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Abstract. This paper presents a new method for rotation invariant texture clas-
sification based on Gabor wavelets. The Gabor representation has been shown 
to be optimal in the sense of minimizing the joint two-dimensional uncertainty 
in space and frequency, and the Gabor wavelet can be used to decompose an 
image into multiple scales and multiple orientations. Two group features, i.e. 
the global feature vector and local feature matrix, can be constructed by the 
mean and variance of the Gabor filtered image. The global feature vector is ro-
tation invariant, and the local feature matrix can be adjusted by a circular shift 
operation to rotation invariant so that all images have the same dominant direc-
tion. By the two group features, a discriminant can be found to classify the ro-
tated images. In the primary experiments, comparatively high correct classifica-
tion rates were obtained using a large sample sets with 1998 rotated images of 
111 Brodazt texture classes.  
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1   Introduction 

Texture analysis is a fundamental issue in image analysis and computer vision, and 
has many potential applications, for example, in object recognition, biomedical image 
analysis and so on. Texture analysis has been an active research topic for more than 
three decades, but only a limited number of examples of successful exploration of 
texture exist. A major problem is that textures in the real world are often not uniform 
due to variations in orientation, scale, or other visual appearance. 

Analysis of texture requires the identification of proper attributes or features that 
differentiate the textures for classification. There are numerous algorithms in the open 
literature for texture feature extraction and classification. The most common ap-
proaches to texture classification assume, either explicitly or implicitly, that all im-
ages are captured under the same orientation and the unknown samples to be classi-
fied are identical to the training samples with respect to spatial scale and orientation. 
However, it is unrealistic to control the environment to ensure a zero rotation angle. 

In general, the approach towards developing rotation invariant techniques has been 
to modify successful non-rotation invariant techniques such as statistical methods, 



 Rotation Invariant Texture Classification Using Gabor Wavelets 11 

MRF (Markov random fields) and so on [1]. These traditional statistical approaches to 
texture analysis such as co-occurrence matrices, second order statistics, Gauss-
Markov random fields and local linear transforms, are restricted to the analysis of 
spatial interaction over relatively small neighborhoods on a single scale.  

More recently, multi-resolution and multi-channel techniques have gained much at-
tention for texture analysis, such as wavelet transform and Gabor filters. Based on 
filters with Gabor wavelet or other basis functions, the rotation invariant is realized by 
computing rotation invariant features from the filtered images or by converting rota-
tion variant features to rotation invariant features. Porter and Canagarajah compared 
three mainstream paradigms: wavelets, GMRF, Gabor for rotation invariant classifica-
tion [2]. The wavelet transform decomposes an image into only three orientations, i.e., 

horizontal, diagonal and vertical detail sub bands in the direction of D0 , D45 and D90 , 
respectively, apart from the approximation smooth sub-band. This limits the applica-
tion of wavelet transform for rotation invariant texture analysis [3]. 

From two aspects of theory analysis and practices, it is true that Gabor filter has 
obvious advantages, compared with other methods. For feature-based approaches, 
rotation invariant is achieved by using anisotropic features. Gabor function can be 
appropriately considered as an orientation and scale tunable detector. The banks of 
Gabor filters are a group of wavelet, which one can capture the signal or feature at a 
specific frequency and a specific orientation. There are some approaches based on 
Gabor filters, which focus on the rotation invariant texture in [3-8], but most of them 
only work well on a small database and need a lot of samples for training. Haley and 
Manjunath used 13 classes of textures to obtain 96.4% correct classification, however 
only 80.4% on 109 classes of textures [4]. Tan used 15 classes of textures to obtain 
89.3% correct classification [5]. Manthalkar and Biswas obtained 81.02% correct 
classification on 60 classes of textures [6].  

The motivation of this paper is to classify rotation invariant textures in a large tex-
ture database from the Brodatz album with 1998 rotated texture images derived from 
them by extracting global and local Gabor wavelet based features. The algorithm 
discussed in this paper is based on a feature space constructed from Gabor filter re-
sponses, in which each texture has the corresponding (unique) global feature and 
circular shift local feature. Then, a similarity measure, which combined the global and 
local features, is used to compare the unknown samples with the feature of known 
textures. The primary experiments have proven that the approach performs well in 

applications, and only requires one sample of each texture class at D0 for training. 

2   Gabor Wavelet 

A two-dimensional Gabor function consists of a complex sinusoidal plane wave of 
some frequency and orientations, modulated by a two- dimensional Gaussian enve-
lope. A ‘canonical’ Gabor filter ),( yxg and its Fourier transform ),( vuG  can be 

written as: 
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Where xu πσσ 21= , and yv πσσ 21= . Gabor functions form a complete but 

nonorthogonal basis set. Expanding a signal using this basis provides a localized fre-
quency description. A class of self-similar functions, referred to as Gabor wavelets in 
the following discussion, is now considered. Let ),( yxg  be the mother Gabor wave-

let, then this self-similar filter dictionary can be obtained by appropriate dilations and 
rotations of ),( yxg  through the generating function [9]: 

),(),( '' yxgayxg m
mn

−= , 1>a , integer, =nm  

)sincos(' θθ yxax m += − , )cossin(' θθ yxay m +−= −  

(3) 

Where Knπθ = , k  is the total number of orientations, n is the orientation and m  

is the scale of the Gabor wavelet, respectively. According to the scheme, the space 

frequency plane is covered nearly uniformly. The scale factor ma−  in Eq.(3) ensures 
that the energy is independent of m . 
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Let lU  and hU  represent the lower and upper center frequencies of interest. Let 

K  be the number of orientations and S  be the number of scales in the decomposition. 
Then, the design strategy is to ensure that half peak magnitude cross-section of the 
filter responses in the frequency spectrum touch each other. This results in the follow-

ing formulas for computing the filter parameters uσ  and vσ  (and thus xσ  and yσ ). 
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Where hUW = , Kπθ = , and 1,,1,0 −= Sm … . 



 Rotation Invariant Texture Classification Using Gabor Wavelets 13 

Most Gabor filters have a slight response to the absolute intensity. This results in 
sensitivity to the background luminance level, which signifies a first order difference 
between regions. This can be avoided by adding a constant to make them zero mean. 
Because the Gabor filter is built in the Fourier domain, this same purpose (effect) is 
achieved by setting G(0,0)=0. 

3   Feature Extractions and Classification 

3.1   Texture Representation 

Given an image ),( yxI of size NM ∗ , its discrete Gabor wavelet transform is 

given by convolution: 

∑∑ ∗−−=
p q

mnmn qpgqypxIyxH ),(),(),(  (8) 

Where p , q  are the filter mask size variables, ),( qpgmn
∗  is the complex conjugate 

of mng . 

A set of Gabor wavelet of different scale and orientation is convolved with an image 
to estimate the magnitude of local frequency of the appropriate scale and orientation.  

It is assumed that the texture regions are spatially homogeneous. So after applying 
Gabor filters on the image with orientation at different scale, the ‘energy’ content is 
obtained using: 

∑∑=
M N

mn yxHnmE ),(),(  (9) 

The mean mnμ  and standard deviation mnσ  of the magnitude of the transform co-

efficients are used to construct two-group (local and global) features to represent the 
homogeneous textures. 
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If mnσ  and mnμ  are combined to a vector ),(),( mnmnnmWr σμθ =  as the 

unique feature at a certain orientation at a specific scale, the first group feature is 
denoted as the local feature: 
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For convenience, typical matrix indexing is used in FG , ),()1,1( 00 θWrFG =  

and ),( 11 −−= KSSK WrFG θ . Another group of the texture features is obtained from 

sum of a certain frequency mW  at all orientations: 

∑=
n

nmm WrE ),( θ  (12) 

Because the scheme of Gabor filter design have covered all space frequency plane 
nearly uniformly, a global rotation invariant feature vector can formed as 

],,[ 21 SEEEE …= . 

3.2   Rotation Invariant Measurement 

In this paper, the anisotropic textures are emphasized as which we paid more atten-
tions to them. Because a texture is perfectly homogeneous and isotropic, any texture 
descriptor would be rotation invariant. So, due to the anisotropic textures, a hypothe-
sis is always correct in saying that there is a dominant pair of orientation and fre-

quency in its Fourier spectrum, which means there is a ),( nmWr θ  with highest 

energy. 
Now, a column-wise circular shift of local feature matrix FG  can be defined as: 

))1:1,:1(   ):,:1(( −= kSFGKkSFGFGk  (13) 

This column-wise circular shift operation is used to rearrange local feature matrix 

FG  so that its dominant orientation can be in the first column of kFGFG =' . 

Now, the direct distance metric can be defined between the query image Q  and a 

target image T  in the database as: 
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Based on the local feature matrix 'FG  and global feature vector E , three differ-
ential factors can be defined as: 
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Actually, in this paper, the texture similarity measurements are accomplished by 
defining the differentia measurement: 

)min( DFGE dfdfdfdf ∗∗=  (19) 

This similarity measurement is the rotation invariant, and emphasis that variety ra-
tio of global and local ‘energy’ between the query image Q  and a target image T  is 

smallest if Q  is the same as or very similar to T . 

4   Experiments 

In order to test the efficiency of the proposed method for rotation invariant texture 
analysis, experiments are carried out on a texture database from the Brodatz texture 
album, which is comprised of 111 texture images of size 512512× . Each center 

portion of size 256256×  from the respective texture image of size 512512×  is 
used in the training phase. In the same way, the samples for testing can be obtained  
 
Table 1. Results of rotated texture classification using the proposed approach with various 
scale and orientation values  

Parameters Parameters Parameters

Scale 
Orienta-

tion 

Correct 
classifica-
tion rate Scale

Orienta-
tion 

Correct 
classifica-
tion rate Scale

Orienta-
tion 

Correct 
classifica-
tion rate 

3 4 85.0% 4 4 91.3% 5 4 93.6% 

3 5 87.7% 4 5 92.7% 5 5 92.9% 

3 6 88.3% 4 6 94.8% 5 6 95.1% 
3 7 88.6% 4 7 92.8% 5 7 92.3% 
3 8 90.2% 4 8 95.3% 5 8 95.2% 
3 9 89.5% 4 9 92.9% 5 9 91.7% 
3 10 91.3% 4 10 95.1% 5 10 95.1% 
3 11 92.0% 4 11 92.8% 5 11 92.7% 
3 12 90.1% 4 12 96.0% 5 12 95.3% 

Mean with 
scale=3 

89.2% 
Mean with 
scale=4 

93.7% 
Mean with 
scale=5 

93.8% 
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but rotated in steps of D10  up to D180 . Texture classification is done with a total of 

1998 rotated texture images )199818111( =×  for various combinations of scale 

and orientation values of Gabor decomposition (scale is from 3 up to 5; orientation 
from 4 up to 12). The center frequencies for Gabor filters are 0.05-0.4 and separated 
by one octave-frequency bandwidth. 

The results obtained for various combinations of scale and orientation values of 
Gabor decomposition are given in Table 1. From Table 1, it can be shown that the 
lowest mean correct classification rate of 85.0% is obtained at scale=3 and orienta-
tion=4 with 28 features (24 features of local feature matrix G  plus 4 features of 
global feature vector E ), and the highest mean correct classification rate of 96.0% is 
obtained at scale=4 and orientation=12 with 100 features (96 features of local feature 
matrix G  plus 4 features of global feature vector E ). The next highest mean cor-
rect classification rate of 95.3% is at scale=5 and orientation=12 with 125 features 
(120 features of local feature matrix G  plus 5 features of global feature vector E ), 
and at scale=4 and orientation=8 with 68 features (64 features of local feature matrix 
G  plus 4 features of global feature vector E ). And it is showed that the correct 
classification rates increase approximately with scales and orientations increasing. 
But, when scale is larger than 4, there is no vast difference between the mean classi-
fication rate obtained for different combination of scale and orientation values of 
Gabor decomposition. In practice, the best combination can be decided by taking 
into account the tradeoff (compromise) of the number of features and the minimum 
correct classification rate. 

5   Conclusions 

A rotation invariant texture classification scheme using two group features (global 
feature vector and local feature matrix) based on the Gabor wavelet is developed for a 
reasonably large (111 classes) texture databases. Two group features, i.e. the global 
feature vector and local feature matrix, can be constructed by the mean and variance 
of the Gabor filtered image. Global feature vector is rotation invariant, and local fea-
ture matrix can be adjusted by a circular shift operation to rotation invariant so that all 
images have the same dominant direction. By the two group features, a discriminant 
can be found to classify rotated images. The primary experiments have proven that 
the proposed approach is effective for rotation invariant texture classification.  

There are many application areas such as automated inspection, large image data-
base handling, remote sensing and medical image processing. Further research should 
include its robustness to image noise, and scale invariant texture classification. 
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