
Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 90–97, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multi-robot Cooperation Based on Hierarchical
Reinforcement Learning

Xiaobei Cheng, Jing Shen, Haibo Liu, and Guochang Gu

College of Computer Science and Technology, Harbin Engineering University,
Harbin 150001, China

adbccxb1306@sina.com.cn, {liuhaibo, shenjing,
guguochang}@hrbeu.edu.cn

Abstract. Multi-agent reinforcement learning for multi-robot systems is a
challenging issue in both robotics and artificial intelligence. But multi-agent
reinforcement learning is bedeviled by the curse of dimensionality. In this paper, a
novel hierarchical reinforcement learning approach named MOMQ is presented
for multi-robot cooperation. The performance of MOMQ is demonstrated in
three-robot trash collection task.

Keywords: multi-robot, cooperation, hierarchical reinforcement learning.

1 Introduction

Multi-Robot Systems (MRSs) can often be used to fulfil the tasks that are difficult to
be accomplished by an individual robot, especially in the presence of uncertainties,
incomplete information, distributed control, and asynchronous computation, etc. So
MRSs have received considerable attention during the last decade [1][2]. Currently,
there has been a great deal of research on multi-agent reinforcement learning (MARL)
in MRSs [3]. Multi-agent reinforcement learning allows participating robots to learn
mapping from their states to their actions by rewards or payoffs obtained through
interacting with their environment. MRSs can benefit from MARL in many aspects.
Robots in MRSs are expected to coordinate their behaviors to achieve their goals.
These robots can either obtain cooperative behaviors or accelerate their learning speed
through learning [4]. But MARL is bedeviled by the curse of dimensionality.

Two methods for combating the curse of dimensionality are function approximation
and hierarchical decomposition. Function approximation is aimed at approximating
and thereby compacting a value function. Hierarchical approaches use structure in the
representation to try to compact the representation and have the potential to reduce the
exponential growth in the size of the state space to linear in the number of variables.
Hierarchical solution involves multiple levels or stages of decision making that
together solve the whole problem. Several alternative frameworks for hierarchical
reinforcement learning (HRL) have been proposed [5], including Options [6], HAMs
[7] and MAXQ [8]. Ghavamzadeh et al [9] extended MAXQ method for single agent
HRL to multi-agent cooperative HRL. MAXQ has a number of notable features.
MAXQ represents the value of each state in a subtask as a decomposed sum of

 Multi-robot Cooperation Based on Hierarchical Reinforcement Learning 91

completion values. MAXQ allows subtask policies to be reused in different contexts.
The final MAXQ feature to be highlighted is the opportunity for state abstraction [8].
State abstraction is key to reducing the storage requirements and improving the
learning efficiency. State abstraction means that multiple states are aggregated and
one completion value stored for the aggregate state in a subtask. But in the MAXQ
framework the ability of state abstraction is limited. For example, in the multi-agent
taxi domain [8] and the multi-robot trash collection task [9] the subtask navigate
cannot be decomposed into more refined MAXQ subtask. On the other hand, the
hierarchies are difficult to be discovered automatically.

In this paper, a novel multi-agent hierarchical reinforcement learning approach
named MOMQ (Multi-robot Option-MaxQ) by integrating Options into MAXQ is
presented for multi-robot cooperation. In the MOMQ framework, the MAXQ
framework is used to introduce knowledge into reinforcement learning and the Option
framework is used to construct hierarchies automatically.

2 MOMQ Framework

The MOMQ is based on the multi-agent cooperative MAXQ method in [8]. Consider
sending a team of robots to pick up trash from trash cans over an extended area and
accumulate it into one centralized trash bin, from where it might be sent for recycling
or disposed. It is assumed that the robots are homogeneous, i.e., all robots are given
the same task hierarchy. At each level of the hierarchy, the designer of the system
defines cooperative subtasks to be those subtasks in which coordination among robots
significantly increases the performance of the overall task. The set of all cooperative
subtasks at a certain level of the hierarchy is called the cooperation set of that level.
Each level of the hierarchy with non-empty cooperation set is called a cooperation
level. The union of the children of the lth level cooperative subtasks is represented by
Ul. Robots actively coordinate only while making decision at cooperative subtasks
and are ignorant about the other robots at non-cooperative subtasks. Therefore,
cooperative subtasks are configured to model joint-action values. An simulation
experiment environment with three robots (R1, R2, and R3) is shown in Fig.1(a).
Robots need to learn three skills here. First, how to do each subtask, such as navigate
to trash cans T1, T2, or T3 or Dump, and when to perform Pick or Put action. Second,
the order to do the subtasks, for instance go to T1 and collect trash before heading to
Dump. Finally, how to coordinate with each other, i.e., robot R1 can pick up trash
from T1 whereas robot R2 can service T2, and so on. The overall task is decomposed
into a collection of primitive actions and temporally extended (non-primitive)
subtasks that are important for solving the problem. The non-primitive subtasks in the
trash collection task are root (the whole trash collection task), collect T1, T2, and T3,
navigate to T1, T2, T3, and Dump. Each of these subtasks has a set of termination
states, and terminates when reaches one of its termination states. Primitive actions are
always executable and terminate immediately after execution. After defining subtasks,
we must indicate for each subtask, which other primitive or non-primitive subtasks it
should employ to reach its goal. For example, navigate to T1, T2, T3, and Dump use
four primitive up, down, left, right. Collect T1 should use two subtasks navigate to T1
and Dump plus two primitive actions Put and Pick, and so on. The problem is how to

92 X. Cheng et al.

navigate efficiently in a large-scale environment. MOMQ framework can now be
illustrated according to Fig.1(b). Imagine the robots start to learn the task with same
MOMQ graph structure. The robots need to learn the fourth skill, i.e., how to
construct the Options automatically.

The MOMQ method decomposes an MDP (Markov decision process) M into a set
of subtasks M0; M1...Mn, where M0 is the root task and solving it solves the entire
MDP M. Each non-primitive subtask is a six tuple (Si, Ii, πi, Ti, Ai, Ri). Si is the state
space for subtask i. It is described by those state variables that are relevant to subtask
i. The range of the state variables describing Si might be a subset of their range in S,
the state space of the overall task MDP M. Ii is the initiation set for subtask i. Subtask
i could start only in state s ∈ Ii. πi is the policy for subtask i can only be executed if
the current state s ∈ (Si – Ti). The hierarchical policy is executed using a stack
discipline similar to ordinary programming languages. Each subtask policy takes a
state and returns the name of a primitive action to execute or the name of a subtask to
invoke. Ti is the set of terminal states for subtask i. Subtask i terminates when it
reaches a state in Ti. Ai is the set of actions that can be performed to achieve subtask i.
These actions can either be primitive actions from A (the set of primitive actions for
MDP M) or they can be other subtasks. Ri is the pseudo reward function, which
specifies a pseudo-reward for each transition from a state s ∈ (Si – Ti) to a terminal
state s ∈ Ti. This pseudo-reward tells how desirable each of the terminal states is for
this particular subtask. The initial decomposition does not include the Option level.
The Options are constructed and inserted into the task graph automatically during
learning. Then, the Options play the same roles as other sub-tasks.

Each primitive action a is a primitive subtask in this decomposition, such that a is
always executable, it terminates immediately after execution, and it's pseudo-reward
function uniformly is zero. The projected value function Vπ is the value of executing
hierarchical policy starting in state s, and at the root of the hierarchy. The completion
function (Cπ(i, s, a)) is the expected cumulative discounted reward of completing
subtask Mi after invoking the subroutine for subtask Ma in state s. The (optimal) value
function Vt(i, s) for doing task i in state s is calculated by decomposing it into two
parts as in (1): the value of the subtask which is independent of the parent task, and
the value of the completion of the task, which of course depends on the parent task.

),,(),(),,(

),|'(),|'(

))(,,(max
),(

'

asiCsaVasiQ

primitiveisiifissRissP

compositeisiifssiQ
siV

s

ia

πππ

π
π π

+=

⎪⎩

⎪
⎨
⎧

= ∑ (1)

where Qt(i, s, a) is the action value of doing subtask a in state s in the context of
parent task i.

In cooperative level, The joint completion function for robot j, Cj(i, s, a1,..., aj-1,
aj+1,...an, aj), is the expected discounted cumulative reward of completing cooperative
subtask i after taking subtask aj in state s while other robots performing subtasks ak,
∀k ∈ {1,…, n}, k ≠ j. The reward is discounted back to the point in time where aj
begins execution. (a1,..., an) is a joint-action in the action set of i. More precisely, the
decomposition equations used for calculating the value function V for cooperative
subtask i of robot j have the forms as in (2),

 Multi-robot Cooperation Based on Hierarchical Reinforcement Learning 93

),...,,,...,,,(),(),...,,,...,,,(

))(,,...,,,...,,,(),...,,...,,,(
111111

111111

njjjjjnjjj

j
i

njjjnjjj

aaaasiCsaVaaaasiQ

saaaasiQaaaasiV
+−+−

+−+−

+=

= π
. (2)

3 MOMQ Algorithms

According to prior knowledge, the designer firstly constructs the initial MOMQ task
graph manually. Then the MOMQ algorithms construct the completed MOMQ task
graph and learn it automatically, which can be outlined as follows:

1) Interact with environment and learn using MOMQ learning algorithm.
2) If the MOMQ constructing algorithm was invoked previously, then go to 1).
3) Run state transition graph constructing algorithm.
4) If there is no new states being encountered for the last Y episodes (task-

dependent), then go to 5), else go to 1).
5) Run MOMQ constructing algorithm. Go to 1).

Consider an undirected edge-weighted graph G=(P, E, W), P is the set of nodes,
each visited state will become a node in the graph, E is the set of edges, and W is the
(|P| - 1) × (|P| - 1) upper triangular matrix of weights. In the initial phase of the
MOMQ learning procedure, The state transition graph G=({s0}, Φ, [0]), where, s0∈S
is the initial state, Φ means empty set. The state transition graph constructing
algorithm is shown as follows:

For each observed transition si→sj (si,sj∈S, si≠sj) Do
 If sj∉P then
 P ← P ∪ {sj}; E ← E ∪ {(si, sj)}
 Extend W with [0…0 1 0…0]T, the ith element is 1.
 Else
 If i>j then wij=wij+1 else wji=wji+1 End If
 End If
End For

The MOMQ constructing algorithm is proposed basing the aiNet, an artificial
immune network model proposed in [10]. The aiNet can be defined as an edge-
weighted graph, not necessarily fully connected, composed of a set of nodes, called
cells, and sets of node pairs called edges. Each connected edge has a number
assigned, called weight or connection strength. The aiNet can be used for data
clustering. However, it has many drawbacks such as its high number of user-defined
parameters, its computational cost per iteration O(p3) with relation to the length p of
the input vectors, and the network sensitivity to the suppression threshold. In this
paper, we improve the aiNet by initiating the aiNet with vaccine inoculation, i.e. the
node information of the state transition graph, and leaving out the clonal procedure.
The Ag-Ab affinity is measured by a topological distance metric (dissimilarity)
between them. Oppositely, the Ab-Ab affinity is defined by a similarity metric
between them. The MOMQ constructing algorithm works as follows:

1) Initiate aiNet with vaccine inoculation: set C = P, and S = W, where, C is a
matrix containing all the network cells, and S is the network Ab-Ab affinity matrix.

94 X. Cheng et al.

2) For each antigen i (responding to si ∈ P), do:
a) Determine Ag-Ab affinity matrix D;
b) Select ξ% of the highest affinity cells to create a memory cell matrix M;
c) Eliminate those cells whose affinity is inferior to threshold σ, yielding a
reduction in the size of the M matrix;
d) Calculate S,
e) Eliminate sij < σ (clonal suppression);
f) Concatenate C and M, (C=[C;M]);

3) Determine S, and eliminate those cells whose sij < σ (network suppression);
4) Replace r% of the worst cells;
5) If the network reaches a pre-defined number k of cells then go to 6) else go to 2);
6) M ← C;
7) Each memory cell mj governs a cluster. The cluster is comprised of the states
responding to those antigens of which mj is their highest affinity cell. One cluster
corresponds to an Option.
8) Insert constructed Options into the MOMQ task graph.

In the MOMQ framework, the Q values and the C values can be learned through a
standard temporal-difference learning method, based on sample trajectories [7]. One
important point to note here is that since subtasks are temporally extended in time, the
update rules used here are based on the SMDP (semi-MDP) model. The pseudo code
of MOMQ learning algorithm is shown as follows, which is similar with the
cooperative HRL algorithm in [8].

Function MOMQ(Robots j, Task i at the lth level, State s)
 Seq ← {}
 If i is a primitive action Then
 Execute action i in state s
 receive reward r(s'| s, i)
 observe state s'

),|'()(),())(1(),(1 issrisiVisiV j
t

j
t

j
t

j
t αα +−←+ /*)(ij

tα is the learning rate*/

 Push (state s, actions in {Ul| l is a cooperation
 level} being performed by the other robots) onto
 the front of Seq
 Else
 While i has not terminated Do
 If i is a cooperative subtask Then

 Choose action aj according to),...,,,...,,(111 njjj
i aaaas +−π

 ChildSeq ← MOMQ(j, aj, s)

 Observe result state s' and njj aaaa ,...,,,..., 111 +−

)]','()',,...,,...,,([maxarg 111
'

* saVaaaaasiCa j
t

njjj
tAa i

+← +−
∈

 N ← 0

 For each),...,,,...,,(111 njj aaaas +− in ChildSeq from the
 beginning Do
 N ← N + 1

 Multi-robot Cooperation Based on Hierarchical Reinforcement Learning 95

)]',(),,...,,,...,,',([)(

),,...,,,...,,,())(1(

),,...,,,...,,,(

**111

111

111
1

saVaaaaasiCi

aaaaasiCi

aaaaasiC

j
t

njjj
t

Nj
t

jnjjj
t

j
t

jnjjj
t

++

−

←

+−

+−

+−
+

γα

α

 /* where γ is discount factor */
 End For
 Else /* i is not a cooperative subtask */

 Choose action aj according to)(sj
iπ

 ChildSeq ← MOMQ(j, aj, s)
 Observe result state s'

)]','()',,([maxarg '
* saVasiCa j

t
j

tAa i
+← ∈

 N ← 0
 For each s in ChildSeq from the beginning Do
 N ← N + 1

)]',(),',([)(),,())(1(),,(**
1 saVasiCiasiCiasiC j

t
j

t
Nj

t
jj

t
j

t
jj

t ++−←+ γαα

 End For
 End If
 Append ChildSeq onto the front of Seq
 s = s'
 End While
 End If
 Return Seq
End MOMQ

4 Simulation Experiments

Consider the three-robot trash collection domain shown as in Fig. 1. Each robot starts
in a random location and learns the task of picking up trash from T1, T2, and T3 and
depositing it into the Dump. There are six primitive actions in this domain: (a) four
navigation actions that move the robot one square Up, Down, Left, or Right, (b) a Pick
action, and (c) a Put action. Each action is deterministic. The goal state is reached
when trash from T1, T2, and T3 has been deposited in Dump. The environment space
is partitioned into 64 states by grids. The robots do not know the structure of the
environment but they can sense their locations. We apply the MOMQ algorithms to
this problem, and compare its performance with the cooperative HRL algorithm in the
multi-agent MAXQ framework [8].

In the experiments, there is a reward of -1 for each action and an additional reward
of +20 for successfully depositing the trash into the Dump. There is a reward of -10 if
the robot attempts to execute the Put or Pick actions illegally. If a navigation action
would cause the robot to hit a wall, the action is a no-op, and there is only the usual
reward of -1. The discount factor is set to γ=0.9. The initial Q-values are set to 0 and
the learning rate is a constant α=0.1. A ε-greedy exploration is used for both
algorithms, with ε=0.3. The constructing algorithm is initiated if no new state is
observed in the last Y=2 episodes. Set the values of the parameters in the MOMQ

96 X. Cheng et al.

constructing algorithm as follows: ξ=20, r=5, σ=0.1, and k=10, experimentally. Each
experiment is repeated ten times and the results averaged.

Using MOMQ framework, we designed the initial task graph, the same as the
MAXQ task graph. During learning procedure, the environment is explored and six
Options (Opt1,…, Opt6) are automatically constructed for Navigate action. The
completed MOMQ task graph is shown in Fig.1(b). According to the constructed
Options, the state space of the environment is partitioned into six regions as shown in
Fig.2(a). The state space of each Option is reduced to below 20% of the whole
environment space. As a result, the solving space for the Navigate action of the three
robots is reduced to about 1/10124. It is natural that the convergence is sped up in a
smaller space. Such advantage is shown in Fig.2.

T 2

T 1

Dump

R2 R1

2 3

4 5 6

1

T 3

R3

Root

Collect T1 Collect T 2

Pick Navigate
to Dump

Put Navigate
to T2

Navigate
to T1

Up Down Left Right

Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

Designed

Learned

Primitive
actions

Collect T 3

(a) (b)

Fig. 1. The constructed results: (a) the constructed Options for Navigate action, and (b) the
constructed MOMQ task graph

0

50

100

150

1 500 1000 1500 2000

Number of t r i al s

N
um

be
r

of
 t

im
e

st
ep

s
to

 c
om

pl
et

e
th

e
ta

sk

MAXQ
MOMQ

Fig. 2. Performance comparison of MOMQ with MAXQ

 Multi-robot Cooperation Based on Hierarchical Reinforcement Learning 97

5 Conclusions

We described an approach, named MOMQ, for multi-robot cooperation by integrating
Options into the MAXQ hierarchical reinforcement learning method. In the MOMQ
framework, the MAXQ framework is used to introduce knowledge into reinforcement
learning and the Option framework is used to construct hierarchies automatically. The
MOMQ is more practical than MAXQ in partial known environment. The advantage
performance of MOMQ is demonstrated in three-robot trash collection task and
compared with MAXQ. The success of this approach depends of course on providing
it with not only a good initial hierarchy but also a good learning ability.

Acknowledgments. This work is supported by the Young Researchers Foundation of
Heilongjiang under grant QC06C022, the Fundamental Research Foundation of Harbin
Engineering University under grant HEUFT05021, HEUFT05068 and HEUFT07022.

References

1. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: antecedents and
directions. Autonomous Robots, vol.4 (1997) 1-23

2. Fernandez, F., Parker, L.E.: Learning in large cooperative multi-robot domains.
International Journal of Robotics and Automation, vol.16, no.4 (2001) 217-226

3. Touzet, C.F.: Distributed lazy Q-learning for cooperative mobile robots. International
Journal of Advanced Robotic Systems, vol.1, no.1 (2004) 5-13

4. Yang, E., Gu, D.: Multiagent Reinforcement Learning for Multi-Robot Systems: A Survey.
Technical Report CSM-404, University of Essex (2004)

5. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems: Theory and Applications, vol.13, no.4 (2003) 41-77

6. Sutton, R., Precup, D., Singh, S.: Between MDPs and Semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, vol.112 (1999)
181-211

7. Parr, R.: Hierarchical control and learning for Markov decision processes. PhD
dissertation, University of California at Berkeley (1998)

8. Dietterich, T.: Hierarchical reinforcement learning with the MAXQ value function
decomposition," Journal of Artificial Intelligence Research, vol.13 (2000) 227-303

9. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multiagent reinforcement
learning. Journal of Autonomous Agents and Multi-Agent Systems, vol.13 (2006) 197-229

10. de Castro, L.N., Von Zuben, F.N.: An evolutionary immune network for data clustering.
Proceedings of the IEEE Brazilian Symposium on Artificial Neural Networks, vol.1, Rio
de Janeiro, Brazil (2000) 84-89

	Introduction
	MOMQ Framework
	MOMQ Algorithms
	Simulation Experiments
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

