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Abstract. Multi-agent reinforcement learning for multi-robot systems is a 
challenging issue in both robotics and artificial intelligence. But multi-agent 
reinforcement learning is bedeviled by the curse of dimensionality. In this paper, a 
novel hierarchical reinforcement learning approach named MOMQ is presented 
for multi-robot cooperation. The performance of MOMQ is demonstrated in 
three-robot trash collection task. 
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1   Introduction 

Multi-Robot Systems (MRSs) can often be used to fulfil the tasks that are difficult to 
be accomplished by an individual robot, especially in the presence of uncertainties, 
incomplete information, distributed control, and asynchronous computation, etc. So 
MRSs have received considerable attention during the last decade [1][2]. Currently, 
there has been a great deal of research on multi-agent reinforcement learning (MARL) 
in MRSs [3]. Multi-agent reinforcement learning allows participating robots to learn 
mapping from their states to their actions by rewards or payoffs obtained through 
interacting with their environment. MRSs can benefit from MARL in many aspects. 
Robots in MRSs are expected to coordinate their behaviors to achieve their goals. 
These robots can either obtain cooperative behaviors or accelerate their learning speed 
through learning [4]. But MARL is bedeviled by the curse of dimensionality. 

Two methods for combating the curse of dimensionality are function approximation 
and hierarchical decomposition. Function approximation is aimed at approximating 
and thereby compacting a value function. Hierarchical approaches use structure in the 
representation to try to compact the representation and have the potential to reduce the 
exponential growth in the size of the state space to linear in the number of variables. 
Hierarchical solution involves multiple levels or stages of decision making that 
together solve the whole problem. Several alternative frameworks for hierarchical 
reinforcement learning (HRL) have been proposed [5], including Options [6], HAMs 
[7] and MAXQ [8]. Ghavamzadeh et al [9] extended MAXQ method for single agent 
HRL to multi-agent cooperative HRL. MAXQ has a number of notable features. 
MAXQ represents the value of each state in a subtask as a decomposed sum of 
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completion values. MAXQ allows subtask policies to be reused in different contexts. 
The final MAXQ feature to be highlighted is the opportunity for state abstraction [8]. 
State abstraction is key to reducing the storage requirements and improving the 
learning efficiency. State abstraction means that multiple states are aggregated and 
one completion value stored for the aggregate state in a subtask. But in the MAXQ 
framework the ability of state abstraction is limited. For example, in the multi-agent 
taxi domain [8] and the multi-robot trash collection task [9] the subtask navigate 
cannot be decomposed into more refined MAXQ subtask. On the other hand, the 
hierarchies are difficult to be discovered automatically. 

In this paper, a novel multi-agent hierarchical reinforcement learning approach 
named MOMQ (Multi-robot Option-MaxQ) by integrating Options into MAXQ is 
presented for multi-robot cooperation. In the MOMQ framework, the MAXQ 
framework is used to introduce knowledge into reinforcement learning and the Option 
framework is used to construct hierarchies automatically. 

2   MOMQ Framework 

The MOMQ is based on the multi-agent cooperative MAXQ method in [8]. Consider 
sending a team of robots to pick up trash from trash cans over an extended area and 
accumulate it into one centralized trash bin, from where it might be sent for recycling 
or disposed. It is assumed that the robots are homogeneous, i.e., all robots are given 
the same task hierarchy. At each level of the hierarchy, the designer of the system 
defines cooperative subtasks to be those subtasks in which coordination among robots 
significantly increases the performance of the overall task. The set of all cooperative 
subtasks at a certain level of the hierarchy is called the cooperation set of that level. 
Each level of the hierarchy with non-empty cooperation set is called a cooperation 
level. The union of the children of the lth level cooperative subtasks is represented by 
Ul. Robots actively coordinate only while making decision at cooperative subtasks 
and are ignorant about the other robots at non-cooperative subtasks. Therefore, 
cooperative subtasks are configured to model joint-action values. An simulation 
experiment environment with three robots (R1, R2, and R3) is shown in Fig.1(a). 
Robots need to learn three skills here. First, how to do each subtask, such as navigate 
to trash cans T1, T2, or T3 or Dump, and when to perform Pick or Put action. Second, 
the order to do the subtasks, for instance go to T1 and collect trash before heading to 
Dump. Finally, how to coordinate with each other, i.e., robot R1 can pick up trash 
from T1 whereas robot R2 can service T2, and so on. The overall task is decomposed 
into a collection of primitive actions and temporally extended (non-primitive) 
subtasks that are important for solving the problem. The non-primitive subtasks in the 
trash collection task are root (the whole trash collection task), collect T1, T2, and T3, 
navigate to T1, T2, T3, and Dump. Each of these subtasks has a set of termination 
states, and terminates when reaches one of its termination states. Primitive actions are 
always executable and terminate immediately after execution. After defining subtasks, 
we must indicate for each subtask, which other primitive or non-primitive subtasks it 
should employ to reach its goal. For example, navigate to T1, T2, T3, and Dump use 
four primitive up, down, left, right. Collect T1 should use two subtasks navigate to T1 
and Dump plus two primitive actions Put and Pick, and so on. The problem is how to 
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navigate efficiently in a large-scale environment. MOMQ framework can now be 
illustrated according to Fig.1(b). Imagine the robots start to learn the task with same 
MOMQ graph structure. The robots need to learn the fourth skill, i.e., how to 
construct the Options automatically. 

The MOMQ method decomposes an MDP (Markov decision process) M into a set 
of subtasks M0; M1...Mn, where M0 is the root task and solving it solves the entire 
MDP M. Each non-primitive subtask is a six tuple (Si, Ii, πi, Ti, Ai, Ri). Si is the state 
space for subtask i. It is described by those state variables that are relevant to subtask 
i. The range of the state variables describing Si might be a subset of their range in S, 
the state space of the overall task MDP M. Ii is the initiation set for subtask i. Subtask 
i could start only in state s ∈ Ii. πi is the policy for subtask i can only be executed if 
the current state s ∈ (Si – Ti). The hierarchical policy is executed using a stack 
discipline similar to ordinary programming languages. Each subtask policy takes a 
state and returns the name of a primitive action to execute or the name of a subtask to 
invoke. Ti is the set of terminal states for subtask i. Subtask i terminates when it 
reaches a state in Ti. Ai is the set of actions that can be performed to achieve subtask i. 
These actions can either be primitive actions from A (the set of primitive actions for 
MDP M) or they can be other subtasks. Ri is the pseudo reward function, which 
specifies a pseudo-reward for each transition from a state s ∈ (Si – Ti) to a terminal 
state s ∈ Ti. This pseudo-reward tells how desirable each of the terminal states is for 
this particular subtask. The initial decomposition does not include the Option level. 
The Options are constructed and inserted into the task graph automatically during 
learning. Then, the Options play the same roles as other sub-tasks. 

Each primitive action a is a primitive subtask in this decomposition, such that a is 
always executable, it terminates immediately after execution, and it's pseudo-reward 
function uniformly is zero. The projected value function Vπ is the value of executing 
hierarchical policy starting in state s, and at the root of the hierarchy. The completion 
function (Cπ(i, s, a)) is the expected cumulative discounted reward of completing 
subtask Mi after invoking the subroutine for subtask Ma in state s. The (optimal) value 
function Vt(i, s) for doing task i in state s is calculated by decomposing it into two 
parts as in (1): the value of the subtask which is independent of the parent task, and 
the value of the completion of the task, which of course depends on the parent task. 
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where Qt(i, s, a) is the action value of doing subtask a in state s in the context of 
parent task i. 

In cooperative level, The joint completion function for robot j, Cj(i, s, a1,..., aj-1, 
aj+1,...an, aj), is the expected discounted cumulative reward of completing cooperative 
subtask i after taking subtask aj in state s while other robots performing subtasks ak, 
∀k ∈ {1,…, n}, k ≠ j. The reward is discounted back to the point in time where aj 
begins execution. (a1,..., an) is a joint-action in the action set of i. More precisely, the 
decomposition equations used for calculating the value function V for cooperative 
subtask i of robot j have the forms as in (2), 
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3   MOMQ Algorithms 

According to prior knowledge, the designer firstly constructs the initial MOMQ task 
graph manually. Then the MOMQ algorithms construct the completed MOMQ task 
graph and learn it automatically, which can be outlined as follows: 

1) Interact with environment and learn using MOMQ learning algorithm. 
2) If the MOMQ constructing algorithm was invoked previously, then go to 1). 
3) Run state transition graph constructing algorithm. 
4) If there is no new states being encountered for the last Y episodes (task-

dependent), then go to 5), else go to 1). 
5) Run MOMQ constructing algorithm. Go to 1). 

Consider an undirected edge-weighted graph G=(P, E, W), P is the set of nodes, 
each visited state will become a node in the graph, E is the set of edges, and W is the 
(|P| - 1) × (|P| - 1) upper triangular matrix of weights. In the initial phase of the 
MOMQ learning procedure, The state transition graph G=({s0}, Φ, [0]), where, s0∈S 
is the initial state, Φ means empty set. The state transition graph constructing 
algorithm is shown as follows: 

For each observed transition si→sj (si,sj∈S, si≠sj) Do 
  If sj∉P then 
    P ← P ∪ {sj}; E ← E ∪ {(si, sj)} 
    Extend W with [0…0 1 0…0]T, the ith element is 1. 
  Else 
    If i>j then  wij=wij+1  else  wji=wji+1  End If 
  End If 
End For 

The MOMQ constructing algorithm is proposed basing the aiNet, an artificial 
immune network model proposed in [10]. The aiNet can be defined as an edge-
weighted graph, not necessarily fully connected, composed of a set of nodes, called 
cells, and sets of node pairs called edges. Each connected edge has a number 
assigned, called weight or connection strength. The aiNet can be used for data 
clustering. However, it has many drawbacks such as its high number of user-defined 
parameters, its computational cost per iteration O(p3) with relation to the length p of 
the input vectors, and the network sensitivity to the suppression threshold. In this 
paper, we improve the aiNet by initiating the aiNet with vaccine inoculation, i.e. the 
node information of the state transition graph, and leaving out the clonal procedure. 
The Ag-Ab affinity is measured by a topological distance metric (dissimilarity) 
between them. Oppositely, the Ab-Ab affinity is defined by a similarity metric 
between them. The MOMQ constructing algorithm works as follows: 

1) Initiate aiNet with vaccine inoculation: set C = P, and S = W, where, C is a 
matrix containing all the network cells, and S is the network Ab-Ab affinity matrix. 
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2) For each antigen i (responding to si ∈ P), do: 
a) Determine Ag-Ab affinity matrix D; 
b) Select ξ% of the highest affinity cells to create a memory cell matrix M; 
c) Eliminate those cells whose affinity is inferior to threshold σ, yielding a 
reduction in the size of the M matrix; 
d) Calculate S,  
e) Eliminate sij < σ (clonal suppression); 
f) Concatenate C and M, (C=[C;M]); 

3) Determine S, and eliminate those cells whose sij < σ (network suppression); 
4) Replace r% of the worst cells; 
5) If the network reaches a pre-defined number k of cells then go to 6) else go to 2); 
6) M ← C; 
7) Each memory cell mj governs a cluster. The cluster is comprised of the states 
responding to those antigens of which mj is their highest affinity cell. One cluster 
corresponds to an Option. 
8) Insert constructed Options into the MOMQ task graph. 

In the MOMQ framework, the Q values and the C values can be learned through a 
standard temporal-difference learning method, based on sample trajectories [7]. One 
important point to note here is that since subtasks are temporally extended in time, the 
update rules used here are based on the SMDP (semi-MDP) model. The pseudo code 
of MOMQ learning algorithm is shown as follows, which is similar with the 
cooperative HRL algorithm in [8]. 

Function MOMQ(Robots j, Task i at the lth level, State s) 
  Seq ← {} 
  If i is a primitive action Then 
    Execute action i in state s 
    receive reward r(s'| s, i) 
    observe state s' 
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    Push (state s, actions in {Ul| l is a cooperation 
    level} being performed by the other robots) onto 
    the front of Seq 
  Else 
    While i has not terminated Do 
      If i is a cooperative subtask Then 
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        End For 
      Else /* i is not a cooperative subtask */ 
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        End For 
      End If 
      Append ChildSeq onto the front of Seq 
      s = s' 
    End While 
  End If 
  Return Seq 
End MOMQ 

4   Simulation Experiments 

Consider the three-robot trash collection domain shown as in Fig. 1. Each robot starts 
in a random location and learns the task of picking up trash from T1, T2, and T3 and 
depositing it into the Dump. There are six primitive actions in this domain: (a) four 
navigation actions that move the robot one square Up, Down, Left, or Right, (b) a Pick 
action, and (c) a Put action. Each action is deterministic. The goal state is reached 
when trash from T1, T2, and T3 has been deposited in Dump. The environment space 
is partitioned into 64 states by grids. The robots do not know the structure of the 
environment but they can sense their locations. We apply the MOMQ algorithms to 
this problem, and compare its performance with the cooperative HRL algorithm in the 
multi-agent MAXQ framework [8]. 

In the experiments, there is a reward of -1 for each action and an additional reward 
of +20 for successfully depositing the trash into the Dump. There is a reward of -10 if 
the robot attempts to execute the Put or Pick actions illegally. If a navigation action 
would cause the robot to hit a wall, the action is a no-op, and there is only the usual 
reward of -1. The discount factor is set to γ=0.9. The initial Q-values are set to 0 and 
the learning rate is a constant α=0.1. A ε-greedy exploration is used for both 
algorithms, with ε=0.3. The constructing algorithm is initiated if no new state is 
observed in the last Y=2 episodes. Set the values of the parameters in the MOMQ 
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constructing algorithm as follows: ξ=20, r=5, σ=0.1, and k=10, experimentally. Each 
experiment is repeated ten times and the results averaged. 

Using MOMQ framework, we designed the initial task graph, the same as the 
MAXQ task graph. During learning procedure, the environment is explored and six 
Options (Opt1,…, Opt6) are automatically constructed for Navigate action. The 
completed MOMQ task graph is shown in Fig.1(b). According to the constructed 
Options, the state space of the environment is partitioned into six regions as shown in 
Fig.2(a). The state space of each Option is reduced to below 20% of the whole 
environment space. As a result, the solving space for the Navigate action of the three 
robots is reduced to about 1/10124. It is natural that the convergence is sped up in a 
smaller space. Such advantage is shown in Fig.2. 
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Fig. 1. The constructed results: (a) the constructed Options for Navigate action, and (b) the 
constructed MOMQ task graph 
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Fig. 2. Performance comparison of MOMQ with MAXQ 
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5   Conclusions 

We described an approach, named MOMQ, for multi-robot cooperation by integrating 
Options into the MAXQ hierarchical reinforcement learning method. In the MOMQ 
framework, the MAXQ framework is used to introduce knowledge into reinforcement 
learning and the Option framework is used to construct hierarchies automatically. The 
MOMQ is more practical than MAXQ in partial known environment. The advantage 
performance of MOMQ is demonstrated in three-robot trash collection task and 
compared with MAXQ. The success of this approach depends of course on providing 
it with not only a good initial hierarchy but also a good learning ability. 
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