by the past
of time For example, a user could discover that two persons which he has kept
track of in separate sessions (by annotating their presence and some aspects of their
profiles appearing in different web pages), work in the same place, or have any
kind of connection he would not recall with any kind of traditional
bookmarking/annotation service.

4. clearly separating the business model from the user interface, by adopting a
“knowledge service” architecture. This way, the same architecture could be
exploited for an enhanced personal web browser as well as for a shared
environment for collaborative semantic tagging of web pages.

1 “Taccuino” is the italian word for the term “Notebook”. In our lab, we hate so much the silly

Italian expression “Taccuino Semantico” (Semantic Notebook) that we started to use any kind
of misspelling of its name, the funniest (and most used) of which was “Tacchino Semantico”
(Semantic Turkey). The rest is history.

 Semantic Turkey: A Semantic Bookmarking Tool 781

Fig. 1. Architecture of Semantic Turkey

3 Architecture

The architecture (Fig. 1) of Semantic Turkey consists in a web application, designed
using a three layered approach.

The first layer, the presentation layer, has been developed as an extension for the
web browser Firefox. Everything relating to user interaction is directly managed by
the Firefox extension, thanks to a solution directly integrated in the browser. This
approach has two main advantages: total reuse of the functionalities of a well
assessed, stable and complete software for web browsing, and a non invasive offer for
the user, who can still use the web browser he has been acquainted with.

782 D. Griesi, M.T. Pazienza, and A. Stellato

The second layer, the service layer, is realized through a collection of Java Web
Services, published through the Web Server “Jetty” [8]. Jetty is implemented entirely
in Java, and the architecture foresees its use as an embedded component. This means
that the Web Server and the Web Application run in the same process, without
interconnection overheads and other sort of complications. This solution also allows
for a flexible use of the tool, since it can both be adopted as a completely autonomous
web browser extension, as well as a personal access point for collaborative web
exploration and annotation: in the latter case, a centralized solution is being adopted,
in which clients communicate with the same server.

The third layer, the persistence layer, comprehends the component for managing
the ontology, which is represented in the OWL language [10]. This layer has been
realized by using Sesame [1] and the OWLIM plugin [9]. Sesame is an open source
RDF database with support for RDF Schema inference and querying. Since the
Knowledge Model of Semantic Turkey is expressed in the OWL Lite [11] dialect of
the Web Ontology Language, the OWLIM plugin has been employed to provide
OWL Lite reasoning to the Sesame component.

3.1 Architectural Layers

The following sections describe more in detail the three layers which constitute the
architecture of Semantic Turkey.

Presentation Layer. As previously mentioned, the presentation layer has been
realized as an extension to the web browser Firefox. The User Interface has been
created through a combined use of the XML User Interface Language XUL [17],
XBL [15] and Javascript language. Physically it appears as a sidebar, containing the
ontology tree, which may be shown on the left side of the window by selecting
dedicated “ontology” item added in “Tools” menu. The icons that represent the nodes
of the tree distinguish between classes and instances that belong to the ontology.

The ontology is loaded/updated through calls to the server, carried out using the
Ajax [5] technique: the data – in XML format – is thus mainly exchanged between the
two layers in an asynchronous way, to preserve good performance and to not penalize
the activity of the browser.

The extension has also another prerogative, which is not an ordinary feature of the
presentation layer: it has to assure that the web server is being loaded as an embedded
component, at the start of the browser process. To do that XPCOM [16] components,
written in JavaScript, have been developed for linking the chrome part and the Java part.

In order to load the Java component, the Simile Java Firefox Extension [12] has
been used. This component allows to load java classes or jar packages, instantiate
objects and to invoke static methods or methods of the object previously instantiated.

At the start of the browser process, after loading the java components (the java
server code and the required libraries), a static method is being invoked with the role
of instantiating the web server. This solution makes it possible to install all the
application simply as a Firefox extension, without configuring other software.

 Semantic Turkey: A Semantic Bookmarking Tool 783

Service Layer. This layer offers services which may be invoked through http requests
submitted according to the Ajax paradigm, thus enabling communication between the
client (Firefox extension) and the server. The server receives the requests coming
from the client by GET or POST http calls, carries out the operations associated to
these calls, and in case replies with an XML response. If a call implies the return of a
XHTML page, a XSLT transformation is being performed, in order to decouple the
data model with its manifestation in the presentation layer.

The majority of invocations to the server are being completed in an asynchronous
way, so that, independently from the workload that is subjected the server, the
browser can continue to respond to the user. This is a crucial issue for the usability of
the application: expensive computations blocking normal behavior of the browser
would otherwise not be tolerated by the user.

Besides supporting the communication with the client, the service layer provides
the functionalities for definition, management and treatment of the data. Several
objects are described through an ontological model (see next section), to represent
both pure conceptual knowledge as well as application required information.

Finally, the service layer also provides another important functionality linked with
the presentation layer. It allows for the capability of visiting the ontology through a
graph view, using the TouchGraph library [14]. TouchGraph is an open source tool
for visualizing networks of interrelated information. It renders networks of
information concepts as interactive graphs that lend themselves to a variety of
transformations. By engaging with the visual image, a user is able to navigate through
large networks of information and to explore different ways of arranging the
network's components on the screen. This functionality has been positively judged by
the technophores, as it allows unexpected correlations to emerge from the network of
information.

In order to access TouchGraph from presentation layer, a dedicated java applet and
related servlet have been realized. The servlet works like a proxy, redirecting the
applet loaded, with the correct parameters, to the client side.

Persistence Layer. Sesame provides the abstraction layer over ontological data. The
foundation of the component is the Storage And Inference Layer (SAIL). This SAIL
is an API that abstracts from the storage device used (in-memory storage, disk-based
storage, RDBMS) and takes care of inference.

From the architecture perspective the Access APIs are the most important
component. These APIs provide high-level access functionality to client applications,
either locally or remotely (over HTTP or RMI).

Sesame can thus be deployed as an RDF database, with persistence in an RDBMS,
or as a Java library for embedded use in applications. This last modality has been
employed for the definition of the architecture. In our case, the ontology data is, by
default, handled in memory and stored in the (local) File System, but it is possible to
easily switch to the database storage backend for managing very large ontologies.
Also, the ontology repository may be located in a different, remote, site, thus offering
different possibilities for decentralizing the application.

784 D. Griesi, M.T. Pazienza, and A. Stellato

Fig. 2. Annotating concepts from a web page and establishing relationships between them

3.2 The Knowledge Model

The knowledge model of Semantic Turkey has been structured into four different
layers of ontological knowledge:

1. The Application ontology: This ontology contains resources needed by Semantic
Turkey to organize, retrieve and present information to the user.

2. The Top Ontology (which owl:import the Application Ontology): this ontology has
originally been conceived inside our project for FILAS, and is thought for
representing a minimal knowledge which should be shared across the different
technophores. This ontology can simply be seen as a guideline for driving the
personal annotations of each of the technophores, and could be used as well as a
shared ontology for exchanging information between them.

3. The Personal/Domain Ontology (which owl:import the Top Ontology): The third
ontological layer allows for a personalized organization of the knowledge which is
extracted and collected from the web.

4. The Knowledge Base (which owl:import the Top Ontology), i.e. the set of instances
which populate the personal ontology of the user.

The Application ontology is composed of resources useful for managing the
annotation functionalities. These, among the others, include the classes:

− Annotable identifying the part of the ontology which can be annotated by the user
− URL which stores links to the visited pages

 Semantic Turkey: A Semantic Bookmarking Tool 785

− SemanticAnnotation containing the annotations performed by the user,
described by their URL, related concept etc…

and the properties:

− has_location linking URLs with Annotable concepts
− observed_lexicalization describing the form with which a given object

appeared in a specific annotation. this property has been preferred to a more
precise information, like reporting the byte offset of the annotation inside the page,
to make retrieval of the annotated object more robust with respect to minor
changes that occurred to the page over time.

The Application ontology is invisible to the user and is only exploited by the
application to get the proper logic for administering the upper ontological layers. Key
elements for the annotation process are expressed in terms of concepts from this
ontology.

Resources originated from the Top ontology are read-only, and cannot be deleted
as a consequence of any edit operation by the user. In a really general perspective, the
Top Ontology could even be left empty (i.e. if there is no supposed shared
conceptualization which must be adopted by users working on a common annotation
framework; in this case, each user can build from scratch its own conceptualization,
which will be thus constituted by the sole Personal Ontology), or external resources
could be imported, possibly exchanging their content with other applications, like a
mail browser (e.g. by adopting the FOAF ontology [4] for managing contacts) or a
client for instant messaging. The Personal Ontology is the last conceptual layer which
can be modeled according to personal preferences, perspectives and needs.

4 User Interaction

Semantic Turkey offers some basic editing operations for populating the personal
ontology with annotations from visited web sites, as well as search and navigation
functionalities which facilitate the recovery of already acquired knowledge.

4.1 Main Functionalities

The user may interact with the ontology panel to modify its personal ontology,
through a series of operations, which we describe here, organized into categories.

Interaction with the browser. These mainly include drag&drop operations which
allow to annotate information from the visited sites:

1. Drag and drop of a selection of a text from an html document displayed in the
browser, on the icon that represents a class, in order to create an individual of that
class. The selection will become the ID of the new individual and a new icon will
be shown below the selected class

2. Drag and drop of a selection of text from an html document, on the icon that
represents an individual, in order to characterize a property which that individual
owns. A specific window will open, prompting the user to choose the fitting
property. The selection will become the ID of a new individual that represents the

786 D. Griesi, M.T. Pazienza, and A. Stellato

instance of the range of the property chosen. If the selected property is an object
property, a new icon will be created relatively to the range class.

3. Drag and drop of a selection of text from an html document, on the icon that
represents an individual, in order to define a further lexicalization for that
individual. The user can choose, from the same panel described before, if the
selection characterizes a range of a property or a new observed lexicalization (see
section 3.2).

Direct Ontology Editing. These functionalities operate exclusively on the ontologies,
as it should be important for the user to integrate its knowledge with information he
would acquire through other media (communication with other people, radio, tv
etc…). These include:

1. Semantic Editing. It is possible to create, modify and/or delete new
classes/individuals/properties. All the operations are being carried out through
specific panels that are activated by a context menu associated to the nodes of the
tree, in a way much similar to traditional ontology editing tools, like Protégé [6] or
TopBraid Composer [13]. By offering complete interaction with the ontology via
the XUL interface (instead of an HTML interface, like in Piggy-Bank), the user is
not diverted from his current navigation (i.e. the main browser panel is still focused
on the visited web page, which would otherwise be replaced by the HTML UI) and
may maintain its attention over the observed web page.

Fig. 3. Semantic Navigation: recalling ontology and web links for “Armando Stellato”

 Semantic Turkey: A Semantic Bookmarking Tool 787

2. Lexical Editing. Add synonyms and documentation for the concepts. These
alternative lexicalization provide several anchors for referring the same ontological
entries. This solution facilitates retrieval of knowledge objects when the ontology
reaches a considerable growth, or simply when its knowledge is transferred to
other users. Advanced search functionalities over the ontology objects and their
lexicalizations in different languages, have been made available thanks to an
embedded indexing engine [7] and the adoption of a library implementing different
string matching algorithms [2].

Semantic Navigation. As an additional feature, the user may graphically explore the
ontology (Fig. 3), thanks to the SemanticNavigation component. A Java applet will be
loaded on a new tab of the browser displaying the graph view of the ontology,
allowing the user to navigate its content and get back to the pages related to the
annotated knowledge. Conversely, Semantic Turkey reports to the user, through a
dedicated status bar, the pages which have been previously annotated. When the user
visits an already annotated page, an icon with the shape of a pencil is being shown in
the lower part of the browser. If the icon is being clicked, the html text entries that
represent the past annotations will be emphasized (providing the page still contains
those entries) with a light background color.

5 Conclusions

In this paper Semantic Turkey, a special environment for supporting end users in
annotating information caught from visited web sites, has been described.

Main objective of our first experience in developing Semantic Turkey has been to
extend “usual” web browsing modalities, with a particular focus on efficient and
intuitive retrieval of information already observed during past navigation. A key
characteristic of this approach has been to separate the role of site bookmarking from
the more complex aspect of knowledge management and, at the same time, to
interweave both of them in a homogeneous perspective over the two dimensions of
the Web: traditionally exposed documents and the new web of data fostered by the
Semantic Web. We are now in the direction of refining the overall architecture to
meet more general requirements which would make Semantic Turkey an open and
reusable platform. In particular, the multilayered approach in the knowledge model
must be flexible enough to allow the user to import and reuse any number of available
ontologies, while an extension mechanism should make it easy to produce specific
add-ons for adding new functionalities to the browser. The flexibility offered by the
client-server paradigm in the overall architecture should also be exploited to offer the
possibility of performing and handling concurrent accesses to remote ontology
repositories, effectively transforming the system in a client front-end for collaborative
ontology management.

Acknowledgements

Our research work on Semantic Turkey has been funded by the FILAS (Finanziaria
Laziale di Sviluppo) agency under contract C5748-2005.

788 D. Griesi, M.T. Pazienza, and A. Stellato

References

1. J. Broekstra, A. Kampman & F.v. Harmelen I. Horrocks & J. Hendler (ed.) Sesame: “A
Generic Architecture for Storing and Querying RDF and RDF Schema”. Springer Verlag,
Proceedings of the First International Semantic Web Conference, Sardinia, Italy, pages 54-
68, July 2002

2. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Proceedings of the IJCAI-2003.

3. Firefox home page: http://www.mozilla.com/en-US/firefox/
4. Friend Of A Friend Ontology (FOAF): http://xmlns.com/foaf/0.1/
5. J.J. Garrett. “Ajax: A New Approach to Web Applications”. Feb. 18, 2005

http://www.adaptivepath.com/publications/essays/archives/000385.php
6. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and S.

Tu. The evolution of Protégé-2000: An environment for knowledge-based systems
development. International Journal of Human-Computer Studies, 58(1):89–123, 2003

7. Erik Hatcher and Otis Gospodnetić. Lucene in Action. Manning ed. 456 pages. 2004.
ISBN: 1932394281

8. Jetty Java HTTP Servlet Server. http://jetty.mortbay.org/jetty/.
9. Kiryakov, D. Ognyanov & D. Manov OWLIM – a Pragmatic Semantic Repository for

OWL. In Proc. of Int. Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS 2005), WISE 2005, New York City, USA, 20 November 2005

10. Web Ontology Language: http://www.w3.org/TR/owl-features/
11. OWL Lite Description: http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3
12. Simile Java Firefox Extension: http://simile.mit.edu/java-firefox-extension/
13. TopBraid Composer: http://topbraidcomposer.info/
14. Touchgraph Development Page: http://touchgraph.sourceforge.net/
15. Extensible Binding Language: http://www.mozilla.org/projects/xbl/xbl.html
16. XPCOM. http://www.mozilla.org/projects/xpcom/
17. XML User Interface Language (XUL) Project. http://www.mozilla.org/projects/xul/

	Introduction
	Motivations and Approach Followed
	Architecture
	Architectural Layers
	The Knowledge Model

	User Interaction
	Main Functionalities

	Conclusions
	References

