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Abstract. In networks characterized by broad degree distribution, such
as the Internet AS graph, node significance is often associated with its
degree or with centrality metrics which relate to its reachability and
shortest paths passing through it. Such measures do not consider avail-
ability of efficient backup of the node and thus often fail to capture its
contribution to the functionality and resilience of the network operation.
In this paper we suggest the Quality of Backup (QoB) and Alternative
Path Centrality (APC) measures as complementary methods which en-
able analysis of node significance in a manner which considers backup.
We examine the theoretical significance of these measures and use them
to classify nodes in the Internet AS graph while applying the BGP valley-
free routing restrictions. We show that both node degree and node cen-
trality are not necessarily evidence of its significance. In particular, some
medium degree nodes with medium centrality measure prove to be cru-
cial for efficient routing in the Internet AS graph.

Keywords: Internet topology, network analysis, Internet AS graph.

1 Introduction

The topological study of networks appears in a wide spectrum of research ar-
eas such as physics [3], biology [13], and computer science [10]. In research of
the Internet, node significance classification has received attention in past stud-
ies [18,4,5] and was treated in two different contexts: study of the Internet re-
siliency against attacks and failures [3,12,14,7] and identification of the Internet
core nodes as well as significance categorization [18,5]. Both study threads were
conducted at the Internet AS level graph.

Several attempts have been made in the past to characterize the core of the
Internet AS graph. In [18] the most connected node was used as the natural
starting point for defining the Internet’s core. Other ASes were also classified
to four shells and tendrils that hang from the shells, where ASes in shells with
a small index are considered more important than ones in higher indices. Fur-
ther work has dealt with classification of nodes into few shells with decreasing
importance [8,17]. In recent study [5] k-shell graph decomposition was used to
classify nodes by importance to roughly 40 layers of hierarchal significance. The
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k-shell classification, based on the node’s connectivity, identified over 80 ASes
as the Internet core, some of which with medium degrees. Almost exclusively, an
attempt to rank ASes by metrics other than node degree was done by CAIDA
[1], where the ‘cone’ of the node was used to determine its importance, namely
the number of direct and indirect customers of the AS.

As network functionality is often measured by connectivity and vertex dis-
tances in the graph used as its model, measures which credit vertices connected
to a relatively large number of vertices at relatively short distances are often used
as significance indicators [9,3]. However, inadequate consideration of backup by
such measures often overshadows significance in context of its contribution to
functionality and resilience of the network. Existence of backup raises question
regarding a node’s significance since failure of a node with backup does not effect
connectivity nor does it increase path lengths in the network and therefore the
effect of failure in such instances is minimal. Furthermore, existence of backup
denies exclusivity of the information passing through the node in the network.
Since nodes can have backups of various qualities, measures of backup efficiency
and topological significance which considers backup are crucial for analysis of
network functionality.

In this paper, we suggest two complementary measures which capture a node’s
contribution to the network’s functionality: the Quality of Backup (QoB) and
the Alternative Path Centrality (APC). The QoB measures backup quality of a
vertex regardless of its centrality or effect on the functionality of the network,
enables comparison of backup efficiency between vertices in the graph as well as
between vertices from different graphs, and can thus serve as a universal measure
for backup. The APC measures functionality which considers both backup qual-
ity and centrality of vertices in graphs and therefore enables analysis of nodes’
significance in a wider context in comparison to other topological measures.

Our starting point for the node significance classification problem is exam-
ination on levels of theoretical abstraction, and then evaluation of our results
on the Internet AS graph. Since failure of a node on the AS level is possible [7]
though highly unlikely, applying APC and QoB on the Internet AS graph allows
a unique insight to the Internet as oppose to quantifying effects of failures. On
the AS level, centrality which considers backup reveals significance in context of
potential information which exclusively passes through a node, and its backup
quantifies the dependency of its customers on its transit services. In our study
we use APC to identify the most significant nodes in the Internet AS graph, and
show that these are not necessarily members of the Internet core. In accordance
with properties of APC, it is not surprising that the largest ASes in the core, such
as UUNET and Sprint, also have very high APC values due to the large number
of customer ASes. However, small networks with poor backup like the French
research network RENATER, and the GEANT and Abiline academic backbones
which have degrees as low as 51 (RENATER) and low centrality values, have
very high APC values as well.

The rest of this paper is organized as follows. The next section discusses the
concept of backup in networks and introduces the QoB as a measure of universal
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backup efficiency. Section 3 provides detail of the APC construction and discusses
its properties. In Section 4, we discuss modifications of our methods in order to
maintain relevance in the Internet AS graph model. Section 5 holds our analysis
of the Internet AS graph using the modified measures in comparison to previous
works. Finally, we summarize and discuss our work in section 6.

2 Quantifying Backup Efficiency

In our attempt to quantify backup in networks we observed that the quality of
backup of a given vertex in the graph is determined by the number of direct
children covered by a set of backup vertices, and the efficiency of reaching this
set by the set of direct parents. For a vertex v ∈ V , we define the set of children
Cv, set of parents Pv, and the backup set Bv, as follows:

Cv = {u ∈ V |(v, u) ∈ E},

Pv = {u ∈ V |(u, v) ∈ E},

Bv = {w ∈ V |∃u ∈ Cv : (w, u) ∈ E}.

Clearly, in instances of undirected graphs Cv ≡ Pv, and the discussion which
follows remains relevant for these instances as well.

For u, w ∈ V , we use δ(u, w) to denote the shortest path distance between u
and w in G. The shortest distance, δ(u, w), can be calculated by any set of rules,
e.g., based on additional annotations on the graph edges, and is not limited to
minimum hop. By convention, if u cannot reach v through any path in G, then
δ(u, v) = ∞. We also use δv(u, w) to represent the distance of the shortest path
which bypasses v from u to w.

Let G = (V, E) be a directed or undirected graph where V is the set of vertices
and E is the set of edges. For v ∈ V , let Pv be the set of v’s direct parents and
let Cv be the set of v’s direct children. The Quality of Backup of v, denoted ρ(v)
is:

ρ(v) =

∑
u∈Pv

∑
w∈Cv

(max{δv(u, w) − 1, 1})−1

|Pv| · |Cv|

The rational behind this measure is the following. To measure backup effi-
ciency of a given vertex, it is enough to examine the cost of re-routing paths from
its set of parents to its set of direct children. Note that max{δv(u, w) − 1, 1} =
δv(u, w) − δ(u, w) + 1 for all pairs 〈u, w〉, where u ∈ Pv and w ∈ Cv. For v ∈ V ,
it is easy to see that ρ(v) = 1 ⇐⇒ ∀〈x, u〉 ∈ Pv × Cv ∃w ∈ Bv : (x, w) ∈
E ∧ (w, u) ∈ E. Also, note that ρ(v) = 0 ⇐⇒ δv(x, u) = ∞ ∀〈x, u〉 ∈ Pv ×Cv.
Thus, ρ : V −→ [0, 1], and returns 1 for vertices with perfect backups and 0 for
vertices with no backup. Formal implementation of QoB on unweighted directed
graphs is presented in the figure below. Here, bfsv denotes the bfs algorithm
which bypasses a vertex v, and δ̄v(u), denotes the vector of shortest path dis-
tances from u to all the vertices in the graph, which bypass v.
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QoB(v, G)
ρ ← 0
for all u ∈ Pv do

δ̄v(u) ← bfsv(u, G)
for all w ∈ Cv do

ρ ← ρ + (max{δv(u, w) − 1, 1})−1

ρ ← ρ
|Pv|·|Cv|

return ρ

The following theorem shows the QoB measure indeed enables local measure-
ment of a vertex’s backup in the graph.

Theorem 1. For G = (V, E), for a vertex v ∈ V with Pv 
= ∅ and Cv 
= ∅, ρ(v)
monotonically increases with respect to rise in backup efficiency.

Proof. For u ∈ Pv and w ∈ Cv, assume that δv(u, w) = c in G, where 1 < c ≤ ∞.
Construct G′ by adding some edge e /∈ E, such that δ′v(u, w) = c′ < c, where
δ′v(u, w) represents the distance between u and w bypassing v in G′ . Therefore,

1
δ′

v(u,w) > 1
δv(u,w) , and (max{δ′v(u, w) − 1, 1})−1 ≥ (max{δv(u, w) − 1, 1})−1

(where equality holds only when c = 2). It thus easily follows that ρ′(v) > ρ(v),
where ρ′(v) is the QoB measure of v in G′. �

3 Alternative Path Centrality

The above section discusses backup efficiency of a vertex regardless of centrality
considerations. In an attempt to quantify significance, note that centrality of
a node (its ability to reach a relatively large number of nodes efficiently) also
plays a vital role in analysis: a node which has relatively efficient backup can
be crucial to the network’s functionality due to its high centrality, while a node
with poor backup and low centrality can have little effect on functionality in
the network. The Alternative Path Centrality (APC) measure presented in this
section enables quantifying topological contribution of a node to the functionality
of the network as it considers both centrality and backup efficiency.

Given a graph G = (V, E) as above and u ∈ V , the topological centrality
measure used here, denoted χ, where χ : V −→ R is:

χ(u) =
∑

w∈V \{u}

1
δ(u, w)

Clearly, 0 ≤ χ(u) ≤ |V | − 1 ∀u ∈ V.

For a vertex u ∈ V , the value of χ(u) depends on the number of vertices con-
nected to u and their distances from it; χ monotonically increases with respect to
both centrality and connectivity of the vertex. Thus, in relation to other vertices
in the graph, high χ values are obtained for a vertex which is connected to a large
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number of vertices at short distances. Symmetrically, a vertex connected to a
small number of vertices at large distances yields low χ values. These properties
make the χ function a favorite candidate for measuring vertices’ centrality in
the network. In [11] for a network G, the average of χ values was used to define
the efficiency of the network. Similar topological measures have also been used
in [3] and in [9] to study functionality in complex networks.

For G = (V, E), The APC value of v ∈ V , denoted ϕ(v) is:

ϕ(v) =
∑

u∈V \{v}
χ(u) −

∑

u∈V \{v}
χv(u)

Where χv denotes centrality values calculated in the graph using alternative
paths which bypass v.

The rational behind APC is simple. In instances where network functionality
is determined by shortest paths and connectivity, the significance of a node v
to the network’s functionality can be measured by its effect on these criteria.
Computing the difference between vertices’ topological centrality using v, and
topological centrality bypassing v, enables witnessing v’s exclusive contribution
to the network’s functionality.

The algorithm presented below is a simple implementation of APC using the
Breadth First Search (bfs) algorithm for unweighted directed graphs.

APC(v, G)
ϕ ← 0
for all u ∈ V \{v} do

δ̄(u) ← bfs(u, G)
δ̄v(u) ← bfsv(u, G)
χΔ ← 0
for all w ∈ V \{v, u} do

χΔ ← 1
δ(u,w) − 1

δv(u,w)
return ϕ

Using the bfs algorithm, the overall computational complexity of APC is
O(|V | · |E|). For weighted graphs, one can substitute the bfs algorithm with a
single-source shortest path algorithm for non-negative weighted graphs, such as
Dijkstra’s algorithm [6] and achieve (|V | · (|V | · log |V | + |E|)) running time.

We conclude our discussion of the APC properties with the following theorem
which shows that APC properly considers both centrality and backup of a vertex
in the graph.

Theorem 2. For G = (V, E) and v ∈ V , Cv 
= ∅, ϕ(v) monotonically increases
with respect to rise in topological centrality and decrement in backup quality.

Proof. To prove ϕ(v) monotonically increases with respect to rise in centrality,
let χ(v) < |V | − 1, and w ∈ V be a vertex for which 1 < δ(v, w) ≤ ∞. Let e /∈ E
be some edge for which δ′(v, w) < δ(v, w), where δ′(v, w) denotes the shortest
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path distance in G′ = (V, E
⋃

{e}), and e does not create new alternative paths
to w in G′ (otherwise backup efficiency increases). We show that ϕ(v) < ϕ′(v),
where ϕ′(v) denotes the APC value of v in G′. For all x ∈ V , which reach w
through v, δ′(x, w) < δ(x, w) and δ′v(x, w) = δv(x, w). For all such vertices, x,
we have:

1
δ′(x, w)

− 1
δ′v(x, w)

>
1

δ(x, w)
− 1

δv(x, w)

and it therefore follows that ϕ(v) < ϕ′(v).
To prove monotonic increase with respect to decrement in backup quality,

assume that some edge e /∈ E has been added to G, such that ρ(v) increases. We
again denote G′ = (V, E

⋃
{e}), and use similar notation as above. We therefore

assume ρ′(v) > ρ(v). Specifically, there is some pair 〈u, w〉 ∈ Pv × Cv such that
δ′v(u, w) < δv(u, w). For this pair we have:

1
δ′(u, w)

− 1
δ′v(u, w)

<
1

δ(u, w)
− 1

δv(u, w)

It trivially follows that ϕ′(u) < ϕ(u), and concludes proof of the theorem. �

4 Adaptation of APC and QoB for the Directed AS
Graph

To apply QoB and APC on the Internet, we have adjusted these measures to
conform to the model of the AS graph and specifically to the routing restriction
which it imposes. We begin with a brief description of the AS graph model.

The Internet AS Graph
The Internet today consists of tens of thousands of networks, each with it own
administrative management, called Autonomous Systems (ASes). Each such AS
uses an interior routing protocol (such as OSPF, RIP) inside its managed net-
work, and communicates with neighboring ASes using an exterior routing pro-
tocol, called BGP. The graph which models inter-connection between ASes in
the Internet is referred to as the Internet AS graph. Since the ASes in the Inter-
net are bound by commercial agreements, restrictions are imposed on the paths
which may be explored. The commercial agreements between the ASes are char-
acterized by customer-provider, provider-customer and peer-to-peer relations.
A customer pays its provider for transit services, thus the provider transits all
packets to and from its customers. The customer, however, will not transit pack-
ets for its provider. Specifically, a customer will not transit packets between two
of its providers, or between its provider and its peers. Peers are two ASes that
agree to provide transit information between their respective customers.

In pioneering work, Lixin Gao [8] has deduced that a legal AS path may either
be an up hill path, followed by a down hill path, or an up hill path, followed by
a peering link, followed by a down hill path. An up hill path is a sequential set,
possibly empty, of customer-provider links, and a down hill path is a sequential
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set, possibly empty, of provider-customer links. Therefore a legal route between
ASes can be described as a valley free path. A peering link can be traversed only
once in each such path, and if it exists in the path it marks the turning point
for a down hill path.

The ASQoB and ASAPC Measures

Since transitivity is not immediate in the AS graph, the QoB requires two cardi-
nal adjustments to maintain relevance. Consider the AS graph G = (V, E), and
some v ∈ V , for which we wish to obtain ρ(v) in G. Let u ∈ Pv and w ∈ Cv. The
first adjustment is to consider the pair 〈u, w〉 ⇐⇒ u can reach w through v
using a legal AS path. Since the bfs algorithm does not consider the up, down,
and peer labels, valley free paths are not exclusively discovered, and it cannot
be used to measure minimum-hop distances in the AS graph. For this, we use
the asbfs algorithm [16] which discovers valley free shortest paths from a source
vertex in the unweighted AS graph in linear time.

In order to provide motivation for the second adjustment required, we present
the following example. Consider the graph illustrated in Fig. 1. In quantifying the
QoB of v ∈ V Suppose a vertex u ∈ Pv has reached a vertex w ∈ Cv through an
up hill path through v, though by using the alternative path through the vertex
b ∈ Bv, u now reaches w through a down hill path. All vertices in Cw which are
reached through an up hill path (x in this example), are now unreachable to u
as this creates an illegal AS path. Therefore, to factor this into the QoB measure
in the AS graph, we use the following strategy. For all vertices w ∈ Cv we scan
for vertices x ∈ Cw which are reachable from v through legal AS paths, and
consider the pairs 〈u, x〉 ∈ Pv × Cw as well. The ASQoB algorithm is described
in the figure below. We denote by Ruv the set of reachable children of v from u
in accordance to policy based routing in the AS graph.

ASQoB(v,G)
ρ ← 0
for all u ∈ Pv do

δ̄v(u) ← asbfsv(u, G)
for all w ∈ Ruv do

ρ ← ρ + (max{δv(u, w) − 1, 1})−1

for all x ∈ Rvw do
ρ ← ρ + (max{δv(v, x) − 1, 1})−1

ρ ← ρ∑
u∈Pv

∑
w∈Ruv

|Ruv|+|Rvw|
return ρ

Drawing its strength from the properties of the QoB measure, the ASQoB
remains faithful to the principles of measuring backup efficiency in the AS graph.
For v ∈ V , as reachable children are scanned in two levels, we are guaranteed
that ρ(v) = 1 ⇐⇒ v has a perfect backup which does not disqualify legal AS
paths.
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w

v b

x

u

Fig. 1. Illustration of an instance in an AS graph where a direct child can be reached
through a backup vertex, though its paths cannot be used. Direction of an edge implies
it is an up edge, and for each up edge a down edge in the opposite direction exists (not
portrayed). Here, b serves as a backup for v. In accordance to the valley free restrictions,
u can reach w, though cannot reach x through b.

Substituting the bfs algorithm with its analogous for the AS graph, asbfs,
applying APC on the AS graph is immediate. The calculation of a shortest
path, δ, is done while considering the valley free routing and all the properties
discussed in section 3 hold.

5 Analyzing the Directed AS Graph

We used the combined data from the DIMES [15] and RouteViews [2] projects
for week 11 of 2006. The AS graph is comprised of 20,103 ASes and 57,272 AS
links. We approximate the AS relationship by comparing the k-core index [5] of
two ASes and taking the one with the highest k-core index as the provider of the
other. If the k-core indices of two ASes are equal, the ASes are treated as peers.
While we are aware that our approximation involves some inaccuracies, there is
no known error free algorithm for this task. Since the majority of the interesting
ASes are within the range of AS numbers 1-22,000, we present results of these
11,407 ASes along with results of ASes with degree higher than 40 of the rest of
AS graph.

We first show that while centrality is closely related to the node degree in
the AS graph, our APC criteria captures significance which is not necessarily
associated with high degree. Fig. 2 shows the centrality values of AS nodes
averaged by their degree on a log-log scale. There is almost a monotonic increase
in centrality for nodes of degree above 300, and the close relationship between
centrality and degree is evident. On the other hand, Fig. 3 shows there is a clear
monotonic (and fairly linear in the log-log scale) increase in the average APC
value from degree 3 up to around 40, and above this value the number of nodes
with the same degree is below 10. Therefore any one ‘outlayer’, namely a node
with extreme high or low APC values, can change the average significantly.

To display the relationship between high centrality and high APC we plot the
degree and APC values of the nodes with the highest centrality (Fig. 5) and the
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Fig. 2. Average centrality as a function
of its degree
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Fig. 3. Average APC as a function of
its degree

degree and centrality of the nodes with the highest APC values (Fig. 4). The five
ASes with the highest degree, 701 (UUNET), 7018 (AT&T), 1239 (Sprint), 3356
(Level3), and 174 (Cogent), are also the five ASes with the highest centrality.
These are the largest tier-1 providers. In contrast, only UUNET is in the top
ten APC list, mainly due to its high number of peer ASes; Sprint and Cogent
also have high APC values. These three tier-1 providers support many stub ASes
but have relatively low backup measure (0.7–0.75) which explain their high APC
values. Level3, which has high centrality, has low APC value because it has a
rather high QoB around 0.82. This means that although Level3 (3356) plays a
central role in Internet routing, it may be replaced through alternative routes and
thus is not as important as the previous three nodes. The next nodes with high
centrality are 3549 (GBLX), 2914 (Verio), 7132 (SBC), 6461 (Abovenet), and
12956 (Telefonica). These are all tier-1 providers or major providers in Europe.

For the nodes with the highest APC values the picture is different: while
UUNET (701) has the fourth largest APC value, many of the high locations in
the list are captured by medium sized ASes with poor (and sometimes extremely
poor) backup. Through study of the QoB distribution in the AS graph we have
learned that there is a large concentration around 1, which is a testament of per-
fect backup. The median QoB value is 0.9799, and a large majority of the nodes
have QoB values above 0.95. The nodes ranked first, third, and eighth in the top
APC list are educational networks: GEANT (20965) in Europe, ENA (11686)
in the USA, and RENATER (2200) in France (Abiline the US research network
was ranked eleventh). The other group of nodes is of medium size providers,
France Telecom (3215), YIPES (6517), Ukraine Telecom (6849), and Server-
Central (23352), each appears to have high APC values due to a different rea-
son. France Telecom, YIPES and UKR Telecom have extremely low QoB, while
ServerCentral connects remote locations that may not have efficient alternative
paths. Statistics of nodes with highest APC values are displayed in table 1.

Fig. 6 shows the distribution of the APC values in the AS graph (note the
truncation of the first column). The APC distribution is shown to have a long
but narrow tail with only a few nodes with very high APC values, these nodes are
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Fig. 6. A histogram of the APC val-
ues for nodes of degree greater than 2.
The first bin holds 4402 ASes and was
truncated.
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Fig. 7. A histogram of the backup val-
ues for nodes of degree greater than 2

scattered almost over the entire degree range, starting with nodes with degree
of just above 50 (see Fig. 4 and Table 1).

The QoB distribution shown in Fig. 7 has a large concentration around 1,
which is a testament of perfect backup. The median value is 0.9799, and as the
histogram shows a large majority of the nodes have QoB values above 0.95.

To discuss our results in comparison to other measures of node significance,
we refer to table 2 which shows the top ten nodes in the CAIDA ranking [1]
based on the number of customers a node has. The list is dominated by high
degree nodes; the two medium degree nodes in the list have also rather high
APC values; in general all the nodes have relatively high APC values and eight
of them are in the top 38 APC list. All the nodes in the list have poor QoB
values, possibly due to relatively large stub ASes connecting to them. It is vivid
that the centrality of the nodes in the CAIDA list is much larger than on our
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Table 1. statistics of AS nodes with
highest APC values

AS No. degree cent. QoB APC
20965 74 1190 0.79 26628
10910 205 385 0.59 16298
11686 187 3389 0.92 16042

701 2616 7956 0.72 14276
3215 115 422 0.80 13493
6517 175 474 0.83 12851
6849 186 472 0.56 12765
2200 51 347 0.50 12549

12859 79 1017 0.94 12396
23352 71 2113 0.94 12065

Table 2. statistics of AS nodes with
highest CAIDA significance rankings

AS No. degree cent. QoB APC
3356 1784 7690 0.82 7559
209 1272 5381 0.72 6113

7018 2354 7992 0.74 11448
1239 2020 8022 0.74 10604
701 2616 7956 0.72 14276

3561 708 5762 0.79 2579
174 1483 7144 0.76 8797
703 216 1441 0.86 10539

19262 188 905 0.75 10763
702 680 5672 0.77 2101

APC list. While all the nodes identified as important in the CAIDA list have
high APC values, the opposite analogy does not apply. Several of the nodes in
our top 10 list are ranked below 200 in the CAIDA list.

6 Conclusion

We have shed light on the contribution of backup efficiency for the node sig-
nificance classification problem. Given our theoretical analysis, we believe this
contribution has merit in classification of network nodes in other fields outside
the data networking domain.

We are aware that our results are not accurate for several reasons. First, as
we stated in the main text, our AS relationship approximation is not accurate.
Second, although we used the most detailed Internet map available through the
DIMES project, the graph itself is still missing many links which can effect the
calculation of all the measures, as well as the AS relationship deduction.

In the future we intend to broaden this research to study the effect of node
failure on the Point of Presence (PoP) level as well as study relationship of sets
of nodes in the AS graph in the context of backup and functionality. On the the-
oretical level, we intend to study the robustness of the APC and QoB measures
to error in measurements, as well as further formal analysis of their properties.
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