
E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 145–159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPARQLeR: Extended Sparql for Semantic
Association Discovery*

Krys J. Kochut and Maciej Janik

Department of Computer Science, University of Georgia
415 Boyd Graduate Studies Research Center

Athens, GA 30602-7404
{kochut,janik}@cs.uga.edu

Abstract. Complex relationships, frequently referred to as semantic associa-
tions, are the essence of the Semantic Web. Query and retrieval of semantic
associations has been an important task in many analytical and scientific
activities, such as detecting money laundering and querying for metabolic
pathways in biochemistry. We believe that support for semantic path queries
should be an integral component of RDF query languages. In this paper, we
present SPARQLeR, a novel extension of the SPARQL query language which
adds the support for semantic path queries. The proposed extension fits
seamlessly within the overall syntax and semantics of SPARQL and allows easy
and natural formulation of queries involving a wide variety of regular path
patterns in RDF graphs. SPARQLeR's path patterns can capture many low-level
details of the queried associations. We also present an implementation of
SPARQLeR and its initial performance results. Our implementation is built
over BRAHMS, our own RDF storage system.

1 Introduction

The size of ontologies in the Semantic Web has grown significantly within the last
few years. The vision of ontologies containing millions of entities interconnected by
meaningful relationships presented in [22] has become reality. The current query
languages for RDF bases, such as SPARQL [24], RQL [14] and RDQL [21], support
defining graph patterns and expressing various restrictions on entities and
relationships participating in the defined patterns. However, all of them lack the
necessary constructs that directly support the discovery of semantic associations,
which cannot be explicitly defined by fully specified structure of a graph pattern.

We believe that querying for semantic associations is an important feature missing
in the current RDF query languages, most notably in SPARQL. This paper presents
SPARQLeR, a novel extension of SPARQL that enables the discovery of semantic
associations among entities in RDF knowledge bases.

Semantic association is an undirected path that connects two entities in the
knowledge base using named relationships, which represent its meaning. Discovery of

* This research has been partially supported by the National Science Foundation Grant No. IIS-

0325464 entitled “SemDIS: Discovering Complex Relationships in the Semantic Web”.

146 K.J. Kochut and M. Janik

semantic associations is the process of finding paths of possibly unknown length that
connect the given entities and have a specific semantics. Therefore, the search for
paths must focus on the semantics of both the entities and the properties on the path.
Moreover, the order of the relationships in the path and their directionality is crucial
in expressing the semantics of the associations. To fulfill these requirements
SPARQLeR uses regular expressions over properties for specifying the required
semantics of the queried paths. The paths are treated as RDF meta-resources
represented as sequences. They can be used in other patters, specifying the required
properties of the individual path elements. This approach gives the user a detailed
control over each of the elements on the path, as well as its overall semantics.

The paper is organized as follows. In Sec. 2, we give a motivation for adding
semantic association discovery in RDF query languages. In Sec. 3, we discuss semantic
associations and different types of paths in RDF bases. Sec. 4 introduces the concept of
a path in SPARQLeR, shows the syntax and semantics of the language, and describes
its prototype implementation. In Sec. 5, we discuss the initial performance results of
our implementation.

2 Motivation

An important discovery in medicine made by Dr. D.R. Swanson of a dependency
between Magnesium and Migraine [25] is a clear example of finding meaningful
semantic associations. He manually searched through papers in PubMed [17] to
establish a sequence of facts, supported by co-occurrence of significant terms in
papers, that Magnesium may alleviate Migraine. With the suitable biomedical
knowledge base extracted from PubMed and stored in RDF, as proposed in [19],
finding such associations can be accomplished with the use of regular path queries.

Many interesting examples of semantic associations can be found in biological
sciences. Metabolic pathways, composed of sequences of chemical reactions occurring
within a cell, involve a gradual modification of the initial substance into the final
product with the desired chemical structure.

N-Glycan Biosynthesis pathway [12] is an example of a well known metabolic
pathway (presented later in Fig. 5). It starts from dolichol phosphate and ends with
the production of glyco peptide G00009. It contains 15 chemical reactions and, even
though this pathway may not be regarded as very long among the biochemical
pathways, it is considered long for a path in the area of the Semantic Web.

Locating and retrieving metabolic pathways is a difficult problem. Regular path
queries can be used searching for metabolic pathways. Using such queries, scientists
should be able to query for and retrieve ordered sequences of specific reactions that
lead from a given substance to a desired final product.

Additional interesting applications of semantic association discovery include
BioPatentMiner [16] and Insider Threat [1]. We believe that there is a clear need for
an RDF query language capable of semantic association retrieval.

Introduced in this paper SPARQLeR offers a variety of constructs for easy
formulation of regular path queries which are suitable for solving the above problems.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 147

3 Background

Path queries have been a focus of formal studies as well as practical applications. The
complexity of finding regular paths in graphs was investigated in [15] and [7]. The
authors showed that in general case finding all simple paths matching a given regular
expression is NP-Complete, whereas in special cases it can be tractable. The
complexity of various types of path queries, such as linear, regular and context-free
was also described in [27]. Another approach was proposed in [6]. Here, the authors
focused on finding paths in labeled graphs. In this case, a regular language is defined
beforehand and a special index is maintained for all edge inserts and deletes.

Some of the query languages created for semi-structured databases support
defining regular path queries. Among the well known languages are: G [10] and G+
[9], and Graphlog [8]. The relationship between the chain programs with recursive
predicates and regular path queries is described in [4]. For RDF data, partial support
for path queries, but not regular paths, can be found in SeRQL [5], TRIPLE [23], and
Versa [18]. Versa introduced the traverse keyword which allowed querying for
variable-length paths using a set of specified transitive properties. In [2], the authors
present only the initial work on PSPARQL, a language supporting regular expressions
in SPARQL. However, the regular expressions were to be used in place of properties
in triple patterns, which limited the ability of testing individual path elements. It also
significantly altered the syntax of SPARQL.

3.1 Semantic Associations in RDF Description Bases

Paths in RDF description bases represent a variety of explicit and implied semantic
relationships among the participating resources (entities). This is based on the
assumption that entities are semantically related if there exists a path connecting
them. In [3], Anayawu and Sheth proposed a ρ-path (and related concepts) as a way of
expressing semantic associations between entities in RDF bases. A ρ-path has been
defined as a directed path connecting two entities.

While directed paths naturally capture semantic associations between entities, we
also believe that undirected paths also capture important semantic associations which
should not be ignored. Therefore, we view semantic associations as implied by the
presence of either directed, undirected paths, or undirected paths with specific
directionality of the included properties. A good illustration of this observation is an
RDF graph, shown in Fig. 1, describing a part of a well known Glycan biosynthesis
pathway (we discuss it further later in this paper). The shown fragment includes 3
reactions, represented by the entities R05972, R05973, and R06238 and 4 glycans
(G00002-G00005) as their reactants and products. For clarity of presentation, other
properties have not been included in the shown graph.

The glycan G00002 is a predecessor of G00005. Clearly, they are semantically
associated, even though there is no directed path connecting them. In fact, the whole
pathway links the starting substance, dolichol phosphate, and the final product,
peptide G00009, using a sequence of reactions similar to the ones above. Again,
a directed path connecting dolichol phosphate, and peptide G00009 does not exist, but
the two molecules are semantically related by this important pathway.

148 K.J. Kochut and M. Janik

Fig. 1. An example of a chemical reaction graph

Below, we define semantic associations taking into account any type of connection
between two entities. In what follows, we will interchangeably use the terms triple
and RDF statement. We will assume that R is an RDF description base.

Def. 1. A directed path between resources r0 and rn in R is a sequence r0 p1 r1 p2 r2 ,
… pn-1 rn-1 pn rn (n>0) if r0 p1 r1, r1 p2 r2 , … rn-2 pn-1 rn-1, rn-1 pn rn (n>0) are triples
in R. The length of the path is n. Moreover, we require that all of the resources ri (0 ≤
i ≤ n) in the path be distinct (we will only consider simple paths).

Def. 2. An undirected path between the resources r0 and rn in R is a sequence r0 p1 r1
p2 r2 , … pn-1 rn-1 pn rn (n>0) if for each property and the two neighboring resources
ri-1 pi ri (0 < i ≤ n) in the path, either ri-1 pi ri . or ri pi ri-1 . is a triple in R. We will
consider only simple undirected paths.

Def. 3. Two resources r and s in R are semantically associated if there exists an
undirected path in R connecting the two resources.

3.2 Defined Directionality Paths

While searching for semantic associations between two given entities we may be
interested in paths in which properties follow a specific defined directionality pattern,
according to the desired semantics of the connection between the entities. Creating
such patterns requires an inverse property operator, not present in SPARQL. In
SPARQLeR, we will use the ‘−’ (minus) character to denote the inverse of a property.

Spatial relationships, such as A is inside B, offer illustrative examples for defined
directionality paths. Let us consider the following three path queries with regular
patterns (SPARQLeR’s path patterns are defined later, in section 4.2):

1. spatial:inside* - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2a.

2. spatial:inside* - when used in a search for undirected paths, it locates semantic
associations illustrated by diagrams shown in Fig. 2a, 2b and 2c.

3. (spatial:inside −spatial:inside)* [read as: concatenation of inside with inverse
of inside] - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2c, showing very specific,
a chain-like inclusion structure.

Following the above observation, we believe that semantic associations require more
than directed or undirected paths and should be treated as defined directionality paths.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 149

Fig. 2. Example results of spatial path queries

From a graph theoretical perspective, a path that matches a defined directionality
pattern is an undirected path, and its implied semantics is set by the specific
directionality of its member properties.

4 SPARQLeR

SPARQLeR (SPARQL extended with Regular paths) is an extension of SPARQL
designed for querying for semantic associations. Our intension was to introduce
minimal changes to SPARQL’s syntax and semantics. Querying in SPARQLeR
focuses on building path patterns involving undirected and directed paths as well as
paths with defined directionality of the participating properties. Note, that since all
properties have their inverses, the expressiveness of directed path queries is sufficient,
as it enables us to construct undirected path patterns with the use of properties and
their inverses. Nevertheless, to simplify the creation of path patterns, undirected path
patterns are also supported. Syntax of proposed extensions fit seamlessly into current
SPARQL language grammar. The new constructs in SPARQLeR are designed for the
discovery of the semantic associations and, in particular, allow the user to:

− search for undirected paths or for paths with specific directionality of properties,
− filter located paths with the use of regular expressions formed over properties

included in the path (use of inverse properties is also allowed),
− filter located paths by imposing constraints on the length of paths,
− filter located paths by requiring the presence of specific resources on the path,

possibly even at a specific position,
− specify if located paths can include instance entities, schema classes and/or literals,
− indicate if the hierarchy of sub-properties should be used in property matching.

4.1 Path as RDF Meta-resource and Path Patterns

We will treat paths in RDF description bases as RDF meta-resources. In order to
place these new meta-resources within the RDF vocabulary, we have created a new
class Path defined in the new vocabulary rdf-meta-schema. The class Path has been
defined as the sub-class of both rdf:Property and rdf:Seq as follows:
<rdf:Class rdf:about="http://meta.org/rdf-meta-schema#Path">
 <rdfs:isDefinedBy rdf:resource="http://meta.org/rdf-meta-schema#"/>
 <rdfs:subClassOf
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
 <rdfs:subClassOf
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>
 <rdfs:label>Path</rdfs:label>

<rdfs:comment>The class of RDFMS paths.</rdfs:comment>
</rdf:Class>

150 K.J. Kochut and M. Janik

According to the above definition, a resource of type Path is a sequence of other
RDF resources. The sequence is composed of an ordered list of properties and
connecting resources, as defined in Def. 2, but without the starting and ending
resources, i.e. a path begins and ends with a property.

Having a path represented as a meta-resource of type rdfs:Seq, allows us to create
patterns for inspecting the path elements with the use of the properties rdf:Member,
and rdf:_N, which will be illustrated later in this paper.

A semantic association path between two resources r and s in an RDF graph forms
a natural extension of a regular RDF property connecting the two resources. As such,
the two resources and the path can be regarded as a meta-triple of the form r path s,
where path is a meta-resource of type Path.

4.2 Path Patterns

We have extended SPARQL’s triple patterns to include path patterns. Paths can be
matched only by path variables. A path variable is a name beginning with the %
character, for example %connection. A path pattern is a triple pattern created with the
use of a path variable in place of the property. A path query is any SPARQL query
involving at least one path pattern. Instead of formally defining SPARQLeR’s syntax,
we will present a number of examples illustrating path patterns.

The following SELECT path query, involving a two-source path pattern

SELECT %path WHERE {<r> %path <s>}

matches any path between the resources r and s. By default, the matched paths must
be directed. As expected, for every matched path, the variable %path is bound to the
located path, represented as a sequence (rdf:Seq) of properties and the connecting
resources (the first and last elements of the sequence are properties). Therefore, the
above query returns a list of blank nodes representing the matched paths (sequences).

In order to list the resources on each matched path, the list operator (applicable
only to the path variables) must be applied to the path variable, as shown below:

SELECT list(%path) WHERE {<r> %path <s>}

Path patterns allow for searching for any resources reachable from a given one. The
following single source SELECT query locates resources reachable from resource r:

SELECT %path, ?res WHERE {<r> %path ?res}

For every match, the reached resource is bound by the variable ?res, and both the
path leading to it and the resource are returned by the query. The analogous form of
the above query relies on the inverse path pattern of the form {?res %path <r>}. This
pattern matches all resources (and paths) from which the resource r is reachable.

Since a matched path is a meta-resource of type Path, and therefore also of type
rdf:Seq, resources on the path may be examined with the use of patterns involving the
container membership properties. For example, the following query:

SELECT %path WHERE
{<r> %path <s> . %path rdfs:Member <e>}

 SPARQLeR: Extended Sparql for Semantic Association Discovery 151

matches any semantic path between the resources r and s, provided the path includes
the resource e. Even though it involves a path variable, the second triple is not a path
triple, since the path variable is not used in place of the property. Similarly, we can
formulate queries examining resources at specific positions on the path. For example,
the following query:

SELECT %path WHERE {<r> %path <s> . %path rdfs:_1 <p>}

matches any semantic path between the resources r and s, provided the path begins
with the property p (a SPARQLeR path always begins with a property). Similarly, the
property rdfs:_2 can be used to examine the first connecting resource on the path. In
addition, two meta-properties rdfms:entityResource and rdfms:propertyResource (not
described here) access the connecting resources and relationships, respectively (rdfms
is the namespace prefix of the meta-schema, discussed in Sec. 4.1).

Path patterns may be also used in construct, describe and ask queries. As expected,
a path variable used in a CONSTRUCT query returns all triples forming the paths
matched by the querie’s graph pattern. For example, the query

CONSTRUCT {<r> %path <s>} WHERE {<r> %path <s>}

returns all triples forming all paths between the resources r and s. The list operator
cannot be used within the CONSTRUCT expression.

It is interesting to note that CONSTRUCT queries can be used to extract
interesting sub-graphs, satisfying certain specific semantic properties. Combination of
multiple path queries with use of CONSTRUCT, possibly with common intersecting
points, may lead to creating semantically highly informative sub-graphs [20].

The ASK query functionality for path patters is defined as testing for existence of
at least one specified path. The DESCRIBE query returns the description of all
resources included in the found paths. DESCRIBE and ASK queries have not been
included yet in presented implementation.

4.3 Testing Paths

Testing of the located paths can be performed with the use of special expressions used
within the FILTER clause. A path can be tested if it matches a given regular
expressions, or if its length is within certain bounds.
The regex operator in SPARQLeR has been extended to specify regular path
expression filters. Syntactically, it is identical to the usual regex operator, but the first
argument must be a path variable. The second argument must be a path expression,
while the optional third argument specifies the path matching flags:

regex(pathvar, pathexpr, pathflags)

The path expressions can be formed with the use of property names, their inverses,
classes of properties, and the usual collection of regular expression operators. They
are intended to specify the semantics of the path between a pair of resources.

Def. 4. SPARQLeR’s path expressions are defined recursively as follows (p, p1,
p2,…, and pn denote property names, while x and y denote path expressions). We also
define paths between resources r and s which are matched by the defined path
expressions.

152 K.J. Kochut and M. Janik

• p matches a path between r and s of length 1 if a triple r p s exists;
• -p (the inverse of p) matches a path between r and s of length 1 if a triple s p r

exists;
• [p1 p2 … pn] (class of properties) matches a path between r and s of length 1 if a

triple r pi s exists for some i (1≤i≤n);
• -[p1 p2 … pn] matches a path between r and s of length 1 if a triple s pi r exists for

some i (1≤i≤n); inverse operator is not allowed for properties inside the set;
• [^p1 p2 … pn] matches a path between r and s of length 1 if a triple r p s exists and

p ≠ pi (1≤i≤n);
• -[^p1 p2 … pn] matches a path between r and s of length 1 if a triple s p r exists and

p ≠ pi (1≤i≤n); inverse operator is not allowed for properties inside the set;
• . (wildcard) matches a path between r and s of length 1 if either triple r p s or s p r

exists for some property p;
• also supported: x | y (alternative); xy (concatenation); x* (Kleene star);

 x+ (one or more repetition); (x) (match a path matched by x).

For example, the following query matches paths between resources r and s that use
only property foo:prop:

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(regex(%path,”foo:prop+”)}

In order to keep the size of the path expressions manageable, only the prefix-
abbreviated names of properties are allowed. The type of the located path (directed or
undirected) can be requested as part of the regex expression and is indicated in the
(optional) path flags of the regex expression. For example, the query

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(regex(%path,”(foo:prop|foo:rel)+”,”u”)}

allows the matched path to be undirected. When the path directionality is left
unspecified, the path is assumed to be directed (the flag “d” is assumed). Also, the
path expression may be omitted, as in regex(%path,,”u”). Here, each path bound to
variable %path may be undirected and be composed of arbitrary properties. A regex
with no path expression is equivalent to regex(%path,”.*”,”u”). Note, that
regex(%path,”.*”) matches only directed paths, even though the wildcard expression
(.) matches both a property and its inverse.

The other path flags include i, s, l, and h. The flags i, s, and l specify that the path is
restricted to resources which are instances (entities), schema classes, and literals,
respectively. The last flag, h (hierarchy), indicates that when matching
properties,additionally their ancestor properties (following the subPropertyOf property)
may be used. The path flags may be combined. For example,

regex(%path,”.*foo:prop.*”,”uis”)

specifies that the path must involve property foo:prop, may be undirected, and can
only involve connecting resources which are instances or schema classes. The default
path flags string is ”di”.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 153

The new length operator returns the length of the path and can be used as part of
a FILTER expression. For example,

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(length(%path)<5)}

restricts the matched paths to be of length less than 5. Due to implementation
optimization, the length of a path may be compared only to constant values. Path
filtering expressions may be combined, and mixed with any other filter tests,
involving other variables and resources. As discussed in Sec. 0, the located paths may
not be required to be fully directed, but with a specified directionality of individual
properties. This may be requested by a suitable path expression, as in the following
select query:

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(length(%path)<=6 && length(%path)>=4 &&
 regex(%path,”(foo:prop -foo:rel)+”)}

which requires that the matched paths be composed of sequences of pairs of
properties: foo:prop followed by the inverse of the property foo:rel.

4.4 Prototype Implementation of SPARQLeR

Our implementation of SPARQLeR uses BRAHMS, our own RDF storage system
[13]. The implementation relies on BRAHMS’s low level API to iterate over triples,
depending on whether the subject, property, object, or their combination has already
been fixed (by bound variables or explicit resources). The graph pattern included in a
SPARQL query is converted into a composition of such iterators, according to a
created query plan.

The path iterator, necessary for path pattern matching, has been implemented as a
hybrid of a bidirectional breadth-first search and a simulation of a deterministic
finite automaton (DFA) created for a given path expression. During our previous
experiments [13], a bidirectional breadth first search proved to be the most efficient
method in practice for finding all simple paths up to certain hop limit. For each
instance of the iterator created for a path pattern, two DFAs are constructed. The first
one accepts the regular language defined by the original path expression, while the
second one accepts the reversed language, which is also regular. The path search
uses the steps from the bidirectional BFS to grow the frontiers of entities used to
connect paths. Before an entity is placed on the frontier for the next expansion, a
check is performed if the partial path leading to it is not rejected by the appropriate
DFA. This guarantees that the partial results, which are not accepted by DFA, will
not be further expanded. Making this check for each node before adding it to a
frontier causes the frontiers to grow very slowly for some regular expressions. From

154 K.J. Kochut and M. Janik

the practical point of view, it significantly increases the possibility of finding longer
paths in an acceptable amount of time and of not exhausting the memory used by the
search.

Fig. 3. Path finding and sub-paths in breadth-first search

A candidate path is located when an entity from the forward frontier matches an
entity from the reverse frontier. At this point, it is only known that the "forward" sub-
path has not been rejected by the forward DFA and that the "reverse" sub-path has not
been rejected by the DFA accepting the reverse language. Before the concatenated
path is returned, it must be accepted by the forward DFA, created from the original
path expression.

A similar solution is used for single source path patterns. In this case, only one
DFA in conjunction with a standard breadth first search is used to grow a single
frontier of entities.

5 Experiment Design and Results

We have tested our implementation of SPARQLeR using a collection of path queries
against a modified DBLP dataset [11]. We also performed path queries locating
metabolic pathways in the Glycomics domain, using the GlycO ontology [26].

Tests were performed on machine with 2 Intel(R) Xeon(TM) 3.06GHz CPUs and
4Gb memory, running Red Hat 9.0 Enterprise Linux. C/C++ code was compiled using
gcc (GCC) 3.2.3 20030502 (Red Hat Linux 3.2.3-56) with ‘–O6’ optimization flag.

5.1 Data Sets

In our searching for metabolic pathways, we used the GlycO ontology. It represents
information about glycans and includes a comprehensive schema as well as instances.
GlycO is still under development and many new instances representing theoretical as
well as experimental data are being added. Currently, the ontology has 362 classes
(mainly glycans classification taxonomy) and 84 specialized properties.

Our scalability experiments required a much bigger data set. For this purpose we
used a modified version of the DBLP ontology generated from the data available in
September, 2006. It contains information about authors, published papers, articles,
year of publication, etc. Unfortunately, the citations have been assigned to very few
documents, rendering this set unsuitable for scalability test purposes. To be able to
search for long, meaningful paths, we have replaced the current (few) citations with a

 SPARQLeR: Extended Sparql for Semantic Association Discovery 155

list of randomly created citations (1 to 10 random citations to papers selected from all
of the previous years in the knowledge base, using a normal distribution). The total
number of randomly inserted citations in the full dataset reached almost 4.3 million.

The full DBLP dataset contains 790,635 publications with set publish year. For
scalability testing, we used a subset of publications published in or after 1981. It
contains 760,369 publications and has been subdivided it into 26 subsets, each one
including publications from an increasingly wider time range, starting with 2006 and
ending with 1981 (the smallest set included only 2006 publications and the largest one
included publications from years 1981-2006). The smallest test dataset contained
almost 300,000 instance statements, while the largest one had over 6.6M instance
statements. Fig. 4 presents numbers of publications in full DBLP (starting from year
1936) and sizes of used test datasets in statements.

Fig. 4. Number of publications in DBLP from year 1936 and sizes of used test datasets

5.2 Functionality Test in the Biomedical Domain

We have tested the functionality of SPARLQeR on a wide selection of path queries,
executed against a number of RDF bases. Due to the space limitations here, we will

Fig. 5. N-Glycan biosynthesis pathway with query start and end points (courtesy of Dr. Alison
Vandersall-Nairn, University of Georgia)

156 K.J. Kochut and M. Janik

only discuss a particularly representative query in the biochemistry domain, retrieving
a major part of the well known N-Glycan biosynthesis pathway [12]. The pathway is
shown in Fig. 5 on the next page, where each arrow represents one reaction. The
pathway is represented in GlycO, with the reactions represented as illustrated by the
RDF graph in Fig 1.

We chose this pathway for its high regularity and a significant length. It enabled us
to test if specifying paths using path expressions would help to find long, semantically
relevant paths within an acceptable time. For this test we used the GlycO ontology
and the SPARQLeR query used is presented below.

SELECT list(%path) WHERE {
 glyco:dolichol_phosphate %path glyco:glyco_peptide_G00009 .
 %path rdfs:member enzyo:R05969
 FILTER (length(%path) <= 30 &&
 regex(%path, "((-glyco:has_acceptor_substrate|
 -glyco:has_reactant) glyco:has_product)*")) }

This query located a pathway of length 30, consisting of 15 reactions. It starts with
dolichol phosphate, goes through the reaction R05969 (one of two possible at this
step) and ends at glyco peptide G00009. Despite of the significant length, the result
was retuned almost instantly, due to the high selectivity of path expressions. This
proof of concept test demonstrated usefulness of the proposed SPARQL extension.

5.3 Scalability Tests on Modified DBLP Datasets

For the scalability tests, we randomly chose 14 papers published in 2006 and executed
single-source queries to find all paths leading to papers they cited, using the relation
cites_publication. A sample SPARQLeR query in presented below:

PREFIX opus: <http://lsdis.cs.uga.edu/projects/semdis/opus#>
SELECT ?end_publication WHERE {
 <http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
 %path ?end_publication
 FILTER (length(%path)<=26 &&
 regex(%path, "(opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, starting with articles
published only in 2006 and ending with articles published during 1981-2006. Each
query was executed 4 times against each dataset. The plots in Fig. 6 on the next page
present the execution time for all queries for each dataset and the number of located
paths plotted on a logarithmic scale.

In the performed tests, the number of paths increased exponentially as the
publications from the previous years were added. For the largest dataset, each query
returned approximately 660,000 on average. The execution time also followed the
exponential growth, but even for the longest query did not exceed 7 seconds.

Additionally, we performed tests for finding semantic associations between two
given entities. We identified 4 early publications that were reachable by a relatively
large number of paths from all previously chosen 14 starting publications. These 4

 SPARQLeR: Extended Sparql for Semantic Association Discovery 157

Fig. 6. Query execution times and number of found paths for single-source path queries

entities become endpoints for path queries between two resources. A sample
SPARQLeR query is presented below:

SELECT list(%path) WHERE {
 <http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
 %path
 <http://dblp.uni-trier.de/rec/bibtex/conf/programm/BarbutiM80>
 FILTER (length(%path)<=26 &&
 regex(%path, "(opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, while the length limit
was increasing from 1 to 26, according to number of covered years in the datasets. For
each of the 14 start entities we ran the path query to the 4 previously selected publications
and averaged the results. The plots in Fig. 7 present the execution time and numbers of
located paths for 14 start entities (each queried with 4 endpoints) for each dataset.

Fig. 7. Query execution times and number of found paths for path queries with set endpoints

In these tests, due to specificity of the dataset, although the number of results is a
small fraction of previous ones, the search space became significantly larger than for
the single-source queries. Nevertheless, the execution time did not exceed 25 seconds,
which we think is a reasonable result for searching paths of length up to 26 hops. For
shorter paths, the execution time drops drastically to below 1 second. In both cases,

158 K.J. Kochut and M. Janik

such results for long queries can only mean that the given path expression was highly
selective. It also proves the usability of the proposed SPARQL extension.

Of course, the path problem remains exponential and our solution does not change
this fact. However, the results of our scalability experiments proved that in some
practical cases, path queries can be solved within a reasonable amount of time, even
for relatively long paths. This is possible with the use of path expressions which are
highly selective with respect to a given dataset.

6 Conclusions and Future Work

We have presented SPARQLeR, a novel extension of SPARQL designed for finding
semantic associations in RDF bases, and described its working implementation.
SPARQLeR’s path patterns have been seamlessly incorporated within SPARQL’s
graph patterns and allow for capturing both structural and semantic requirements of
semantic association queries. Our experiments with path pattern queries have
demonstrated the expressive power of SPARQLeR, effectiveness of its implementa-
tion, as well as its practical value in the presented examples.

Our future plans involve the optimization of regular path queries and incorporation
of regular context into SPARQLeR. Despite the presented good timing results, we
think that the optimization of path queries is very important for the practical use of the
proposed language. This line of research involves not only optimization of simple
queries, but of complex expressions and queries spanning multiple paths, as well.

We plan to base the notion of a context on our path patterns inducing RDF sub-
graphs that will allow us to semantically specify a sub-graph of interest within an
RDF description base. Consequently, this would support the idea that the same query
executed in different contexts should return different results.

References

1. Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D. and Sheth, A., An Ontological
Approach to the Document Access Problem of Insider Threat. in IEEE International
Conference on Intelligence and Security Informatics (ISI-2005), (Atlanta, Georgia, 2005).

2. Alkhateeb, F., Baget, J.-F. and Euzenat, J. Complex path queries for RDF Poster paper in
4th International Semantic Web Converence (ISWC2005), Galway, Ireland, 2005.

3. Anyanwu, K. and Sheth, A., r-Queries: Enabling Querying for Semantic Associations on the
Semantic Web. in 12th International World Wide Web Conf., (Budapest, Hungary, 2003).

4. Beeri, C., Kanellakis, P., Bancilhon, F. and Ramakrishnan, R., Bounds on the propagation
of selection into logic programs. in 6th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, (San Diego, California, United States, 1987), 214 - 226.

5. Broekstra, J. and Kampman, A. SeRQL: A Second Generation RDF Query Language
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, Amsterdam,
Netherlands, 2003.

6. Buchsbaum, A.L., Kanellakis, P.C. and Vitter, J.S., A data structure for arc insertion and
regular path finding. in 1st annual ACM-SIAM symposium on Discrete algorithms, (San
Francisco, California, United States, 1990), 22-31.

7. Calvanese, D., Giacomo, G.D., Lenzerini, M. and Vardi, M.Y., Containment of
Conjunctive Regular Path Queries with Inverse. in 7th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2000), (2000), 176-185.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 159

8. Consens, M. and Mendelzon, A.O., Graphlog: a visual formalism for real life recursion. in
ACM Symposium On Principles of Database Systems, (1990), 404-416.

9. Cruz, I.F., Mendelzon, A.O. and Wood, P.T., G+: Recursive queries without recursion. in
2nd International Conference on Expert Database Systems, (1988), 355-368.

10. Cruz, I.F., Mendelzon, A.O. and Wood, P.T., A graphical query language supporting
recursion. in ACM SIGMOD International Conference on Management of Data, (San
Francisco, California, United States, 1987), ACM Press, 323-330.

11. Hassell, J., Aleman-Meza, B. and Arpinar, I.B. Ontology-Driven Automatic Entity
Disambiguation in Unstructured Text 5th International Semantic Web Conference (ISWC-
2006), Athens, GA, 2006.

12. Helenius, A. and Aebi, M. Roles of N-Linked Glycans in the Endoplasmic Reticulum.
Annual Review of Biochemistry, 2004, 73. 1019-1049.

13. Janik, M. and Kochut, K., BRAHMS: A WorkBench RDF Store And High Performance
Memory System for Semantic Association Discovery. in 4th International Semantic Web
Conference, (Galway, Ireland, 2005).

14. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M., RQL:
A Declarative Query Language for RDF. in 11th International World Wide Web
Conference, (Honolulu, Hawaii, USA, 2002), ACM.

15. Mendelzon, A.O. and Wood, P.T., Finding Regular Simple Paths In Graph Databases. in
15th Conference on Very Large Databases, (Amsterdam, The Netherlands, 1989), Morgan
Kaufman pubs. (Los Altos CA).

16. Mukherjea, S. and Bamba, B., BioPatentMiner: An Information Retrieval System for
Biomedical Patents. in 13th International Conference on Very Large Data Bases (VLDB
2004), (Toronto, Canada, 2004), Morgan Kaufmann.

17. NLM. PubMed The National Library of Medicine, Bethesda MD.
18. Ogbuji, U. RDF Query using Versa Thinking XML: Basic XML and RDF techniques for

knowledge management, Part 6, 10 April 2002.
19. Ramakrishnan, C., Kochut, K. and Sheth, A., A Framework for Schema-Driven

Relationship Discovery from Unstructured text. in 5th International Semantic Web
Conference (ISWC 2006), (Athens, Georgia, USA, 2006).

20. Ramakrishnan, C., Milnor, W.H., Perry, M. and Sheth, A.P. Discovering Informative
Connection Subgraphs in Multi-relational Graphs. SIGKDD Explorations, 7 (2). 56-63.

21. Seaborne, A. RDQL - A Query Language for RDF, 2004.
22. Sheth, A., From Semantic Search & Integration to Analytics. in Dagstuhl Seminar

Proceedings 04391, (Dagstuhl, Germany, 2005).
23. Sintek, M. and Decker, S. TRIPLE - An RDF Query, Inference, and Transformation

Language Deductive Databases and Knowledge Management, Tokyo, Japan, 2001.
24. SPARQL. Query Language for RDF. Prud'hommeaux, E. and Seaborne, A. eds., 2005.
25. Swanson, R.D. Migraine and Magnesium: Eleven Neglected Connections. Perspectives in

Biology and Medicine, 31 (4). 526-557.
26. Thomas, C.J., Sheth, A.P. and York, W.S., Modular Ontology Design Using Canonical

Building Blocks in the Biochemistry Domain. in International Conference on Formal
Ontology in Information Systems (FOIS), (November 2006), IOS Press.

27. Yannakakis, M., Graph-theoretic methods in database theory. in 9th ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, (Nashville, Tennessee,
United States, 1990), ACM Press, 230-242.

	Introduction
	Motivation
	Background
	Semantic Associations in RDF Description Bases
	Defined Directionality Paths

	SPARQLeR
	Path as RDF Meta-resource and Path Patterns
	Path Patterns
	Testing Paths
	Prototype Implementation of SPARQLeR

	Experiment Design and Results
	Data Sets
	Functionality Test in the Biomedical Domain
	Scalability Tests on Modified DBLP Datasets

	Conclusions and Future Work
	References

