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Abstract. The genetic algorithm (GA) often suffers from the premature
convergence because of the loss of population diversity at an early stage
of searching. This paper proposes a steep thermodynamical evolution-
ary algorithm (STEA), which utilizes a steep thermodynamical selection
(STS) rule. STEA simulates the competitive mechanism between energy
and entropy in annealing to systematically resolve the conflicts between
selective pressure and population diversity in GA. This paper also proves
that the rule STS has the approximate steepest descent ability of the free
energy. Experimental results show that STEA is both far more efficient
and much stabler than the thermodynamical genetic algorithm (TDGA).

Keywords: Evolutionary algorithms, thermodynamics, selection rule,
population diversity, free energy.

1 Introduction

The genetic algorithm (GA) is an optimization technique based on the mecha-
nism of evolution by natural selection [1]. However, it has some disadvantages
yet for solving large-scale combinatorial optimization problems because the as-
tronomical size of search spaces with local optima often lead GA to extremely
slow search and “premature convergence” [2]. The premature convergence also
causes the low stability of GA. Whitley [3] argues that population diversity and
selective pressure are the two primary factors in genetic search. Increasing se-
lective pressure speeds up the search, while it also results in a faster loss of
population diversity. Maintaining population diversity can help the search to
escape local optima, while it offsets the effect of increasing selective pressure.
These two factors are inversely related.

Some techniques on controlling population diversity have been proposed, such
as scaling the fitness [1], sharing the fitness [1], and driving all individuals moving
[4] etc. But they are not yet sufficiently systematical and effective for large-scale
combinatorial problems. Kirkpatrick et al. [5] have proposed another general
optimization algorithm called the simulated annealing (SA). SA controls search
systematically by the cooling temperature and the Metropolis rule. Mori et al.
[6,7] have proposed a method of combining SA and GA, called the thermody-
namical genetic algorithm (TDGA). They introduce a greedy thermodynamical
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selection rule in TDGA, getting a hint from the principle of minimal free energy.
TDGA attempts to utilize the concepts of temperature and entropy in annealing
to control population diversity systematically. TDGA is effective to some extent,
while its performance is still inadequately stable and its computational cost is
extremely high.

This paper proposes a steep thermodynamical evolutionary algorithm (STEA)
to improve the stability and the computational efficiency of TDGA. STEA sim-
ulates the competitive mechanism between energy and entropy in annealing to
systematically resolve the conflicts between selective pressure and population
diversity in GA. The measurement of population diversity and the minimization
process of free energy at each temperature are mended and a steep thermody-
namical selection (STS) rule is proposed in STEA. The paper is organized as
follows. We briefly review the thermodynamic background on STEA in Section 2,
describe the outline of STEA in Section 3, and prove the approximate steepest
descend ability of the rule STS in Section 4. Finally, the experimental results
are presented in Section 5 and the conclusion is given in Section 6.

2 Brief Thermodynamic Background on STEA

In thermodynamics and statistical mechanics, annealing can be viewed as an
adaptation process to optimize the stability of the final crystalline solid. In an
annealing process, a metal, initially at high temperature and disordered, is slowly
cooled so that the system at any temperature approximately reaches thermody-
namic equilibrium [5]. As cooling proceeds, the system becomes more ordered
and approaches a “frozen” ground state at the temperature T=0. There are a
few observations about annealing which are helpful for STEA:

1. If the initial temperature is too low or cooling is done insufficiently slowly, the
system may become quenched forming defects or trapped in a local minimum
energy state.

2. Any change from non-equilibrium to equilibrium of the system at each tem-
perature follows the principle of minimum free energy. In other words, the
system will change spontaneously to achieve a lower total free energy and
the system reaches equilibrium when its free energy seeks a minimum. In
thermodynamics, the free energy F is defined as F = E − HT , where E is
the energy of the system and H its entropy.

3. In thermodynamics, the entropy can quantificationally measure the energy
dispersal of the particles in the system.

4. Any change of the system can be viewed as a result of the competition
between its energy and its entropy. The temperature T determines their
relative weights in the competition.

3 Steep Thermodynamical Evolutionary Algorithm

There are some deep and useful similarities between annealing in solids and
convergence in GA. The population and the individuals in GA can be regarded
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as the system and the particles. Then the mean of negative fitness, the population
diversity and a controllable weight parameter can play the roles of the energy,
the entropy and the temperature respectively. Every population state exactly full
of global optima can be interpreted as the ground state. This analogy provides
an approach for STEA to simulate the competitive mechanism between energy
and entropy in annealing to systematically resolve the conflicts between selective
pressure and population diversity in GA.

3.1 Measurement of Population Diversity

It is a critical part how to measure population diversity when introducing the com-
petitive mechanism into GA. TDGA uses the sum of the information entropy at
each locus, called a gene-based entropy in this paper. However, it has two disad-
vantages. Firstly, its repetitive calculations at all loci cause high computational
costs. Secondly, the thermodynamic entropy can measure the energy dispersal of
particles that is equivalent to the fitness dispersal of individuals in the population,
while the gene-based entropy in TDGA can’t measure the fitness dispersal. In this
section, we propose a level-based entropy by grading the fitness.

Definition 1. Let S be the search space, f : S → IR be the objective function,
and Xr∈S be one individual. Then the individual energy e(Xr) = f(Xr) for
minimum problems and e(Xr) = −f(Xr) for maximum problems. Assume eu

and el be respectively an upper bound and a lower bound of the individual energy.
Then π = {gi|0≤i≤K − 1} is called a level partition on [el, eu] if

gi = (
2i−1 − 1
2K−1 − 1

(eu − el) + el,
2i − 1

2K−1 − 1
(eu − el) + el]∩[el, eu]. (1)

We shall say that Xr is at level gi if e(Xr)∈gi.

Definition 2. Let P = (X1, X2, . . . , XN )∈SN be one population of size N , π =
{gi|0≤i≤K − 1} be a level partition, and ni be the number of individuals in gi

of population P . Then H(π, P ) is called the level-based entropy of P for π where

H(π, P ) = −
K−1∑

i=0

ni

N
logK

ni

N
, 0≤i≤K − 1. (2)

The value of the level-based entropy varies from 0 to 1 depending on the level
distribution of P . It measures the fitness dispersal with very low computational
costs.

3.2 Minimization of Free Energy at Each Temperature

Definition 3. For P∈SN , E(P ) is called the population energy of P where

E(P ) =
1
N

N∑

r=1

e(Xr), Xr∈P. (3)
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F (π, T, P ) is called the free energy of P at temperature T for partition π where

F (π, T, P ) = E(P ) − H(π, P )T. (4)

The free energy is the driving force toward equilibrium in annealing. Similarly,
we should force the population to minimize its free energy at each temperature
Tk during evolution. However, there is only one generation of competition at
each temperature Tk in TDGA. This insufficient competition only lowers the free
energy very slightly, and the population can’t reach the minimum free energy (or
equilibrium) at Tk. In order to approach equilibrium, STEA holds Lk generations
of competitions at Tk. These competitions at Tk form a Markov chain of length
Lk, where Lk should grow with the hardness of problems.

3.3 Steep Thermodynamical Selection Rule

In order to minimize the free energy rapidly at each temperature Tk, we should
design a thermodynamical selection rule to descend the free energy of the next
generation most steeply. Its mission is to select N individuals from N parent
individuals and M offspring individuals as the next generation with the minimum
free energy. However, It is infeasible to exactly minimize the free energy for each
generation because of the extremely high complexity O((N + K)CN

N+M ). Hence,
TDGA uses a greedy thermodynamical selection (GTS) rule with the complexity
O(N2K). But its reliability can’t be guaranteed. In this section, we proposes a
steep thermodynamical selection (STS) rule by assigning the free energy of the
population to its individuals.

Definition 4. Let P = (X1, X2, . . . , XN )∈SN be one population of size N and
π = {gi|0≤i≤K − 1} be a level partition. For an individual Xr∈P at level gd∈π,
its free energy component in P at temperature T for π is defined as:

Fc(π, T, P, Xr) = e(Xr) + T logK(
nd

N
), (5)

where nd is the number of individuals at gd of P .

The steep selection rule STS(π, T, Pt, Ot) is described as follows:

1. Produce an interim population P ′
t of size N +M by appending M individuals

in the offspring population Ot to the parent population Pt.
2. Calculate the free energy component Fc(π, T, P ′

t , Xr) for each individual
Xr∈P ′

t .
3. Pick the M individuals with the largest free energy components from P ′

t .
4. Form the next generation Pt+1 by removing these M individuals from P ′

t .

STS has the lower complexity O((N + M)M). It’s proved in Section 4 that
STS has the approximate steepest descent ability of the free energy.

3.4 Outline of STEA

Figure 1 provides the general outline of the whole STEA described above.
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01 Create N individuals randomly as an initial population P0 and evaluate them;
02 Determine the energy bounds eu and el for a level partition π;
03 Configure the length Lk of the Markov chain at each temperature Tk;
04 T0 = 10(eu − el);
05 t = 0; k = 0;
06 while(Termination test(Pt)==False)
07 {
08 for(i = 0; i < Lk; i++)
09 {
10 Generate M offspring by uniform selection, crossover and mutation;
11 Organize these M offspring as an offspring population Ot and evaluate them;
12 Pt+1 = STS(π, Tk, Pt, Ot);
13 t = t + 1;
14 }
15 k = k + 1;
16 Tk = T0/(1 + k);
17 }

Fig. 1. The outline of STEA

4 Approximate Steepest Descent Ability of STS

Lemma 1. Assume PG
t+1 is the next generation population with the exact min-

imum free energy and Pt+1 is the next generation generated by STS. Then

1
N

∑

Xr∈Pt+1

Fc(π, Tk, P ′
t , Xr) − 1

N

∑

Xr∈P G
t+1

Fc(π, Tk, P ′
t , Xr)≤0, (6)

0≤F (π, Tk, Pt+1) − 1
N

∑

Xr∈Pt+1

Fc(π, Tk, P ′
t , Xr)≤Tk logK ((N + M)/N), (7)

0≤F (π, Tk, PG
t+1) − 1

N

∑

Xr∈P G
t+1

Fc(π, Tk, P ′
t , Xr)≤Tk logK ((N + M)/N). (8)

Here we omit the proof of Lemma 1 for paper length limitation.

Theorem 1. Let y= M
N+M andD(π, Tk, Pt, Ot)=F (π, Tk, Pt+1)−F (π, Tk, PG

t+1).
Then

lim
y→0

D(π, Tk, Pt, Ot) = 0. (9)

Proof. Subtracting (8) from (7), we obtain an inequation:

D(π, Tk, Pt, Ot)≤Tk logK ((N + M)/N)+

(
1
N

∑

Xr∈Pt+1

Fc(π, Tk, P ′
t , Xr) − 1

N

∑

Xr∈P G
t+1

Fc(π, Tk, P ′
t , Xr)). (10)
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Then we substitute (6) into (10) to get:

D(π, Tk, Pt, Ot)≤Tk logK ((N + M)/N). (11)

Since PG
t+1 has the exact minimum free energy, we also get:

D(π, Tk, Pt, Ot)≥0. (12)

Furthermore, there exists such a limit:

lim
y→0

(Tk logK ((N + M)/N)) = 0. (13)

Applying the Squeeze Law of limits, we can obtain (9) from (11), (12) and (13).

Theorem 1 asserts that the selection rule STS has the approximate steepest
descent ability of the free energy if M�N . According to Theorem 1, M and N
have been set to satisfy y<0.1 in all our experiments.

5 Experiments and Results

In this section, we present the experimental results on one instance of 0-1 knap-
sack problems, called KP2. KP2 is generated by the Pisinger’s algorithm [8] of
constructing test instances with these parameters: data rang R=1000, instance
size n=100, problem type t=weakly correlated, instances sum S=1000 and ran-
dom seed i=750. Note that here the profits pj , the weights wj and the capacity c
are positive integers. We apply the simple genetic algorithm (SGA) with elitism,
the steady state genetic algorithm (SSGA), TDGA and STEA to this instance.
They all utilize the uniform crossover with its probability Pc = 0.8, the uniform
mutation with its probability Pm = 0.05, and the same population size N = 80.
The termination condition is satisfied when 3.2×106 individuals are searched.
The offspring population for SSGA, TDGA and STEA has the size M = 8. All
experiments are performed on a Pentium-4 3.0G computer.

Assume that the items are ordered according to their efficiency such that
pi/wi≥pj/wj when i < j. Martello [9] has proved that the greedy value fu =
b−1∑
j=1

pj + �xbpb	 is an upper bound of the objective function f where

b−1∑

j=1

pj≤c,

b∑

j=1

pj>c, and xb = (c −
b−1∑

j=1

wj)/wb. (14)

It’s also obvious that fl = 0 is an infimum of f . Therefor we can get an upper
bound eu = −fl = 0 and a lower bound el = −fu = −38249 of energy for the
level partition π about KP2. The other parameters of STEA have the following
values: level number K = 1

5N = 16 and chain length Lk = 10n = 1000.
There were respectively 40 trials on KP2 for each algorithm. Table 1 provides

the statistic results of 40 trials for each algorithm, including the rate of hitting
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Table 1. Statistic results for four algorithms

Algorithm Hitting rate Worst Mean Best Time First hitting time

SGA 1/40 38145 38215.700 38245† 152.2 >151.8
SSGA 8/40 38240 38241.000 38245† 303.2 >254.0
TDGA 23/40 38240 38242.875 38245† 56930.4 >26275.7
STEA 40/40 38245† 38245.000† 38245† 191.8 =30.8

† optimal solution
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Fig. 3. Convergence curves

optimum successfully, the worst result, the average result, the best result, average
running time (seconds), and average time (seconds) of first hitting optimum. We
score the performance during each trial for each algorithm according to the num-
ber s of searched individuals when first hitting optimum as follows: (1) excellent
if s≤8×105; (2) good if 8×105<s≤1.6×106; (3) weak if 1.6×106<s≤3.2×106; (4)
bad if s>3.2×106. Figure 2 shows the frequencies of four scores in 40 trials for
SSGA, TDGA and STEA. Figure 3 shows their average convergence curves in
40 trials of the best individual of each generation. There are a few interesting
observations which can be made on the basis of the experiments:

1. The results in Table 1 demonstrate clearly the stability of STEA. Its hitting
rate is much higher than that of the other three algorithms. Note that for
STEA the optimum was found in all 40 trials. Moreover, the quality of its
solutions is averagely superior to that of the others due to its stability.

2. The above results also illustrate the high computational efficiency of STEA.
STEA nearly spends the same running time as SGA. It contrasts clearly
with the extremely high computational cost of TDGA, which is about 300
times as much as the others.

3. The first hitting time is a very significant performance goal for GA. It’s very
exciting that STEA has the far more rapid first hitting time than the others
because of its high stability and low computational cost.

4. TDGA as well as SSGA presents the serious polarization phenomenon in
Figure 2. It indicates that TDGA often get trapped in local optima.
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However, STEA avoids this phenomenon due to keeping a systematical bal-
ance between selective pressure and population diversity successfully.

5. Figure 3 shows that the convergence speeds of SSGA and TDGA are faster
than STEA at the early stage. However, they are in a nearly stagnant state
after that stage and then the speed of STEA exceeds theirs. STEA gains the
more rapid global convergence at the very little cost of the early stage.

6 Conclusions

This paper proposes a steep thermodynamical evolutionary algorithm (STEA),
which utilizes a steep thermodynamical selection rule. STEA simulates the com-
petitive mechanism between energy and entropy in annealing to systematically
resolve the conflicts between selective pressure and population diversity in GA.
The experimental results show that STEA not only speeds up the global con-
vergence of TDGA remarkably at the very little cost of the early stage, but also
improves the stability and the computational efficiency of TDGA greatly.

Further research will concentrate on the analysis of the convergence traits
about STEA from the viewpoint of statistical mechanism.
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