
Distributed Applications from Scratch: Using
GridMD Workflow Patterns

I. Morozov1,2 and I. Valuev1

1 Joint Institute for High Temperatures of Russian Academy of Sciences,
Izhorskaya 13/19, Moscow, 125412, Russia

2 Moscow Institute of Physics and Technology (State University), Institutskii per., 9,
Moscow Region 141700, Russia

valuev@ihed.ras.ru

Abstract. A new approach is proposed to generate workflow scenarios
of scientific applications such as Molecular Dynamics and Monte-Carlo
simulations in a distributed environment. The approach is based on em-
bedding all workflow elements into the source (C++) code of the appli-
cation as external library (GridMD) function calls. Thus the compiled
executable is used both to generate the scenario and to perform compu-
tations related to the individual scenario elements. Having the scenario,
its execution may be delegated to any resource manager which supports
workflows.

1 Introduction

Scientific applications such as simulations using Molecular Dynamics (MD) and
Monte-Carlo (MC) methods often require substantial computational resources.
Available MD/MC packages (such as NAMD [2] or LAMMPS [1]) provide ef-
ficient serial and parallel algorithms for simple execution scenarios, such as to
take the system of particles at some initial state and to propagate it through
the chain of other states. At higher level the numerical experiment includes sta-
tistical averaging [3], parameter sweep, optimal parameter search, etc. While
distributed environment looks very promising for these tasks, the researchers
face the problem of constructing complicated scenarios and workflows.

Various tools for Grid-enabled workflow management are being developed [4,
5, 7, 8]. They provide both visual interfaces based on direct acyclic graphs [4, 5]
and specialized languages [7, 8] for definition of the workflow. However in all
cases this definition is to be made by the user of application who must be aware
of the execution scenario and the workflow definition software.

Recently GridMD [9] C++ class library was proposed, which is designed for
the simulations developers, the programmers who create computational appli-
cations. Researchers may use these applications in production runs to obtain
physical results. We emphasize here the distinction between users and devel-
opers, which for scientific applications are often the same people, to stress the
GridMD strategy of delegating the workflow specification entirely to the appli-
cation developer. The workflow elements are specified in easy and portable way

Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 199–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

200 I. Morozov and I. Valuev

by the special GridMD function calls inside the application C++ code. Being
embedded, the scenario information can be extracted from the executable and
passed to the workflow management system at run-time with minimal user in-
tervention. The aim of the library is also to provide specialized mechanisms of
submitting the GridMD application jobs to different workflow management sys-
tems. The detailed knowledge of these submission mechanisms is not required
neither for the application developer nor for the application user. Between the
submission mechanisms, the one called ”local” where all jobs are executed one-
by-one on the same computer is always accessible by any GridMD application.
It may be used for testing the distributed application without even having the
actual access to the Grid and workflow software. In the following we will analyze
the mechanisms of experiment scenario specification in GridMD in more detail.

2 GridMD Workflow Specification Patterns

GridMD has the usual notion of workflow, which may be represented by directed
graph consisting of nodes and links (edges of workflow graph). The links represent
dependence between nodes, the nodes represent some actions of the program.
Unlike other workflow systems, GridMD does not require that all actions in the
code should be wrapped in workflow elements. Instead, only the parts of the
code most important for distributed execution may be specified as nodes.

There are several types of links in GridMD: logical or hard link from node A
to node B means that node B may be executed only by the same process as node
A AND only after node A; data link between A and B means that either A and
B must be executed consecutively by the same process OR B may be executed
without executing A provided that the result data of node A, associated with
this data link, is accessible by the process executing B; process link between A
and B is a special case of hard link assuming that some calculations which are
initialized at node A are taking place in node B. Although being a limited subset
of possible node dependencies, used by different workflow systems, this system
of links provides a sufficient basis for iterative simulation experiments and can
be easily extended in the future. Data links are the main sources of distributed
capabilities of the code in general. The node result data associated with a link
is represented in C++ code as an object of some data type.

The workflow nodes are defined and executed by the same GridMD applica-
tion, so this application may proceed in two execution modes. Construction or
manager mode is used for the assembly of the workflow graph and to its sub-
sequent analysis. Worker mode is used to execute some subset (subgraph) of
the nodes through the invocation of the same application with command line
parameters uniquely specifying the subgraph for execution.

3 Example of the Distributed Application

In GridMD, the nodes and links can be created explicitly, by associating them
with C++ virtual functions and linking them in the graph, or implicitly. By

Distributed Applications from Scratch: Using GridMD Workflow Patterns 201

the example in Fig. 1 the use of the implicit mechanism to easy redesign-
ing the existing applications for distributed execution is illustrated. The ini-
tial program (Listing 1) is complemented by GridMD calls, and the workflow
graph is produced automatically. As it is seen from Listing 2, the implicit
node markup patterns have a form of conditional operators with GridMD func-
tions as arguments. All these functions (bunch.begin(), bunch.node_define(),
bunch.node_process(),bunch.end(), gmdExperiment.execute()) return zero
in the manager mode and are used simultaneously to specify the nodes and to
conditionally bypass the time consuming parts of node execution. The bypassed
parts are in fact the actions, associated with defined nodes. They are performed
only in worker mode and only if corresponding GridMD functions return nonzero,
i.e. when the execution of specific node is requested.

The gmdSweep object implements branching where a data link can be put in
the middle of the branch (see Fig 1). This data link is bound with an object
of some data type (this type is a C++ template parameter, double for the
example). The object for the current branch may be accessed by node_result()
function both in the source node of the link (marked by node_define) and in the
target node (marked by node_process). If these nodes are executed by different
processes, the data transfer according to this link (including file creation) is
managed by GridMD through type-specific I/O operations.

i=0 i=1 i=2 i=3 i=4

start

0

bunch:begin

1

init

2

init

6

init

10

init

14

init

18

calculate

3

finalize

4

process

5

 4.double

bunch:end

22

calculate

7

finalize

8

process

9

 8.double

calculate

11

finalize

12

process

13

 12.double

calculate

15

finalize

16

process

17

 16.double

calculate

19

finalize

20

process

21

 20.double

finish

23

Listing 1:
1 double s=0;
2 for(int i=0;i<5;i++){
3 s+=long_calculation(i);
4 }
5 printf("The result is: %lf\n",s);

Listing 2:
1 gmdExperiment.init(argc,argv);
2 gmdSweep<double> bunch("bunch");
3 bunch.mark_begin();
4 double s=0;
5 for(int i=0;i<5;i++){
6 if(bunch.mark_node_define(strfmt("i=%d",i)))
7 bunch.node_result()=long_calculation(i);
8 if(bunch.mark_node_process())
9 s+=bunch.node_result();
10 }
11 bunch.mark_end();
12 if(gmdExperiment.execute())
13 printf("The result is: %lf\n",s);

Fig. 1. Execution graph (left part) automatically generated from the code presented
in Listing 2 (right part). Logical links are represented by solid lines with arrows, data
links by dashed lines with names of transferred files indicated, process links are shown
by thick lines. The numbers are node unique identifiers which are assigned to the nodes
in the order of creation. Visualized by graphviz.

After the workflow graph is created, an iterative graph analysis algorithm is
used to determine which branches (subgraphs) may be used concurrently. In or-
der for the workflow defined by GridMD markings to be consistent, there must

202 I. Morozov and I. Valuev

be no implicit logical links between nodes except those known from the work-
flow graph. This has to be checked by the application code developer, because
GridMD is unable to analyze this in advance in construction mode and will only
report an error in worker mode when the actual execution does not conform to
the defined graph.

Distributed execution can be controlled by the GridMD application itself or
it can be delegated to the external execution manager which supports work-
flows (NIMROD [10], Kepler [4]). In the later case GridMD application first
generates the workflow definition file (plan file or script). The script (exter-
nal Perl submission) for starting all the tasks of example in Fig. 1 is shown
below:

Generator: appl.exe -plscript -engine=submit.pl
require "submit.pl";
distributed subgraph submission
submit("appl.exe -w0-4","","4.double");
submit("appl.exe -w0-1:6-8","","8.double");
submit("appl.exe -w0-1:10-12","","12.double");
submit("appl.exe -w0-1:14-16","","16.double");
submit("appl.exe -w0-1:18-20","","20.double");
wait_for_queue(); # wait till all subgraph tasks finished
distributed subgraph submission
submit("appl.exe -w5:9:13:17:21-23","4.double 8.double 12.double 16.double 20.double","");
wait_for_queue(); # wait till all subgraph tasks finished

Acknowledgements

This work is supported by the program of fundamental research of the Russian
Academy of Sciences #15 and Dutch-Russian Project “High Performance simu-
lation on the grid” NWO-047.016.007/ RFBR-04-01-89006.

References

1. http://www.ks.uiuc.edu/Research/namd/
2. http://lammps.sandia.gov/
3. Kuksin, A.Yu., Morozov, I.V., Norman, G.E., Stegailov, V.V., Valuev, I.A.: Stan-

dards for Molecular Dynamics Modelling and Simulation of Relaxation. Molecular
Simulation 31 (2005) 1005–1017

4. http://www.kepler-project.org
5. http://pegasus.isi.edu
6. Pytlinski, J., Skorwider, L., Benedyczak, K., Wronski, M., Bala, P., Huber, V.: Uni-

form Access to the Distributed Resources for the Computational Chemistry Using
UNICORE. In: Sloot, P.M.A., et al (eds.): Lecture Notes in Computer Science,
Vol. 2658. Springer-Verlag, Berlin Heidelberg New York (2003) 307–315

7. W.M.P. van der Aalst: The Application of Petri Nets to Workflow Management:
The Journal of Circuits, Systems and Computers, Vol. 8, No. 1 (1998) 21–66.

8. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. of the IEEE 83 (1995)
773–799

Distributed Applications from Scratch: Using GridMD Workflow Patterns 203

9. Valuev, I.: GridMD: Program Architecture for Distributed Molecular Simulation.
In: Hobbs, M., et al (eds.): Lecture Notes in Computer Science, Vol. 3719. Springer-
Verlag, Berlin Heidelberg New York (2005) 307–315

10. Sudholt, W., Baldridge, K., Abramson, D., Enticott, C., Garic, S.: Parameter Scan
of an Effective Group Difference Pseudopotential Using Grid Computing: New
Generation Computing 22 (2004) 125–135

	Introduction
	GridMD Workflow Specification Patterns
	Example of the Distributed Application

