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Abstract. In this paper, we propose a discrete-time connection ori-
ented Internet service system with a release delay, and present perfor-
mance analysis and evaluation of the system. We build a batch arrival
Geom∗/G/1 queueing model with a setup/close-delay/close-down strat-
egy to characterize the system operation, and suppose that the batch
size is a random variable following Pareto(c, α) distribution. We describe
the performance measures for setup ratio and utility of connection based
on numerical results.
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1 Introduction

Advancement in Internet services is urgently needed to satisfy service-specific
Quality of Service (QoS) requirements. For example, different service classes of-
fering packet traffic considered in terms of the required packet delay, response
time and system throughput need to meet the real time and high transmission
rate. For design and tuning of the advanced Internet services, system performance
must be mathematically analyzed and numerically evaluated [1]. Queueing the-
ory and Markov chains are used for the performance and reliability evaluation of
communication networks.

In recent years, there have been many achievements in the research and ap-
plication of continuous-time vacation queueing, especially in the performance
evaluation of communication [2]. However, it is indicated that it would be more
accurate and efficient to use discrete-time queue models rather than continu-
ous counterparts when analyzing and designing digital transmitting systems [3].
The generally accepted view is that discrete-time systems can be more complex
to analyze than equivalent continuous-time systems. The classical discrete-time
queuing analyses can be found in [3], [4]. Analyses of discrete-time queue models
with server vacation or setup strategy can be found in [5], [6].

Taking into account the memoryless character of a user initiated connection
oriented session in a switched virtual channel, a delayed vacation Geom/G/1
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queue model with setup was built. Some performance measures were then cal-
culated in [7], [8].

In this paper, we propose a discrete-time connection oriented Internet service
system with a release delay set before a release process, and present performance
analysis and evaluation of the system. We also introduce an upper limit length
of a release delay called timer length T , as a system parameter to control the
length of the release delay. To give performance evaluation for this system, we
build a batch arrival Geom∗/G/1 queue model with a setup/close-delay/close-
down strategy to characterize the system operation. We derive performance mea-
sures such as the setup ratio and utility of connection. In numerical results, we
show that the setting of the timer length T is significant for improving system
performance.

2 System Model

We assume the time axis to be divided into slots of equal length and batch
arrivals to follow a Bernoulli process with a batch size following Pareto(c, α)
distribution. Packets in batches arrived in the buffer having infinite capacity
are transmitted with a common channel in a First Come First Serve (FCFS)
discipline. The system works as follows. And this process will be repeated.

(1) When a batch arrives in the system, a setup period called setup period U
will be started, where the setup period U corresponds to a time period for
setting up a new connection using a three-handshake signaling procedure.

(2) After the setup period U finishes, a busy period called busy period Θ will
begin. The busy period Θ is a time period in which packets are transmitted
continuously until the buffer becomes empty.

(3) When there are not any packets in the buffer to be transmitted, the system
will enter a close-delay period called close-delay period D. The close-delay
period D corresponds to a release delay time with an upper limit timer
length T in slots (0 ≤ D ≤ T ). During the close-delay period D, the connec-
tion is reserved in anticipation of more packets being transmitted using the
same connection before the system goes into close-down phase. A close-delay
period will finish either T is over or a batch arrives within T .

(4) If there is a batch arrival within the close-delay period D, a new busy period
Θ will be started immediately without a setup period U . Otherwise, the
system will enter a close-down period called close-down period C when the
timer length T is over. C corresponds to the time period required to release
the connection using another three-handshake signaling procedure.

(5) If there is a batch arrival during the close-down period C, after C finishing,
a setup period U will begin. If this does not occur, the system will enter an
idle period called idle period I. A batch arriving during the idle period I
will make the system to enter a new setup period U .

We define a transmission period B as being the time period in slots taken to
transmit a single packet with generally distributed.
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The setup period U , close-down period C and transmission period B are inde-
pendent and identical discrete-time random variables in slots, and are assumed to
be generally distributed with Probability Generation Functions (P.G.Fs.) U(z),
C(z) and B(z), respectively. Then U(z), C(z) and B(z) are defined as follows:

uk = P{U = k}, U(z) =
∞∑

k=1

ukzk, ck = P{C = k}, C(z) =
∞∑

k=1

ckzk,

bk = P{B = k}, B(z) =
∞∑

k=1

bkzk. (1)

Let E[U ], E[C] and E[B] be the means of U , C and B in slots, we have

E[U ] =
∞∑

k=1

kuk, E[C] =
∞∑

k=1

kck, E[B] =
∞∑

k=1

kbk.

To consider the batch arrivals in the system, we denote by Λ the number
of packets in a batch called batch size Λ (packets/batch). Λ in this system is
supposed to be a random variable. Let E[Λ] be the mean of the batch size Λ.
We can obtain the probability distribution, the P.G.F. Λ(z) and E[Λ] of Λ as

λk = P{Λ = k}, k ≥ 0, Λ(z) =
∞∑

k=0

λkzk, E[Λ] =
∞∑

k=0

kλk (2)

where λk is the probability that there are k packets in a batch per slot. Specially,
λ0 = P{Λ = 0} is the probability that there is no batch (Λ = 0) arrival in a slot.
We define the probability of no batch arrival during the timer length T to be
T (λ0), where T (λ0) = λT

0 . From Eq. (1), we also know that the probability of no
batch arrival during the close-down period C is C(λ0) = λC

0 and the probability
of no batch arrival during the transmission period B is B(λ0) = λB

0 . The ergodic
condition is ρ = E[Λ]E[B] < 1.

Let AU , AC and AB be random variables representing the numbers of packets
arriving during U , C and B. We also define Λ(B(z)) to be the P.G.F. of the
transmission time of a batch in slots. Then we can give Λ(B(z)) and the P.G.Fs.
AU (z), AC(z) and AB(z) of AU , AC and AB as follows:

Λ(B(z)) =
∞∑

k=0

λk(B(z))k, AU (z) =
∞∑

k=1

uk(Λ(z))k = U(Λ(z)),

AC(z) =
∞∑

k=1

ck(Λ(z))k = C(Λ(z)), AB(z) =
∞∑

k=1

bk(Λ(z))k = B(Λ(z)). (3)

3 Performance Analysis

3.1 Queue Length

We assume that packet arrival and packet departure occur only at the boundary
of a slot. Let Qn = Q (τ+

n ) be the number of packets in the system immediately
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after the nth packet departure. Then {Qn, n ≥ 1} forms an imbedded Markov
chain. We define the state of the system by the number Q of packets in the
system at the imbedded Markov points as follows:

Qn+1 =
{

Qn − 1 + A
(n+1)
B , Qn ≥ 1

η, Qn = 0
(4)

where A
(n+1)
B is the number of packets arriving during the transmission time

of the (n + 1)th packet. η is the number of packets left in the system after the
departure of the first packet in a busy period Θ .

A busy period Θ begins with one of the following three cases:

(1) If there is a batch arrival within the timer length T , the batch will trigger a
busy period Θ immediately. The P.G.F. η1(z) for this case is given as follows:

η1(z) =
1
z

Λ(z) − λ0

1 − λ0
AB(z) =

1
z

Λ(z) − λ0

1 − λ0
B(Λ(z)).

(2) If there is no batch arrival within either the timer length T or the close-
down period C, the batch arriving during the idle period I will trigger a
setup period U , and then a busy period Θ will begin. The P.G.F. η2(z) for
this case is given as follows:

η2(z) =
1
z

Λ(z) − λ0

1 − λ0
AU (z)AB(z) =

1
z

Λ(z) − λ0

1 − λ0
U(Λ(z))B(Λ(z)).

(3) If there is no batch arrival within the timer length T , but there is at least one
batch arrival within the close-down period C, after the close-down period C
finished, the system will directly enter a setup period U and then a busy
period Θ will begin. The P.G.F. η3(z) for this case is given as follows:

η3(z) =
1
z

AC(z) − C(λ0)
1 − C(λ0)

AU (z)AB(z) =
1
z

AC(z) − C(λ0)
1 − C(λ0)

U(Λ(z))B(Λ(z)).

With these three cases, we can give the P.G.F. η(z) of η as follows:

η(z) =
1
z
B(Λ(z))

(
Λ(z) − λ0

1 − λ0
(1 − T (λ0) + C(λ0)T (λ0)U(Λ(z)))

+T (λ0)U(Λ(z))(C(Λ(z)) − C(λ0))
)

. (5)

From Eq. (4), we can obtain the P.G.F. Q(z) of Q as follows:

Q(z) = P{Q ≥ 1}E
[
zQ−1+AB |Q ≥ 1

]
+ P{Q = 0}η(z). (6)

Substituting Eq. (5) to Eq. (6), we can give that

Q(z) = P{Q = 0} B(Λ(z))
B(Λ(z)) − z

(
1 −

(
Λ(z) − λ0

1 − λ0
(1 − T (λ0)

+C(λ0)T (λ0)U(Λ(z))) + T (λ0)U(Λ(z)) (C(Λ(z)) − C(λ0))
))

. (7)
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Using the normalization condition and L’Hospital principle in Eq. (7), we have

P{Q = 0} =
1 − ρ

K
(8)

where K is given as follows:

K =
E[Λ]

1 − λ0
(1 − T (λ0) + T (λ0)C(λ0) + E[Λ]T (λ0) (E[U ] + E[C])) . (9)

Substituting Eq. (8) to Eq. (7), then the P.G.F. Q(z) and the mean E[Q] of
Q can be obtained as follows:

Q(z) =
(1 − ρ)(1 − Λ(z))B(Λ(z))

E[Λ](B(Λ(z)) − z)

(
E[Λ]

(1 − λ0)K
(1 − T (λ0))

E[Λ]T (λ0)C(λ0)
(1 − λ0)K

·U(Λ(z)) +
E[Λ](E[U ] + E[C])T (λ0)

K
· 1 − U(Λ(z))C(Λ(z))
(E[U ] + E[C])(1 − Λ(z))

)
,

E[Q] = ρ +
Λ(2) + (E[Λ])3B(2)

2(1 − ρ)E[Λ]
+

E[Λ]T (λ0)C(λ0)
(1 − λ0)K

E[U ]

+
1

2K

(
(E[Λ])2T (λ0)

(
U (2) + C(2) + 2E[U ]E[C]

))
. (10)

where U (2), C(2), B(2) and Λ(2) are the second factorial moments of the P.G.Fs.
U(z), C(z) and B(z) of the setup period U , close-down period C and trans-
mission period B, and Λ(z) of the batch size Λ by differentiating the P.G.Fs.
presented in Eqs. (1) and (2) with respect to z and evaluating the result at z = 1.

3.2 Waiting Time

We focus on an arbitrary packet in the system called tagged packet M . We note
that the waiting time W of the tagged packet M can be divided into two parts
as follows. One is the waiting time Wb of the batch that the tagged packet M
belongs to. The other is the total transmission time J of the packets before the
tagged packet M in the same batch. Wb and J are independent random variables,
so we have the P.G.F. W (z) of the waiting time W of the tagged packet M as
W (z) = Wb(z)J(z). Where Wb(z) and J(z) are P.G.Fs. of Wb and J .

Applying the analysis of delayed vacation Geom/G/1 queueing model with
setup in [7] and referencing [3], with Λ(B(z)) given in Eq. (3), we have

Wb(z) =
(1 − ρ)(1 − z)
Λ(B(z)) − z

(
E[Λ](1 − T (λ0))

(1 − λ0)K
+

E[Λ]T (λ0)C(λ0)
(1 − λ0)K

U(z)

+
E[Λ](E[U ] + E[C])T (λ0)

K
· 1 − U(z)C(z)
(E[U ] + E[C])(1 − z)

)
, (11)

J(z) =
1 − Λ(B(z))

E[Λ](1 − B(z))
. (12)
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Concluding Eqs. (11) and (12), the P.G.F. W (z) and the mean E[W ] of W
can be obtained as follows:

W (z) =
1 − Λ(B(z))

E[Λ](1 − B(z))
· (1 − ρ)(1 − z)

Λ(B(z)) − z

(
E[Λ]

(1 − λ0)K
(1 − T (λ0))

+
E[Λ]T (λ0)C(λ0)

(1 − λ0)K
U(z) +

E[Λ]T (λ0)(1 − U(z)C(z))
K(1 − z)

)
,

E[W ] =
Λ(2) (E[B])2 + E[Λ]B(2)

2(1 − ρ)
+

E[Λ]T (λ0)C(λ0)
(1 − λ0)K

E[U ]

+
E[Λ]T (λ0)

(
U (2) + C(2) + 2E[U ]E[C]

)

2K
+

Λ(2)E[B]
2E[Λ]

. (13)

3.3 Busy Period

We define a busy cycle R as a time period from the instant in which a busy
period Θ completes to the instant in which the next busy period Θ completes.

If there is a batch arrival within the timer length T , R is composed of the
close-delay period D and Θ . If there are no batches arriving within T and there
is at least one batch arriving within the close-down period C, R is composed of
T , C, U , Θ . If there are not any batch arrivals either within T or within C, R
is composed of T , C, U , Θ and the idle period I.

Denote by TU , TD, TC , TΘ , TI and TR the actual lengths of U , D, C, Θ , I
and R in slots. It is obvious that

TR = TU + TD + TC + TΘ + TI . (14)

The event in which TD equals the timer length T occurs with the probabil-
ity T (λ0), event that TD equals a conditional interval time occurring with the
probability 1 − T (λ0). So the P.G.F. TD(z) and the mean E[TD] of TD are

TD(z) =
T (λ0z)(1 − z) + (1 − λ0)z

1 − λ0z
, E[TD] =

1 − T (λ0)
1 − λ0

. (15)

We can also give the means E[TU ], E[TC ] and E[TI ] as follows:

E[TU ] = T (λ0)E[U ], E[TC ] = T (λ0)E[C], E[TI ] =
1

1 − λ0
T (λ0)C(λ0). (16)

Each packet of batches at the beginning of a busy period Θ will introduce
a sub-busy period θ. All the sub-busy periods brought by the packets at the
beginning of a busy period combine to make a busy period Θ in the system.

The P.G.F. TΘ(z) and the mean E[TΘ ] of TΘ are given as follows:

TΘ(z) = (1 − T (λ0))
Λ(θ(z)) − λ0

1 − λ0
+ T (λ0)C(λ0)

Λ(θ(z)) − λ0

1 − λ0
U(Λ(θ(z)))

+T (λ0)(C(Λ(θ(z))) − C(λ0))U(Λ(θ(z))),

E[TΘ ] = K
E[B]
1 − ρ

. (17)
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Fig. 1. Setup ratio for different offered load
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Fig. 2. Utility for different offered load

Concluding Eqs. (16) and (17), we can obtain the mean E[TR] as E[TR] =
K/E[Λ](1 − ρ), where K is given in Eq. (9) and E[Λ] is given in Eq. (2).

4 Performance Measures and Numerical Results

Setup ratio γ is defined as how many times the system goes to setup period
U per slot, which is a measurement of the processing overhead in a connection
oriented service. Obviously, the setup ratio γ is given by

γ =
T (λ0)
E[TR]

=
E[Λ](1 − ρ)T (λ0)

K
.

Utility φ of connections is defined as the ratio of the time during which there
are packets being transmitted to the time during which the network resource
is occupied. Namely, the system is at one of the states of the busy period Θ ,
close-delay period D, or close-down period C. The utility φ is useful for the
optimal design of the discrete-time connection oriented service system with a
release delay. Clearly, the utility φ can be obtained as follows:

φ =
E[TΘ ]

E[TΘ ] + E[TD] + E[TC ]
=

ρK

ρK + (1 − ρ)(1 − T (λ0) + E[Λ]T (λ0)E[C])
.

In numerical results, we consider that E[U ] = 5 (slots), E[C] = 2 (slots) and
E[B] = 5 (slots). Considering the burst data shown in Internet traffic, we suppose
the batch size Λ to be Pareto(c, α) distributed with λk = ck−(α+1), k = 0, 1, ...,
where c is a normalization factor for

∑∞
k=1 λk = 1, the parameter α is related

to the Hurst factor H by H = (3 − α)/2, 0.5 < H < 1, 1 < α < 2. The smaller
the result of α is, the more the burst shows in Internet traffic. Here, we suppose
that H = 0.85, then α = 1.3.

We show numerical results in the Figs. 1 and 2, and discuss the influence of
the timer length T on the performance measures for the setup ratio γ and utility
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φ of connection. In Figs. 1 and 2, the cases with the timer length T = 0 show
the cases without considering the release delay in the systems as in [4]-[6].

Fig. 1 shows γ as a function of T with three different offered loads ρ =
0.25, 0.50, 0.75. We can find that when T increases, γ will decrease quickly to a
low level (nearly zero). We also note that the larger the offered load ρ is, the
larger the decrease of the setup ratio γ will be.

Fig. 2 shows the utility φ as a function of T with three different offered loads
ρ = 0.25, 0.50, 0.75. When T increases, the utility φ will decrease quickly to
another fixed value. It can also be found that, for the same timer length T , the
larger the offer load ρ is, the larger the utility φ will be.

5 Conclusions

One way to reduce the cost of connection oriented service is to reduce the number
of connection setups. We proposed a discrete-time connection oriented service
system with a release delay in this paper to reduce the cost. We built a batch ar-
rival Geom∗/G/1 queue model with a setup/close-delay/close-down strategy to
characterize the system operation. We supposed the batch size to be Pareto(c, α)
distributed to describe the burst data in Internet traffic. We presented perfor-
mance measures such as the setup ratio and the utility of connection. We showed
that the choice of the timer length T is significant in improving performance.

This paper has potential applications in network design, network maintenance
and network management for the next generation Internet.
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