Symbolic Computation of Petri Nets

Andres Iglesias' and Sinan Kapcak?

! Department of Applied Mathematics and Computational Sciences,
University of Cantabria, Avda. de los Castros,

s/n, E-39005, Santander, Spain
iglesias@unican.es
http://personales.unican.es/iglesias
2 Department of Mathematics, Izmir Institute of Technology,
Urla, Izmir, Turkey
sinankapcak@iyte.edu.tr

Abstract. Petri nets are receiving increasing attention from the scien-
tific community during the last few years. They provide the users with a
powerful formalism for describing and analyzing a variety of information
processing systems such as finite-state machines, concurrent systems,
multiprocessors and parallel computation, formal languages, communi-
cation protocols, etc. Although the mathematical theory of Petri nets
has been intensively analyzed from several points of view, the symbolic
computation of these nets is still a challenge, particularly for general-
purpose computer algebra systems (CAS). In this paper, a new Mathe-
matica package for dealing with some Petri nets is introduced.

1 Introduction

Petri nets (PN) are receiving increasing attention from the scientific community
during the last few years. Most of their interest lies on their ability to repre-
sent a number of events and states in a distributed, parallel, nondeterministic or
stochastic system and to simulate accurately processes such as concurrency, se-
quentiality or asynchronous control [II3]. Petri nets provide the users with a very
powerful formalism for describing and analyzing a broad variety of information
processing systems both from the graphical and the mathematical viewpoints.
Since its inception in the early 60s, they have been successfully applied to many
interesting problems including finite-state machines, concurrent systems, multi-
processors and parallel computation, formal languages, communication protocols
and many others.

Although the mathematical fundamentals of Petri nets have been analyzed by
using many powerful techniques (linear algebraic techniques to verify properties
such as place invariants, transition invariants and reachability; graph analysis
and state equations to analyze their dynamic behavior; simulation and Markov-
chain analysis for performance evaluation, etc.), and several computer programs
for PN have been developed so far, the symbolic computation of these nets is still
a challenge, particularly for general-purpose computer algebra systems (CAS).

Y. Shi et al. (Eds.): ICCS 2007, Part II, LNCS 4488, pp. 235-242] 2007.
© Springer-Verlag Berlin Heidelberg 2007

236 A. Iglesias and S. Kapcak

In this paper, a new Mathematica package for dealing with some Petri nets
is introduced. The structure of this paper is as follows: Section Bl provides a
gentle introduction to the basic concepts and definitions on Petri nets. Then,
Section [introduces the new Mathematica package for computing them and
describes the main commands implemented within. The performance of the code
is also discussed in this section by using some illustrative examples. Conclusions
and further remarks close the paper.

2 Basic Concepts and Definitions

A Petri net (PN) is a special kind of directed graph, together with an initial
state called the initial marking (see Table [[] for the mathematical details). The
graph of a PN is a bipartite graph containing places { Py, ..., Py, } and transitions
{t1,...,tn}. Figure[dl shows an example of a Petri net comprised of three places
and six transitions. In graphical representation, places are usually displayed as
circles while transitions appear as vertical rectangular boxes. The graph also
contains arcs either from a place P; to a transition ¢; (input arcs for t;) or from
a transition to a place (output arcs for t;). These arcs are labeled with their
weights (positive integers), with the meaning that an arc of weight w can be
understood as a set of w parallel arcs of unity weight (whose labels are usually
omitted). In Fig. [l the input arcs from P; to t3 and P, to t4 and the output arc
from ¢; to P, have weight 2, the rest having unity weight.

Fig. 1. Example of a Petri net comprised of three places and six transitions

A marking (state) assigns to each place P; a nonnegative integer, k;. In this
case, we say that P; is marked with k; tokens. Graphically, this idea is represented
by k; small black circles (tokens) in place P;. In other words, places hold tokens
to represent predicates about the world state or internal state. All markings
are denoted by vectors M of length m (the total number of places in the net)
such that the i-th component of M indicates the number of tokens in place P;.
From now on the initial marking will be denoted as M. For instance, the initial
marking (state) for the net in Figure[dis {2, 1, 0}.

Symbolic Computation of Petri Nets 237

Table 1. Mathematical definition of a Petri net

A Petri net (PN) is an algebraic structure PA = (P, T, A; W, My) comprised of:

e a finite set of places, P = {P1, Ps,..., Pn},
e a finite set of transitions, T = {t1,t2,...,tn},
e a set of arcs, A, either from a place to a transition (input arcs) or
from a transition to a place (output arcs):
ACPxT)U(T xP)
e a weight function: W : A — IN? (with ¢ = #(A))
e an initial marking: Moy : P — IN™

If PN is a finite capacity net, we also consider:
e a set of capacities, C: P — IN™
e a finite collection of markings (states) M; : P — IN™

The dynamical behavior of many systems can be expressed in terms of the
system states of their Petri net. Such states are adequately described by the
changes of markings of a PN according to a firing rule for the transitions: a
transition t; is said to be enabled if each input place FP; of ¢; is marked with w; ;
tokens, where w; ; is the weight of the arc from F; to t;. For instance, transitions
to, t3 and t5 are enabled, while transitions ¢4 and tg are not. Note, for example,
that transition ¢4 has weight 2 while place P, has only 1 token, so arc from P» to
t4 is disabled. If transition ¢; is enabled, it may or may not be fired (depending
on whether or not the event represented by such a transition occurs). A firing of
transition ¢; removes w; ; tokens from each input place P; of ¢; and adds wj
tokens to each output place Py of t;, w; 1 being the weight of the arc from ¢; to
Pj;. In other words, if transition ¢; is fired, all input places of ¢; have their input
tokens removed and a new set of tokens is deposited in the output places of ¢;
according to the weights of the arcs connecting those places and ¢;. For instance,
transition t3 removes one token from place P; and adds one token to place P,
thus changing the previous marking of the net.

A transition without any input place is called a source transition. Note that
source transitions are always enabled. In Figure[Il there is only one source transi-
tion, namely ¢1. A transition without any output place is called a sink transition.
The reader will notice that the firing of a sink transition removes tokens but does
not generate new tokens in the net. Sink transitions in Figure [are ts, t4 and
ts. A couple (P;,t;) is said to be a self-loop if P; is both an input and an output
place for transition t;. A Petri net free of self-loops is called a pure net. In this
paper, we will restrict exclusively to pure nets.

Some PN do not put any restriction on the number of tokens each place can
hold. Such nets are usually referred to as unfinite capacity net. However, in most
practical cases it is more reasonable to consider an upper limit to the number of
tokens for a given place. That number is called the capacity of the place. If all

238 A. Iglesias and S. Kapcak

places of a net have finite capacity, the net itself is referred to as a finite capacity
net. All nets in this paper will belong to this later category. For instance, the
net in Figure[lis a finite capacity net, with capacities 2, 2 and 1 for places Py,
P, and Ps, respectively.

If so, there is another condition to be fulfilled for any transition ¢; to be
enabled: the number of tokens at each output place of ¢; must not exceed its
capacity after firing ¢;. For instance, transition ¢ in Figure[Ilis initially disabled
because place P; has already two tokens. If transitions t2 and/or t3 are applied
more than once, the two tokens of place P; will be removed, so t; becomes
enabled. Note also that transition ¢3 cannot be fired initially more than once, as
capacity of Py is 2.

3 The Mathematica Package for Petri Nets

In this section a new Mathematica package for dealing with Petri nets is in-
troduced. For the sake of clarity, the main commands of the package will be
described by means of its application to some Petri net examples. In particular,
in this paper we will restrict to the case of pure and finite capacity nets, a kind
of nets with many interesting applications. We start our discussion by loading
the package:

In[1] := <<PetrilNets*

According to Table[I] a Petri net (like that in Figure[Il and denoted onwards
as net1) is described as a collection of lists. In our representation, net1 consists
of three elements: a list of couples {place, capacity}, a list of transitions and a
list of arcs from places to transitions along with its weights:

In[2]:= net1={{{p1,2},{p2,2},{p3,1}},{t1,t2,t3,t4,t5,t6},
{{p1,t1,2},{p1,t2,-1},{p1,t3,-2},{p2,t3,1},
{p2,t4,-2},{p2,t5,-1},{p3,t5,1},{p3,t6,-1}}};

Note that the arcs are represented by triplets {place,transition,weight},
where positive value for the weights mean output arcs and negative values de-
note input arcs. This notation is consistent with the fact that output arcs add
tokens to the places while input arcs remove them. Now, given the initial mark-
ing {2,1,0} and any transition, the FireTransition command returns the new
marking obtained by firing such a transition:

In[3]:= FireTransition[net1,{2,1,0},t2];
Out[3]:= {1,1,0}

Given a net and its initial marking, an interesting question is to determine
whether or not a transition can be fired. The EnabledTransitions command
returns the list of all enabled transitions for the given input:

In[4] := EnabledTransitions[net1,{2,1,0}1;
Outf}]:= {t2,t3,t5}

The FireTransition command allows us to compute the resulting markings

obtained by applying these transitions onto the initial marking:

Symbolic Computation of Petri Nets 239

In[5]:= FireTransition[net1,{2,1,0},#1& /@ %;
OU't/5/": {{17170}7{0’270}7{27071}}

Note that, since transition 1 cannot be fired, an error message is returned:
In[6]:= FireTransition[net1,{2,1,0},t1];

Out[6]:= FireTransition: Disabled transition: t1 cannot be fired for the given net
and the {2,1,0} marking.

10,0, 04 *] 11

00,1 ® = T

0,1, 04 = *| i1

0.1, 1y £ *| i1

0.2, 0y 4 5 # 1

0.2, 1y] 1 | 1

[N *

i1, 1Y 3 G

{1,104 3 =]

{11, 1Y 3 ®

{120y | E 5 #*

(1.8, 1Y % H I

.0, 0] [w

.0, 1}] 7 w =

.1, 0Y | 3 5)

.1, 13 | T w *

it b0} 3) I

[ERY 3 Cl ®/

Fig. 2. The reachability graph for the Petri net netl and the initial marking {2,1,0}

From Out/4] and Out[5], the reader can easily realize the successive application
of the EnabledTransitions and FireTransition commands allows us to obtain
all possible markings and all possible firings at each marking. However, this is
a tedious and time-consuming task to be done by hand. Usually, such markings
and firings are graphically displayed in what is called a reachability graph. The
next input returns the reachability graph for our Petri net and its initial marking:

In[7]:= ReachabilityGraph[net1,{2,1,0}];
Out[7]:= See Figure[2

Figure 2 can be interpreted as follows: the outer column on the left provides
the list of all possible markings for the net. Their components are sorted from the
left to the right according to the standard lexicographic order. For any marking,
the row in front gives the collection of its enabled transitions. For instance, the
enabled transitions for the initial marking {2,1,0} are {¢2,¢3,t5} (as expected
from Outf4]), while they are {t1,t4,¢6} for {0,2,1}. Given a marking and one

240 A. Iglesias and S. Kapcak

4 K(py)=4 t, K(pg)=3 ty

4 K(pg)=2 '5 K(pg)=3 s

Fig. 3. Example of a Petri net comprised of five places and six transitions

{0,135, 1,0 =

{08, 0,10} 2]

o221 [8

{02, 35,1,0} #®

{0,3,0,1,0}4 2 o+

0221, 1} S

0,2, 3,1, 0}

{0.4,0,1, 0} ARG

04,2, 1,1} I

0.4, 3,1, 0} #]

{10,030, 0} 1l *

{11, 0,0, 0} 1 1l wl

{1.1,2.0,1} S t1 EIBE

{1.1,35,0,0} 4 tl #®

{1.1,3,2 0} #*

{18, 0,0,0} 4 tl # |

{12,020} L= k3 |

{L22,01}]] a "

{12, 3,0,0} E=] t1 ®

L& 3,2 0} *

{1.2,0,0,0} 4 0 #*

{13, 0,&, 0} 15 0 #*

{13, 2,0, 1} 1] 3 #]

{13, 3,%, 0} *]

{l.4.0.2 0} B E[*
{&.0,3.1,0} 4 11 #
{&.1,0,1,0}4 5] tl FABE]
{&.1,5,1,0} 2 tl *
{.2,0,1,0) & 1 "
{2,0,0,0,0} = T

Fig. 4. Reachability graph for the Petri net in Figure Bl

of its enabled transitions, you can determine the output marking of firing such
transition by simply moving up/down in the transition column until reaching
the star symbol: the marking in that row is the desired output. By this simple
procedure, results such as those in Out[5] can readily be obtained.

Symbolic Computation of Petri Nets 241

{0.1,3,1, 01
{0.8,0,1, 04 E] *

§0.2,2,1,0) [

O N | A

{0,2,%,1, 0} *

{0,3,0,1, 0} T *

{0,3,8,1, 0} T

0,3, 8,1, 1} B[E =

{0,3,3,1, 0} #

§0.4,0,1, 0} T *

0,4, 2,1, 04 *

{0.4, 2,1, 1} B

{0,4,3,1, 04 *

{1.0,3,0, 01 [l *

L1,0,0,08 [@ [l A

{1.1,2,0,0}) [l *

11,20, 1}) ol a6 *

{1,1,%,0,0} " 11 *

{1.1,3,2, 0} *

{L&, 0,00} w} 11 [*

{12,020} = BES -

1,2, £,0,0}) il *

{1.2,2,0,1} o 1 EREE

{1.2,3,0,0}) [l *

{12,320} +

{1.3.0,0,0} = T m

{1,3,0,2, 0} HEEE *

{1.3,2,0,0}) ™

{1,3,£,0, 1} ! ERED

{1.5.3,2, 0})
{14,020} B G| *

{2,003, 1,0} % 11 "
i£.1,0,1,04 [il A
fe.1,3,1, 0} " 11 *
{85, 0,1, 00) 1 %[*
{5.0,0,0, 0} CINE!

Fig. 5. Reachability graph after modifying the weight of the arc from Ps to tg

A second example of a Petri net is shown in Figure Bl This net, comprised of
five place and six transitions, has many more arcs than the previous example.
Consequently, its reachability graph, shown in Figure[] is also larger. The Math-
ematica codes for defining the net and getting this graph are similar to those for
the first example and, hence, have been intentionally omitted.

The net in Figure B exhibits a number of remarkable features: for instance,
places P;, P, and P; have more than one output transition, leading to non-
deterministic behavior. Such a structure is usually referred to as a conflict, deci-
ston or choice. On the other hand, this net has no source transitions. This fact
is reflected in the reachability graph, which has a triangular structure: entries
appear only below the diagonal. As opposed to this case, the net in Figure[dl has
one single source transition (namely, t1), the only element above the diagonal in
its reachability graph.

It is worthwhile to mention that the place P; has only input arcs, meaning
that its number of initial tokens can only decrease, but never increase. This
means that the capacity of P; might be less without affecting current results.

242 A. Iglesias and S. Kapcak

On the other hand, the reachability graph in Figure @l has some markings no
transitions can be applied onto. Examples of such markings are {1,3,3,2,0},
{1,2,3,2,0} or {0,4,3,1,0} (although not the only ones). They are sometimes
called end markings. Note that not end markings appear in the first net of this
paper. Note also that the transition ¢6 is never fired (it never appears in the
graph of Figure H]). By simply decreasing the weight of the arc from Ps to tg
to the unity, the transition becomes enabled, as shown in the new reachability
graph depicted in Figure

4 Conclusions and Further Remarks

In this paper, a new Mathematica package for dealing with finite capacity Petri
nets has been introduced. The main features of the package have been discussed
by its application to some simple yet illustrative examples. Our future work
includes the application of this package to real problems, the extension to other
cases of Petri nets, the implementation of new commands for the mathematical
analysis of these nets and the characterization of the possible relationship (if
any) with the functional networks and other networked structures [2J415].

This research has been supported by the Spanish Ministry of Education and
Science, Project Ref. #TIN2006-13615. The second author also thanks the fi-
nancial support from the Erasmus Program of the European Union for his stay
at the University of Cantabria during the period this paper was written.

References

1. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4) (1989) 541-580

2. Echevarria, G., Iglesias, A., Géalvez, A.: Extending neural networks for B-spline
surface reconstruction. Lectures Notes in Computer Science, 2330 (2002) 305-314

3. German, R.: Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets. John Wiley and Sons, Inc. New York (2000)

4. Iglesias, A., Galvez, A.: A New Artificial Intelligence Paradigm for Computer-Aided
Geometric Design. Lectures Notes in Artificial Intelligence, 1930 (2001) 200-213

5. Iglesias, A., Echevarria, G., Galvez, A.: Functional networks for B-spline surface
reconstruction. Future Generation Computer Systems, 20(8) (2004) 1337-1353

	Introduction
	Basic Concepts and Definitions
	The Mathematica Package for Petri Nets
	Conclusions and Further Remarks
	References

