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Abstract. We suggest a network representation of dynamical maps
(such as the logistic map) on the unit interval. The unit interval is par-
titioned into N subintervals, which are associated with ’nodes’ of the
network. A link from node i to j is defined as a possible transition of the
dynamical map from one interval i, to another j. In this way directed
networks more generally allow phasespace representations (i.e. represen-
tations of transitions between different phasespace cells), of dynamical
maps defined on finite intervals. We compute the diameter of these net-
works as well as the average path length between any two nodes. We nu-
merically demonstrate that these network characteristics seem to diverge
at the (first) zeros of the Lyapunov exponent and could thus provide an
alternative measure to detect the ’edge of chaos’ in dynamical systems.
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1 Introduction

Complex systems are often defined as statistical systems with long-range in-
teractions between their elements and which are characterized by a remarkable
stability and – at the same time – by the ability to adapt. These features have
led to view complex systems as systems which are prepared at the edge of chaos.
The edge of chaos is roughly defined as the set of zeros of the maximum Lya-
punov exponent of a dynamical system. It has been realized in the past that
at exactly these points interesting dynamics occurs, see e.g. [1]. In practical cir-
cumstances one is often confronted with the situation that the exact knowledge
of a dynamical system is not available and that the only information given is
in the form of timeseries. A long-standing technical question is how to reliably
compute Lyapunov exponents from a given finite timeseries.

The recent boom in network theory has lead to a number of ways to charac-
terize networks, such as their degree distribution, clustering coefficients, neigh-
boring connectivity, diameter, average path length, betweenness, just to name a
view [2,3].
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The aim of this contribution is to investigate the possibility of using recent
developments in network theory to successfully apply them to the realm of dy-
namical systems. In particular the idea is to use networks as a representation of
the phasespace of a dynamical system and to see whether in this representation
it is possible to get alternative – maybe practical – ways to obtain insights into
dynamical systems. Recently there have been several approaches toward this di-
rection [4,5,6,7,8], each of them following a slightly distinct philosophy. Froyland
et al. [4] propose a method for rigorously computing a metric entropy of dynam-
ical systems based on finite partitions of the phasespace. More recently, Shreim
et al. [5] construct directed networks from the statespace of cellular automata.
An approach very similar to the one presented here was proposed in [6] and was
worked out in some detail in [7]. There they construct an undirected network
from the trajectories of the logistic map and study some of the respective net-
work properties. The difference to our aim here is that their results depend on
the number of trajectories used and the number of iterations of the map (length
of each trajectory).

The paper is organized as follows: In Section 2 we describe how the directed
network can be uniquely constructed from a (one dimensional) map and how
the quantities of interest are defined and computed. In Section 3 we apply this
approach to the logistic and the tent map and discuss the results.

2 Method

As a starting point we consider discrete maps on the unit interval [0, 1] of the
form xt+1 = f(xt). In a first step we partition the unit interval into N equal
disjoint subintervals, Ii ≡ [(i − 1)ε, iε], with i = 1, · · · , N , and the interval size
given by ε ≡ 1/N . To arrive at a network representation of a dynamical map
we assign a node to each subinterval. Imagine that at a given time t the value
of the map falls into subinterval i, i.e. xt ∈ Ii. At the next timestep t + 1 the
value of the map changes to xt+1, which we imagine to fall into subinterval j,
i.e. xt+1 = f(xt) ∈ Ij . We define a (directed) link in the network from node i
to node j whenever the map changes from a value in interval i at some time to
an interval j in the following timestep. Obviously the adjacency matrix A is of
dimensions N × N ; formally, its elements are defined as aij = 1 if, xt ∈ Ii and
(!) xt+1 = f(x) ∈ Ij ; aij = 0, otherwise. More algorithmically one can think
of constructing the network in the following way: We start at the first interval,
I1. We ask to which intervals Ij all the elements in Ii point in the above sense.
For all intervals Ij which can be reached from Ii within one timestep, we create
an entry, a1,j = 1. We continue with the second interval, etc. In this way the
network uniquely maps the dynamics of the map, with a ’resolution’ ε. Note
that in this construction the number of links do not depend on the maximum
number of iterations of the map, T ≡ max(t). This is not the case in [7], where
they recorded transitions from actual realizations of maps; obviously the network
then will depend on T , and the initial condition, x0. A further difference to [7]
is that they symmetrize A, which we do not.
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Fig. 1. In-degree distribution (a), out-degree distribution (b) and shortest distance
distribution (c) for the logistic map with r = 4, for N = 1000 subintervals (nodes)

Given the adjacency matrix one can compute the in- and out-degrees for each
node kin

i , kout
i . The corresponding degree distributions are denoted by P in(k),

P out(k). We further compute the distance matrix D, where the element dij

represents the shortest path from node i to j (number of iterations in the map).
If i and j are not connected, dij = ∞, and the element gets excluded for all
further analysis. From D the distance distribution function is given by P (d) ≡
1

N2

∑
i,j δ(dij − d). The average distance (mean of this distribution) is denoted

by davg ≡ 〈dij〉(i,j), its maximum – the diameter of the network – is dmax ≡
max(dij).

3 Results

3.1 Logistic Map

We apply the above procedure to the logistic map xn+1 = f(xn) = rx(1 − x),
and illustrate it with a small partition N = 4 of the interval [0, 1]. For the
particular choice r = 4 this partition produces the following adjacency and
distance matrices,
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Fig. 2. Adjacency A (a) and distance D (b) matrices of the logistic map for N = 1000
and r = 4. (c) shows D for fixed values of dij = 1, 2, 3 only. These look exactly the
same as the π/2-rotated 2- and 3-fold compositions of the map, f(f(x)), f(f(f(x))) for
r = 4, shown in (d). Plots (e)-(h) show D for r = 0.2, 0.9, 1, 1.2 respectively. White
color corresponds to dij = ∞.
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In Fig. 1 we show P in(k) (a), P out(k) (b) and the distance distribution func-
tion P (d) (c), for r = 4, and N = 1000. It is obvious that the degree distribu-
tions are not particularly spectacular and definitely do not follow a Poissonian or
power-law distribution. The maximum degrees are kmax,in = 32 and kmax,out = 6
(for kmax,in the probabilities for k > 7 are very small and not discriminable in
the plot from zero). The mean degrees are equal 〈kin〉 ∼ 〈kout〉 ∼ 3.0.
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The distance matrix D is computed using the Floyd algorithm [9]. In Fig. 2
(a) and (b) we show the adjacency and distance matrices A, D, respectively. For
A ones are represented by blue pixels, zeros by white. It is intuitively clear that
the structure of A has to be identical to the form of the π/2- rotated original
map f(x), which is shown in Fig. 2(d). We define the n-fold composition of the
map as f (n) ≡ f(f(· · · f(x))). The respective distance matrices are plotted in
Fig. 2(c) for n = 1, 2, 3 for fixed values of dij = 1, 2, 3. These curves exactly
resemble the n-fold compositions shown in (d), modulo rotation.

We next check how the quantities kin and kout depend on r and N . As seen
in Fig. 3 the maximum in-degree exhibits a clear power-law behavior. We obtain
kmax,in ∝ r−0.49, irrespective of N . Quite differently the maximum out-degrees
resemble step functions. As N becomes larger there is a shift to the left. The
average degrees 〈kin〉 and 〈kout〉 depend on r for three network sizes N = 100,
N = 500, N = 1000 exactly in the same linear way, 〈kin〉 = 〈kout〉 = r

2 + 1,
irrespective of network size (not shown).
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Fig. 3. Maximum in-degree (a) and out-degree (b) of the logistic map networks as
functions of the control parameter r for three network sizes

Finally, we consider the r and N dependence of the average and maximum
distance davg and dmax. In Fig. 4 we show davg as a function of r for several N .
Their behavior of dmax is very similar (not shown). Both curves show divergences.
It is noteworthy that at least the first divergences occur exactly at those values
where the Lyapunov exponent vanishes (see lower curve in Fig. 4).

3.2 Tent Map

We carry out the same computations for the tent map xn+1 = μ(1 − 2|xn − 1
2 |),

with μ ∈ [0, 1]. In Fig. 5 we present the same quantities as for the logistic map.
Again the mean degrees grow linearly with μ and are independent of network
size. The maximum in-degree, Fig. 5(a), shows a combination of a power law and
step like function behavior. The μ intervals on which kmax,in is constant grow as
μ approaches 1. The maximum out-degree, Fig. 5(b), is constant kmax,out = 2
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Fig. 4. Average network distance davg of the logistic map as function of the control
parameter r, for three network sizes. The green line are the Lyapunov exponents of the
map.

for μ ∈ (0, 1/2) and jumps to kmax,out = 2 for μ ∈ (1/2, 1). The average and
maximum distances again are very similar to each other and exactly behave as
in the logistic map: They diverge where the Lyapunov exponent vanishes. Using
the standard definition of the Lyapunov exponent for one dimensional maps,
λ = 1

n

∑n
i=0 ln(|f ′(xi)|), we obtain λ = ln(|2μ|), which is a known result for the

standard map. For μ = 1/2 we have λ = 0. In Fig. 5 (c) and (d) we see that for
values of μ near 1/2 davg and dmax diverge.

4 Discussion

We suggested a directed network representation of one-dimensional dynamical
maps. The structure of the adjacency matrix looks like the the original map ro-
tated by π/2. The corresponding networks were analyzed with respect to several
known network measures. Maybe the most interesting finding was that both, the
network diameter, and the average path length diverge at the same parameters
where the Lyapunov exponents become zero. We have shown this explicitly for
the logistic map for the first four vanishing Lyapunov exponents, and the single
vanishing Lyapunov exponent in the tent map. For finite network sizes it be-
comes difficult to check the validity for higher vanishing Lyapunov exponents.
We found, in accordance with [7] that the degree distributions of the networks
are not particularly interesting. Finally we note, that higher dimensional maps
can be dealt with in exactly the same way.

There are several questions that arise for future work, such as the inverse
problem: Given a directed network with some fixed properties is it possible to
construct or estimate a (discrete) map which exhibits these properties? To what
level of uniqueness is this possible? One way to solve this problem is to construct
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Fig. 5. Maximum in-degrees (a) and out-degrees (b) for the tent map, for network sizes
N = 100, N = 500 and N = 1000. Average and maximum distances as functions of μ
are shown in (c) and (d), respectively.

maps which are piecewise linear on each subinterval and have a slope, equal to
the in- or out-degree of the directed graph. Another interesting problem is the
systematic application of the presented procedure on higher dimensional maps
and possibly continuous dynamical systems.
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