
A Telematics Service System Based on the Linux
Cluster

Junghoon Lee1, Gyung-Leen Park1, Hanil Kim2, Young-Kyu Yang3,
Pankoo Kim4, and Sang-Wook Kim5,�

1 Dept. of Computer Science and Statistics, Cheju National University,
2 Dept. of Computer Education, Cheju National University,

3 Graduate School of Software, Kyungwon University,
4 Dept. of Computer Engineering, Chosun University,

5 College of Information and Communications, Hanyang University
{jhlee,glpark,hikim}@cheju.ac.kr, ykyang@kyungwon.ac.kr,

pkkim@chosun.ac.kr, wook@hanyang.ac.kr

Abstract. This paper designs and implements a taxi telematics ser-
vice system, aiming at providing an efficient framework by means of a
Linux cluster to host emerging telematics services that need intensive
computing. Combined with global positioning system and radio commu-
nication technology, the taxi telematics service system traces the posi-
tion of taxis, finds a time saving route between start and destination
points, dispatches the nearest taxi to the service call point based on the
latest traffic information, and finally decides an efficient route for mul-
tiple destinations. The performance measurement result demonstrates
that the implemented system can process up to 200 map matches for
every minute, keeping average response time for other requests below 1.5
seconds.

1 Introduction
1 Telematics is the blending of computers and wireless telecommunication tech-
nologies, with the goal of efficiently conveying information over vast networks
to improve a host of business functions or government-related public services[1].
This term later evolved to refer to automation in automobiles, namely, vehicle
telematics. Due to the mobility of vehicles, the telematics service is necessar-
ily combined with satellite navigation and geographic information. Addition-
ally, GPS (Global Positioning System) and radio communication technologies
have become indispensable in providing various telematics services such as vehi-
cle location tracking, automatic collision notification, and location-driven driver
information[2].

One of essential applications of telematics networks is vehicle tracking, which
is capable of monitoring the location, movement, status, and behavior of a ve-
hicle. The vehicles may be taxis, rent-a-cars, delivery trucks, and any other
� Corresponding author.
1 This research was supported by the MIC, Rep. of Korea, under the ITRC support

program supervised by the IITA (IITA-2006-C1090-0603-0040).

Y. Shi et al. (Eds.): ICCS 2007, Part IV, LNCS 4490, pp. 660–667, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Telematics Service System Based on the Linux Cluster 661

automobiles. Particularly, for the call taxi company which runs a lot of taxis,
the knowledge on the real-time position of each taxi enables to make a deci-
sion on the closest taxi to a service call, the best route, and so on. In addition,
with the periodic report on the current speed from each taxi, information on the
up-to-date traffic conditions, accidents, and jams can be dynamically monitored
and estimated[3]. The collected data can be also exploited to some challenging
traffic information technologies such as vehicle relationship management, traffic
forecast, and mobility analysis[4].

With such requirements, this paper designs and implements the taxi telemat-
ics service system capable of tracing the positions of taxis, locating the nearest
taxi to a service call, finding an economic path based on the latest traffic in-
formation, and discovering an efficient route for multiple destinations on top
of a Linux cluster. The Linux cluster is known to be the most cost-effective
and scalable way to provide large amounts of hardware and software resources.
This parallel processing framework seems prospective since the existing and fu-
ture telematics service will not only handle large amount of data but also need
a significant computing power. The functions mentioned above can be imple-
mented using various fundamental techniques including road network manage-
ment, map matching heuristics[5], diverse versions of path finding algorithms[6],
stable database management, and so on.

Using the taxi telematics system, company managers are able to supervise
and guide every driver to travel in the optimal route, which is fuel-efficient. The
customers need not wait for a longer period since the system aims to dispatch
the nearest available taxi. They can also reach the destination by means of the
optimal time saving route. The work of the driver is relieved since all guidance
is provided by the automated server. Finally, a newly developed service can be
easily integrated into the system.

This paper is organized as follows: After issuing the problem in Section 1,
Section 2 provides some background for the target taxi telematics system. Then,
Section 3 describes the system architecture and implementation details. After
discussing the performance measurement results in Section 4, Section 5 concludes
this paper with a brief description on future work.

2 Background

The taxi telematics system has been developed as a milestone project for the
Jeju Telematics City enterprise in Republic of Korea. As one of the most famous
tourist attractions in East Asia, Jeju Island is a popular vacation spot for Kore-
ans and many international visitors. It has a well maintained road network which
essentially follows the entire coast (200 km) and crisscrosses between the island’s
major points. In terms of a road network, there are about 18,000 intersections
and 27,000 road segments. This means that the road graph can be built with
18,000 nodes and 27,000 links along with some additional data structures such
as POI (Point of Interest), allowing the implementor to store the whole graph
in the high-speed main memory, not using low-speed file systems or databases

662 J. Lee et al.

in disk. Hence, almost every functions can be carried out only within the main
memory. With the enterprise mentioned above, most of rent-a-cars have already
installed in-vehicle telematics for the purpose of tour guide, navigation, safety
service, entertainment, and so on. Moreover, some taxi companies began to em-
ploy a call taxi control system which tracks the location of taxis, decides the
nearest taxi to reduce the waiting time for a customer, maintains the diverse
service records for each taxi[7].

The in-vehicle telematics in taxis contains a GPS receiver as well as air inter-
face, which is CDMA (Code Division Multiple Access) protocol in Korea. Each
taxi reports its location and speed every minute with a reasonable communi-
cation cost negotiated with a telecommunication company. A remote server is
responsible for receiving, managing, and exploiting this information. However,
the current system just emphasizes the function of vehicle tracking and taxi se-
lection according to the Euclidean distance to the call point. They do not even
take advantage of the freshness of traffic data in path finding or taxi selection.

In the mean while, all-day hire of a taxi is one of the most popular tour pat-
terns in Jeju, especially for the first time visitors. The customer can suggest
multiple destinations, restaurant preference, and so on. Then, the driver makes
a tour plan with this requirement and his own experiences. The tour plan essen-
tially starts from and ends at the customer’s hotel as long as the customer does
not change his hotel, so it can be considered to be a TSP (Traveling Salesman
Problem)[8]. TSP is one of the widely studied NP-hard combinational optimiza-
tion problems and can be described as follows: To begin with, let G = (V, E) be
a graph where V is a set of nodes and E is a set of links, and C = (cij) be the
distance or cost matrix associated with E. TSP is to find the cheapest way of
visiting all of the nodes and return to the starting point.

Among diverse heuristics to solve TSP, the most famous one is Lin-Kernighan’s
[9,10]. It is known for its success in efficiently finding near-optimal results, while
the core of this scheme consists of link exchange in a tour. A research web site of
Concorde provides diverse TSP solutions including Lin-Kernighan’s in a source
level, enabling users to download and integrate it to their own system[9]. Though
this software can calculate the route plan efficiently, it needs cost matrix each
element of which has the respective cost from node i to j. Each element can be
calculated by one-to-many version of the Dijkstra algorithm or A* heuristics[6].
Because the calculating step for each element is independent, each calculation
can be performed in parallel using a Linux cluster.

3 System Architecture and Implementation

Our telematics service system consists of the telematics device on each taxi, call
control server, telematics server, and Linux cluster as shown in Fig. 1. With this
architecture, this service system provides such functions as the dynamic link cost
update, taxi assignment, path finding between the two points, and path planning
for multiple destinations.

A Telematics Service System Based on the Linux Cluster 663

Fig. 1. The architecture of the taxi telematics service system

3.1 Telematics Device and Call Control Server

Basically, the telematics device provides taxi drivers with a user interface for the
remaining telematics service system. So, the driver can invoke the function he
wants via this device. Each telematics device deploys Windows CE 5.0 operating
system, and receives information on its location every 1 second from the GPS
receiver observing the NMEA specification. The information includes standard
time, latitude, longitude, current speed, and moving direction. The telematics
device reports these data to the call control server residing within the Internet
domain. The servers on the wired network can be accessed from each taxi through
CDMA air interface, as Windows CE supports TCP/IP communication protocol
over the RAS (Remote Access Service) utility.

The call control server tracks and stores the current location of each taxi in
the (latitude, longitude) coordinate system as well as to report such data to
the telematics server for the advanced processing. Currently, up to 200 taxis
are tracked simultaneously within our system, and the number of taxis will grow
soon. It regenerates a fine-grained request to the telematics server upon receiving
a specific function from the human operators or taxi drivers. For example, when
a service call arrives from a customer, this server first extracts the list of taxis
within 10 km radius from the call point and then sends the list along with the call
point itself to the telematics server. After all, this server performs a preliminary
functions and plays a role of a gateway to the telematics system.

3.2 Telematics Server

The telematics server provides enhanced functions to the telematics. There are
two major data maintained in this server: (1) a digital map as a form of ESRI
shape file and (2) a road network as a form of a main memory data structure in a
multiple adjacent list graph, respectively. The digital map has full information on
each road segment represented as a sequence of lines and vertices. On the other
hand, the road network has only nodes and links, which are intersection and
two end points of the road segment, respectively. In Fig. 2(a) which illustrates a
road segment, a road network in main memory stores just nodes and link, while
the digital map stores all nodes, vertices, and line segments. While the digital
map is used just for the map matching purpose, the road network is exploited

664 J. Lee et al.

for sophisticated functions such as taxi dispatching and path finding. Since the
road network is the fundamental data to the system, the efficient management
of the road network is very crucial to the overall performance of the system. For
the town of small or medium size like Jeju, the data is not too large, so it can
be stored, processed, searched efficiently only within main memory, avoiding the
time-consuming file system calls in a disk.

(a) Digital map and road network. (b) Cost matrix.

Fig. 2. Basic assumptions

The telematics server provides the following functions.First, for the speed report
message from the telematics through the call control server, it finds the link that
corresponds to the location specified in the message as the (latitude, longitude)
pair. As the report can be generated at any place of each road segment along the
actual road, the whole digital map file should be searched. For a road segment, the
area of each triangle which consists of two end points of each line segment and a
report point is calculated, as shown in Fig. 2(a). Then, we can decide the distance
from the line segment and the report point and if the distance is less than a given
limit, the IDof that link is returned.After finding the corresponding link, the server
updates the cost of that link with the reported speed and then stores the record
in the system database table in the master node of the Linux cluster. This map
matching is endowed with the highest priority as it is periodic and time-sensitive.

Second, for the taxi dispatch request, the server also receives the location of
service call and the list of candidate taxis within a radius of 10 km. It decides the
nearest taxi to the location of the service call in terms of the network distance by
performing the classical Dijkstra’s algorithm for multiple destinations. To this
end, the telematics server maps all relevant locations represented in the (latitude,
longitude) coordinate system to the nearest nodes. This version begins from the
location of a service call and proceeds to the current location of candidate taxis
by the breadth first search until it reaches any one of them.

Third, for the path finding request with the specification of a source and a des-
tination, it employs a well-known A* algorithm in which the Euclidean distance is
exploited for the remaining estimation and network distance for the accumulated
cost[6]. In addition, the path finding scheme provides another option which takes
into account the current moving direction of a vehicle. After matching the angle
between the road segment and the taxi’s direction, we can decide the node the taxi
will arrive. In the angle matching procedure, the digital map file is used. We also
calculate the distance and estimate the time duration from start point to end point.

A Telematics Service System Based on the Linux Cluster 665

Finally, receiving a multi-destination planning request, it transfers the request
to the Linux cluster after converting the (latitude, longitude) coordinates to the
node ID’s that are shared with the Linux cluster.

3.3 Linux Cluster

To run a Lin-Kernighan algorithm for the given set of nodes, we need the cost ma-
trix that contains the cost of a path for every node pair in the given set as shown
in Fig. 2(b). It takes a significant time to compute the matrix but Linux cluster
provides a cost-effective way to enhance the performance of such computation.
When the master receives the list of nodes from the telematics server, it partitions
the work and distributes the subtasks to the slaves via the MPI (Message Pass-
ing Interface) communication primitive[11]. Each computer runs the A* or multi-
destination Dijkstra algorithm which calculates the cost from one given node to
multiple destinations. This version begins from the start point and proceeds until
it reaches all of the destinations. After building the cost matrix, the master runs
the Lin-Kernighan algorithm. As it takes less than a second for less than 20 nodes,
we don’t have to consider the parallel version of a traditional TSP solver.

The cluster master has installed the MySQL DBMS to store the speed report
records[12]. As a relational DBMS, MySQL enables to access databases anywhere
on the internet. Hence, after installing a MySQL client version on the telematics
server, it can not only store the record into the database table, but also make it
possible for other analysis server to access the data at any time.

4 Performance Measurement Result

The telematics server runs on the IBM ThinkPad X31 personal computer which
has a 1.4 GHz Pentium processor with 512 MB main memory and 100 Mbps
Ethernet interface. In the Linux cluster, each of 3 nodes is equipped with a 700
MHz Pentium 3 CPU and 384 MB memory with 100 MBps Ethernet interface.
In addition, the NETGEAR 8-port Fast Ethernet switch connects all of clus-
ter nodes to build a private network. Finally, all nodes installed Redhat Linux
version 9.0 and LAM-MPI version 7.1.2.

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 50 100 150 200 250 300

E
xe

cu
tio

n
tim

e
(s

ec
)

Trial numer

"MatchTime"
"Average"

Fig. 3. Performance of map matching

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

E
xe

cu
tio

n
tim

e
(s

ec
)

Hop count

"Dijkstra"
"Astar"

Fig. 4. Performance of path finding

666 J. Lee et al.

Fig. 5. Finding the nearest taxi to the service call

Fig. 6. Multi-destination planning

Fig. 3 plots the execution time of 200 map matches for every 1 minute. The
execution time does not exceed 40 seconds (in about 24 seconds on average),
giving a sufficient margin to other functions. Fig. 4 plots the execution time of
path finding compared with Dijkstra’s in the map of the Jeju area. In case there
is no feasible route between two points, both schemes show the same execution
time, but A* can generally performs 10 ∼ 100 times faster than Dijkstra’s,
providing a reasonable route.

Fig. 5 shows the example of a taxi dispatch result. The closest taxi marked
with a circle is found for the candidate to serve the call, as it is the closest in the
network distance. The execution time depends on how close the call point is to

A Telematics Service System Based on the Linux Cluster 667

such a taxi. Fig. 6 shows the example of a TSP execution result. The execution
time also depends on the network distance between the destinations. These GUI
displays are implemented in the call control server.

5 Concluding Remarks

In this paper, we designed and implemented a taxi telematics service system for a
mid-size city, aiming at providing an efficient framework with a Linux cluster to
host a computing-centric telematics service. Taking advantage of the moderate
number of nodes and links, we implemented the taxi telematics service system
capable of updating the current cost of a link, tracing the position of taxis, find-
ing an efficient path, dispatching the nearest taxi to the service call based on
the latest traffic information, and deciding an economic route for multiple des-
tinations. Even though the system is made up with relatively low-performance
components, this system can not only meet the system requirements and func-
tional specifications but also be upgraded to achieve a better performance.

As a future work, we are planning to develop a more sophisticated telematics
service such as path recommendation, combination of call taxi and tourist in-
formation ontology, and a multimedia delivery over the telematics network for
advertisement and entertainment.

References

1. http://en.wikipedia.org/wiki/Telematics
2. Kiruthivasan, S., Madan Deepakumar, C., Althaf, S.: Decision Support System For

Call Taxi Navigation Using GIS-GPS Integration, MAP India (2006)
3. Lee, S., Lee, B., Yang, Y.: Estimation of Link Speed Using Pattern Classification

of GPS Probe Car Data. Proc. International Conference on Computational Science
and its Applications (2006) 495-504

4. Jeong, S., Kim, S., Kim, K., Choi, B.: An Effective Method for Approximating the
Euclidean Distance in High-Dimensional Space. Proc. International Conference on
Database and Expert Systems Applications (2006) 863-872

5. Marchal, F., Hackney, J., Axhausen, K.: Efficient map matching of large global
positioning system data sets: Tests on speed-monitoring experiment in Zürich.
Journal of the Transportation Research Board (2005) 93-100

6. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient point-to-point
shortest path algorithms. MSR-TR-2005-132. Microsoft (2005)

7. Liao, Z.: Real-time taxi dispatching using global positioning systems. Communi-
cation of the ACM, 46 (2003) 81-83.

8. Winter, S.: Modeling Costs of Turns in Route Planning. GeoInformatica 6 (2002)
363-380

9. http://www.tsp.gatech.edu/concorde.html
10. Haghani, A., Jung, S.: A dynamic vehicle routing problem with time-dependent

travel times. Computer & Operation Research 32 (2005) 2959-2986
11. Pacheco, P.: Parallel Programming with MPI. Morgan Kaufmann Publishers, Inc

(1996)
12. Zawodny, J., Balling, D.: High Performance MySQL. O’Reilly Media (2004)

	Introduction
	Background
	System Architecture and Implementation
	Telematics Device and Call Control Server
	Telematics Server
	Linux Cluster

	Performance Measurement Result
	Concluding Remarks
	References

