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Abstract. This paper proposes a real-observation quantum-inspired
evolutionary algorithm (RQEA) to solve a class of globally numerical
optimization problems with continuous variables. By introducing a real
observation and an evolutionary strategy, suitable for real optimization
problems, based on the concept of Q-bit phase, RQEA uses a Q-gate
to drive the individuals toward better solutions and eventually toward
a single state corresponding to a real number varying between 0 and 1.
Experimental results show that RQEA is able to find optimal or close-
to-optimal solutions, and is more powerful than conventional real-coded
genetic algorithm in terms of fitness, convergence and robustness.
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1 Introduction

Quantum-inspired evolutionary algorithm (QEA) is an unconventional algorithm
of evolutionary computation. QEA inherits the structure and probabilistic search
way of conventional genetic algorithm (CGA), and some concepts and operations
of quantum computing, such as quantum-inspired bit (Q-bit), quantum-inspired
gate (Q-gate) and quantum operators including superposition, entanglement,
interference and measurement [1,2]. Up to now, as a better optimization method
than CGA, QEA has been used in several applications of knapsack problem [2,3],
digital filter design [4], feature selection [1]. Extensively experimental results
manifest its advantages of good global search capability, rapid convergence and
speediness [1-4].

In the existing QEA, only binary strings can be obtained by observing the
probability amplitudes of Q-bits. Accordingly, the evolutionary strategy (update
strategy of the rotation angles of Q-gates) was derived from a class of combina-
torial optimization problems and was represented with binary code. The QEA in
the existing literature is called binary-observation QEA (BQEA). Like binary-
coded CGA, BQEA suffers from several disadvantages when it involves real
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number optimization problems [5-7]. First of all, there is Hamming Cliff when
real variables are encoded as binary strings. The Hamming distances exist be-
tween the binary codes of adjacent integers. For example, the integers 31 and 32
are represented respectively with binary codes 011111 and 100000, which have
a Hamming distance of 6. To improve the code of 31 to that of 32, BQEA must
alter all bits simultaneously, which is a difficult problem. Then, in encoding real
number as binary strings, discretization error will inevitably be introduced in
BQEA that cannot operate on a continuous space but on an evenly discretized
space. Discretization error comes from the discrepancy between the binary rep-
resentation space and a real space. Two points close to each other in a real space
might be very far in the binary representation space. Finally, the encoding and
decoding operations make BQEA more computationally expensive because the
binary chromosome will have a huge string length when binary substring repre-
senting each real parameter with the desired precision are concatenated to form
a chromosome. What is more, Han [2] also made it clear that the representation
of real number may be more suitable for numerical optimization than that of
binary string.

To overcome the drawbacks of BQEA, this paper proposes a real-observation
QGA (RQEA) which is more suitable than BQEA for a wide range of real-world
numerical optimization problems. Experiments on several functions are carried
out to verify the effectiveness. Experimental results show that RQEA is able to
find optimal or close-to-optimal solutions, and is more powerful than conven-
tional real-coded genetic algorithm (CRGA) in terms of fitness, convergence and
robustness.

2 RQEA

Quantum mechanical system is a probabilistic system. Like a classical proba-
bilistic system, the probabilities of each state need be specified to describe the
behavior of quantum mechanical system [8]. A quantum state vector |Ψ〉 can
best be used to describe the location of a quantum particle and a weighted sum
which in the case of two possible locations A and B equals α|A〉 + β|B〉, where
α and β are complex number weighting factors of the particle being in locations
A and B, respectively, and where α|A〉 and β|B〉 are themselves state vectors
[9]. Each two state quantum system is referred to as a Q-bit, which is also the
smallest information unit in a two-state quantum computer [8]. The quantum
state |Ψ〉 may be in the A state, in the B state, or in any superposition of the
two. The quantum state |Ψ〉 can be represented as

|Ψ〉 = α|A〉 + β|B〉 . (1)

where α and β satisfy the normalization equality

|α|2 + |β|2 = 1 . (2)

where |α|2 and |β|2 are the probabilities that the Q-bit will be observed in A
state, in the B state, respectively, in the act of observing the quantum state.
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In this paper, states A and B are not considered as only the states 1 and 0,
respectively, but an arbitrary pair of states between 1 and 0, which satisfy
(1) and (2).

For a quantum system with n Q-bits, there will be n quantum states and 2n

information states. Of course, n different pairs of complex number weighting fac-
tors are needed to describe the quantum system and each describes the weighted
probability of the particle being at that location [9]. A basic operation in quan-
tum computing is that of a fair coin flip performed on a single Q-bit whose
states are A and B. In an 2n information state quantum system, this operation
is performed on each Q-bit independently and can change the state of each Q-bit
[8]. Through this operation, a Q-bit in the state A or B can be transformed into
a superposition of the two states. In RQEA, this operation is implemented by
using a Q-gate. If there are n locations as given by n state vectors, the particle
is said to be all n locations at the same time.

Quantum mechanical systems have a deeper structure, and consequently, be-
sides having a certain probability of being in each state, they also have a phase
associated with each state [8]. In quantum computing, four quantum operators,
superposition, entanglement, interference and measurement, are mainly used
[10]. Superposition operator is applied for junction of possible solution spaces in
a single unified solution space. Entanglement operator is employed to search the
optimal solution as an unknown marked state. Interference and measurement
operators are applied to extract the marked state with highest probability.

Instead of numeric, binary or symbol representation, Q-bit representation is
used to represent the individuals of population in RQEA [1-4]. The probability
amplitude of a Q-bit is defined firstly.

Definition 1. The probability amplitude of a Q-bit is defined by a pair of num-
bers (α, β) as

[α β]T . (3)

where α and β satisfy normalization equality (2). |α|2 and |β|2 denote the prob-
abilities that the qubit will be found in A state and in B state in the act of
observing the quantum state, respectively. Note that in general, the probability
amplitudes can be complex quantities. However, in this paper or in RQEA, we
only need real amplitudes with either positive or negative signs.

For quantum systems, in addition to having a certain probability of being in
each state, they also have a phase associated with each state. The definition of
Q-bit phase is given in the following.

Definition 2. The phase of a Q-bit is defined with an angle ξ as

ξ = arctan(β/α) . (4)

where ξ ∈ [−π/2, π/2]. The sign of Q-bit phase ξ indicates which quadrant the
Q-bit lies in. If ξ is positive, the Q-bit is regarded as being in the first or third
quadrant, otherwise, the Q-bit lies in the second or fourth quadrant.
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According to Def.1, the probability amplitudes of n Q-bits are represented as[
α1|α2| · · · |αn

β1|β2| · · · |βn

]
. (5)

where |αi|2 + |βi|2 = 1, i = 1, 2, · · · , n. The phase of the ith Q-bit is

ξi = arctan(βi/αi) . (6)

Q-bit representation can represent a linear superposition of states probabilis-
tically. As shown in (5), n Q-bits are able to represent a linear superposition of
2n states. Different from CGA, Q-bit representation makes it possible that four
main quantum operators including superposition, entanglement, interference and
measurement are implemented. So Q-bit representation is greatly superior to
other representations in population diversity. This is what distinguishes RQEA
from CGA.

According to the above Q-bit representation, the structure of RQEA is de-
scribed as Algorithm 1, in which each step is explained briefly as follows.

Algorithm 1. Algorithm of RQEA
Begin

(1) Set initial values of parameters; % Evolutionary generation g=0;
(2) Initialize P(g); %

While (not termination condition) do
g=g+1;

(3) Generate R(g) by observing P(g-1); %
(4) Evaluate R(g); %
(5) Store the best solution among R(g) and B(g-1) into B(g);
(6) Update P(g) using Q-gates; %
(7) Migration operation;

If (catastrophe condition)
(8) Catastrophe operation;

End if
End

End

(1) Population size np, the number nv of variables and the initial evolutionary
generation g need be set.

(2) In this step, population P (g)={pg
1, p

g
2, · · · , pg

np
}, where pg

i (i = 1, 2, · · · , np)
is an arbitrary individual in population P (g) and pg

i is represented as

pg
i =

[
αg

i1|α
g
i2| · · · |α

g
inv

βg
i1|β

g
i2| · · · |β

g
inv

]
. (7)

where αg
ij = βg

ij = 1/
√

2 (j = 1, 2, · · · , nv), which means that all states are
superposed with the same probability.
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Table 1. Look-up table of function f(α, β) (Sign is a symbolic function)

ξ1 > 0 ξ2 > 0 f(α, β)
ξ1 ≥ ξ2 ξ1 < ξ2

True True +1 -1
True False sign(α1 · α2)
False True -sign(α1 · α2)
False False sign(α1 · α2) -sign(α1 · α2)

ξ1, ξ2 = 0 or π/2 ±1

(3) According to probability amplitudes of all individuals in P (g − 1), observed
states R(g) is constructed by observing P (g − 1). Here R(g)={ag

1, a
g
2, · · · ,

ag
np

}, where ag
i (i = 1, 2, · · · , np) is an observed state of an individual pg−1

i

(i = 1, 2, · · · , np). ag
i is a real number with the dimension nv, that is

ag
i = b1b2 · · · bnv , where bj (j = 1, 2, · · · , nv) is a real number between 0

and 1. Observed states R(g) is generated in probabilistic way. For the prob-
ability amplitude [α β]T of a Q-bit, a random number r in the range [0, 1]
is generated. If r < |α|2, the corresponding observed value is set to |α|2,
otherwise, the value is set to |β|2.

(4) The fitness are calculated by using the obtained real parameter values.
(5) The best solution are stored into B(g).
(6) In this step, the probability amplitudes of all Q-bits in population P (g) are

updated by using Q-gates given in (8).

G =
[
cos θ − sin θ
sin θ cos θ

]
. (8)

where θ is the rotation angle of Q-gate and θ is defined as θ = k · f(α, β),
where k is chosen as

k = 0.5πe−
mod(g,100)

10 . (9)

and f(α, β) is obtained by using the look-up table shown in Table 1, in
which ξ1 = arctan(β1/α1) and ξ2 = arctan(β2/α2), where α1, β1 are the
probability amplitudes of the best solution stored in B(g) and α2, β2 are
the probability amplitudes of the current solution.

(7) Within an individual, the probability amplitudes of one Q-bit are migrated
to those of another Q-bit, i.e.[

α11| ↔ α12| ↔ · · · | ↔ |α1i| ↔ · · · | ↔ αinv

β11| ↔ β12| ↔ · · · | ↔ |α1i| ↔ · · · | ↔ βinv

]

(8) The catastrophe condition is a prescribed generation Cg, such as 10 or 20.

3 Experiments

To test the effectiveness of RQEA, 13 functions f1 − f13 are used to bring into
comparison with CGA [5-7]. The evolutionary strategies of CRGA include elitism
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selection, uniform crossover and uniform mutation. The crossover and mutation
probabilities are set to 0.8 and 0.1, respectively. RQEA and CRGA use the
same population size 20 and the same maximal generation 500. The parameter
Cg is set to 20 in RQEA. RQEA and CRGA are performed 50 independent
runs for each test function, respectively. The mean best values and the standard
deviations are recorded for each test function. Experimental results are listed in
Table 2, in which m, σ, g and p represent the mean best, the standard deviation,
the maximal number of generations and the population size, respectively. The
results are averaged over 50 runs. From Table 2, it can be seen that RQEA
obtains far better results than CRGA in terms of both the mean best solutions
and the standard deviations for all of the test functions.

(I) Sphere function

f1(x) =
N∑

i=1

x2
i , −100.0 ≤ xi ≤ 100.0, N = 30 . (10)

(II) Ackley function

f2(x) = 20 + e − 20 exp
(

−0.2
√

1
N

∑N
i=1 x2

i

)
− exp

(
1
N

∑N
i=1 cos (2πxi)

)

−32.0 ≤ xi ≤ 32.0, N = 30

.

(11)
(III) Griewank function

f3(x) =
1

4000

N∑
i=1

x2
i −

N∏
i=1

(
xi√

i

)
+ 1, −600.0 ≤ xi ≤ 600.0, N = 30 . (12)

(IV) Rastrigin function

f4(x) = 10N +
N∑

i=1

(x2
i − 10 cos (2πxi)), −5.12 ≤ xi ≤ 5.12, N = 30 . (13)

(V) Schwefel function

f5(x) = 418.9829N−
N∑

i=1

(
xi sin

(√
|xi|

))
, −500.0 ≤ xi ≤ 500.0, N = 30 . (14)

(VI) Schwefel’s problem 2.22

f6(x) =
N∑

i=1

|xi| +
N∏

i=1

|xi|, −10 ≤ xi ≤ 10, N = 30 . (15)

(VII) Schwefel’s problem 1.2

f7(x) =
N∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

, −100 ≤ xj ≤ 100, N = 30 . (16)
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Table 2. Comparisons of RQEA and CRGA

RQEA CRGA Global
g p m σ m σ minimum

f1 500 20 1.11×10−7 2.19×10−7 1.55 × 104 2.20 × 103 0
f2 500 20 2.62×10−4 1.29×10−3 15.67567 0.478948 0
f3 500 20 1.50×10−6 5.63×10−6 141.9507 15.16764 0
f4 500 20 1.44×10−7 3.21×10−7 239.6483 12.61521 0
f5 500 20 0.194603 0.684961 9.80 × 103 3.21 × 102 0
f6 500 20 1.78×10−4 2.82×10−4 1.29 × 109 2.32 × 109 0
f7 500 20 3.07×10−6 8.15×10−6 6.29 × 104 1.74 × 104 0
f8 500 20 6.02×10−5 7.34×10−5 39.63123 2.649442 0
f9 500 20 0 0 1.60 × 104 1.51 × 104 0
f10 500 20 2.06×10−3 1.92×10−3 12.15373 3.226462 0
f11 500 20 0.998004 1.82×10−10 1.578839 0.658432 ≈ 1
f12 500 20 -1.031628 4.42×10−9 -0.966542 0.069581 -1.031628
f13 500 20 0.397904 8.63×10−5 0.525740 0.169221 0.397877

(VIII) Schwefel’s problem 2.21

f8(x) = max
i=1

{|xi|, 1 ≤ i ≤ 30}, −100 ≤ xi ≤ 100 . (17)

(IX) Step function

f9(x) =
N∑

i=1

(�xi + 0.5�)2, −100 ≤ xi ≤ 100 . (18)

(X) Quartic function, i.e. noise

f10(x) =
N∑

i=1

ix4
i + random[0, 1), −1.28 ≤ xi ≤ 1.28 . (19)

(XI) Shekel’s Foxholes function

f11(x) =

⎡
⎣ 1

500
+

25∑
j=1

1
j +

∑2
i=1(xi − aij)6

⎤
⎦
−1

, −10 ≤ xj ≤ 10 . (20)

where (aij) =
(

−32 −16 0 16 32 −32 · · · 0 16 32
−32 −32 −32 −32 −32 −16 · · · 32 32 32

)
.

(XII) Six-hump camel-back function

f12(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2, −5 ≤ xi ≤ 5 . (21)
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(XIII) Branin function

f13(x) =
(
x2 − 5.1

4π2 x2
1 + 5

π x1 − 6
)2 + 10

(
1 − 1

8π

)
cos(x1) + 10

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15
. (22)

4 Concluding Remarks

Extending two states 1 and 0 to an arbitrary pair of states between 1 and 0
in quantum system, this paper proposes RQEA to solve numerical optimization
problems. RQEA can be considered as the extensive version of BQEA to real
number solution space. Extensive experiments show that RQEA is a compet-
itive algorithm for numerical optimization problems. Our future work will be
concentrated on the applications of RQEA.
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