
EPLAS: An Epistemic Programming Language
for All Scientists

Isao Takahashi, Shinsuke Nara, Yuichi Goto, and Jingde Cheng

Department of Information and Computer Sciences, Saitama University,
255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan

{isao, nara, gotoh, cheng}@aise.ics.saitama-u.ac.jp

Abstract. Epistemic Programming has been proposed as a new pro-
gramming paradigm for scientists to program their epistemic processes
in scientific discovery. As the first step to construct an epistemic program-
ming environment, this paper proposes the first epistemic programming
language, named ‘EPLAS’. The paper analyzes the requirements of an
epistemic programming language, presents the ideas to design EPLAS,
shows the important features of EPLAS, and presents an interpreter im-
plementation of EPLAS.

Keywords: Computer-aided scientific discovery, Epistemic process,
Strong relevant logic, Scientific methodology.

1 Introduction

As a new programming paradigm, Cheng has proposed Epistemic Programming
for scientists to program their epistemic processes in scientific discovery [3,4].
Conventional programming regards numeric values and/or character strings as
the subject of computing, takes assignments as basic operations of computing,
and regards algorithm as the subject of programming, but Epistemic Program-
ming regards beliefs as the subject of computing, takes primary epistemic
operations as basic operations of computing, and regards epistemic processes
as the subject of programming [3,4].

Under the strong relevant logic model of epistemic processes proposed by
Cheng, a belief is represented by a formula A ∈ F(EcQ) where EcQ is a predi-
cate strong relevant logic [3,4] and F(EcQ) is the set of all well-formed formu-
las of EcQ. The three primary epistemic operations are epistemic deduction,
epistemic expansion, and epistemic contraction. Let K ⊆ F(EcQ) be a
set of sentences to represent the explicitly known knowledge and current beliefs
of an agent, and TEcQ(P) be a formal theory with premises P based on EcQ.
For any A ∈ TEcQ(K) − K where TEcQ(K) �= K, an epistemic deduction of A
from K, denoted by Kd+A, by the agent is defined as Kd+A =df K ∪ {A}. For
any A /∈ TEcQ(K), an epistemic expansion of K by A, denoted by Ke+A, by the
agent is defined as Ke+A =df K ∪{A}. For any A ∈ K, an epistemic contraction
of K by A, denoted by K−A, by the agent is defined as K−A =df K − {A}.
An epistemic process of an agent is a sequence K0, o1, K1, o2, K2, . . ., Kn−1,

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 406–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

EPLAS: An Epistemic Programming Language for All Scientists 407

on, Kn where Ki (n ≥ i ≥ 0) is an epistemic state, and oi+1(n > i ≥ 0) is
any of primary epistemic operations, and Ki+1 is the result of applying oi+1 to
Ki. In particular, K0 is called the primary epistemic state of the epistemic
process, Kn is called the terminal epistemic state of the epistemic process,
respectively.

An epistemic program is a sequence of instructions such that for a primary
epistemic state given as the initial input, an execution of the instructions pro-
duces an epistemic process where every primary epistemic operation corresponds
to an instruction whose execution results in an epistemic state, in particular, the
terminal epistemic state is also called the result of the execution of the program
[3,4].

However, until now, there is no environment to perform Epistemic Program-
ming and to run epistemic programs. We propose the first epistemic program-
ming language, named ‘EPLAS’: an Epistemic Programming Language for All
Scientists. In this paper, we analyze the requirements of an epistemic program-
ming language at first, and then, present our design ideas for EPLAS and its
important features. We also present an interpreter implementation of EPLAS.

2 Requirements

We define the requirements for an epistemic programming language and its im-
plementation. We define R1 in order to write and execute epistemic programs.

R 1. They should provide ways to represent beliefs and epistemic states as pri-
mary data, and epistemic operations as primary operations, and perform the
operations. Since, in Epistemic Programming, the subject of computing is a be-
lief, basic operations of computing are epistemic operations, and the subject of
the operations are epistemic states.

We also define R2, R3, and R4 in order to write and execute epistemic programs
to help scientists with scientific discovery.

R 2. They should represent and execute operations to perform deductive, in-
ductive, and abductive reasoning, as primary operations. Scientific reasoning is
indispensable to any scientific discovery because any discovery must be previ-
ously unknown or unrecognized before the completion of discovery process and
reasoning is the only way to draw new conclusions from some premises that are
known facts or assumed hypothesis [3,4]. Therefore, reasoning is one of ways to
get new belief when scientists perform epistemic expansion.

R 3. They should represent and execute operations to help with dissolving con-
tradictions as primary operations. Scientists perform epistemic contraction in
order to dissolve contradictions because beliefs may be inconsistent and incom-
plete.

R 4. It should represent and execute operations to help with trial-and-error as
primary operations. Scientists do not always accurately know subjects of sci-
entific discovery beforehand. Therefore, scientists must perform trial-and-error.

408 I. Takahashi et al.

In a process of trial-and-error, scientists make many assumptions and test the
assumptions by many different methods. It is a demanding work for scientists
to make combinations of the assumptions and the methods. Furthermore, it is
also demanding for scientists to test the combinations one at a time without
omission.

3 EPLAS

EPLAS is designed as a typical procedural and strongly dynamic typed language.
It has facilities to program control structures (they are if-then statement, do-
while statement, and foreach statement) and procedures, and has a nested static-
scope rule. With attribute grammar, we defined syntax and semantics of EPLAS
and open EPLAS manual [1].

To satisfy R1, EPLAS should provide beliefs as a primary data type. For
that purpose, EPLAS provides a way to represent beliefs as a primary data
type. EPLAS also provides an operation to input a belief from standard input,
which is denoted by ‘input belief’. Conventional programming languages do
not provide beliefs as a primary data type because their subjects of computing
are lower-level data types. Then, to satisfy R1, EPLAS should provide epistemic
states as a primary data type. Therefore, EPLAS provides sets of beliefs as set
structured data type and assures that all epistemic states are numbered. EPLAS
also provides an operation to get the i–th epistemic state, which is denoted by
‘get state(i)’. Almost conventional programming languages do not provide a set
structured data type and do not assure that all epistemic states are numbered.
Furthermore, EPLAS should provide epistemic operations as primary operations
to satisfy R1. Hence, EPLAS provides operations to perform epistemic deduc-
tion, epistemic expansion, and epistemic contraction by multiple beliefs as ex-
tensions as primary operations. An epistemic deduction is denoted by ‘deduce’,
and makes the current epistemic state Ki the next epistemic state Ki+1 = Ki∪S
for any S ⊆ TEcQ(Ki)−Ki where Ki ⊆ F(EcQ) and TEcQ �= Ki. An epistemic
expansion of multiple beliefs S is denoted by ‘expand(S)’, and makes the current
epistemic state Ki the next epistemic state Ki+1 = Ki∪S for any S � TEcQ(Ki)
where Ki ⊆ F(EcQ). An epistemic contraction by multiple beliefs S is denoted
by ‘contract(S)’, and makes the current epistemic state Ki the next epistemic
state Ki+1 = Ki − S for any S ⊂ Ki where Ki ⊆ F(EcQ). Some conventional
programming languages provide operations to perform epistemic expansion and
epistemic contraction as set operations but any conventional programming lan-
guages do not provide an operation to perform epistemic deduction.

There are three forms of reasoning: deductive, inductive, and abductive rea-
soning. Therefore, an epistemic programming language should provide operations
to perform reasoning by these three forms.

In order to satisfy R2, EPLAS should provide a way to represent various
reasoning, at least, reasoning by the three forms. For that purpose, EPLAS
provides inference rules as a primary data type. Inference rules are formulated
with some schemata of well-formed formulas to reason by pattern matching,

EPLAS: An Epistemic Programming Language for All Scientists 409

and consist of at least one schemata of well-formed formula as premises and at
least one schemata of well-formed formulas as conclusions [7]. Let K be premises
including ‘{P0(a0), P0(a1), P1(a0), ∀x0(P2(x0) → P1(x0))}’, ir1 be an inference
rule: ‘P0(x0), P0(x1)
 ∀x2P0(x2)’, ir2 be an inference rule: ‘P0(x0), P1(x0),
P0(x1)
 P1(x1)’, and ir3 be an inference rule: ‘P2(x0) → P1(x1), P1(x1)

P2(x0)’. ir1 means an inductive generalization [5], ir2 means an arguments from
analogy [5], and ir3 means an abductive reasoning [8]. ‘∀x2P0(x2)’ is derived
from K by ir1, ‘P1(a1)’ is derived from K by ir2, and ‘P2(a0)’ is derived from
K by ir3. EPLAS also provides an operation to input an inference rule from
standard input, which is denoted by ‘input rule’. Moreover, in order to satisfy
R2, EPLAS should provide an operation to derive conclusions from beliefs in the
current epistemic state by applying an inference rule to the beliefs and to perform
epistemic expansion by the derived conclusions. A reasoning by an inference rule
ir is denoted by ‘reason(ir)’, and makes the current epistemic state Ki the next
epistemic state Ki+1 = Ki ∪ S where Ki ⊆ F(EcQ), S ⊂ Rir(Ki), S �= φ,
and Rir(Ki) is a set of beliefs derived from Ki by an inference rule ir. Any
conventional programming languages do not provide inference rules as a primary
data type and a reasoning operation as a primary operation.

As operations to help with dissolving contradictions, at least, an epistemic
programming language should provide an operation to judge whether two beliefs
are conflicting or not. Then, it should provide operations to output a derivation
tree of a belief and to get all beliefs in a derivation tree of a belief in order
for scientists to investigate causes of contradictions. It should also provide an
operation to perform epistemic contraction of beliefs derived from a belief in
order for scientists to reject beliefs derived from a conflicting belief.

In order to satisfy R3, EPLAS should provide an operation to judge whether
two beliefs are conflicting or not. For that purpose, EPLAS provides the op-
eration as a primary operation, which is denoted by ‘$$’. The binary oper-
ator ‘$$’ is to judge whether two beliefs are conflicting or not, and returns
true if and only if one belief A is negation of the other belief B, or false if
not so. Then, in order to satisfy R3, EPLAS should provide operations to out-
put a derivation tree of a belief. Hence, EPLAS provides an operation to out-
put a derivation tree of a belief A from standard output, which is denoted by
‘see tree(A)’. EPLAS should also provide an operation to get all beliefs in a
derivation tree of a belief. Therefore, EPLAS provides an operation to get beliefs
in the derivation tree of a belief A, which is denoted by ‘get ancestors(A)’.
Furthermore, in order to satisfy R3, EPLAS should provide an operation to
perform epistemic contractions of all beliefs derived by the specific beliefs. For
that purpose, EPLAS provide the operation to perform an epistemic contrac-
tions of beliefs derived by the specific beliefs S, which is denoted by ‘con-
tract derivation(S)’, and which makes the current epistemic state Ki the next
epistemic state Ki+1 = Ki − (TEcQ(Ki) − TEcQ(Ki − S)) where Ki ⊆ F(EcQ).
Evidently, conventional programming languages do not provide these operations.

An epistemic programming language should provide operations to make com-
binations of beliefs and to test each combination in order to verify combinations

410 I. Takahashi et al.

of assumptions, at least, as operations to help with trial-and-error. It also should
provide operations to make permutations of procedures and to test each permu-
tation in order for scientists to test many methods by various turns. Further-
more, it should provide an operation to make the current epistemic state change
into a past epistemic state in order for scientists to test assumptions by various
methods in same epistemic state.

To satisfy R4, EPLAS should provide operations to make combinations of
beliefs and to test each combination. For that purpose, EPLAS provides sets of
sets as a set-set structured type and set operations, e.g. , sum, difference, inter-
section, power, and direct product. Some conventional programming languages
provide the structured data type and the set operations but almost conventional
programming languages do not. Then, to satisfy R4, EPLAS should provide
operations to make permutations of procedures and to test each permutation.
Hence, EPLAS provide procedures as a primary data type and sequences as
a seq structured type, and sequence operations, e.g. , appending to the bottom,
dropping from the bottom. A procedure is a name of a procedure with arguments,
and is similar to a function pointer in C languages. In order to satisfy R4, fur-
thermore, EPLAS should provide an operation to change the current epistemic
state into a past one identified by a number. EPLAS provides the operation,
which is denoted by ‘return to(n)’, and makes the current epistemic state Ki

the next epistemic state Ki+1 = Kn where Kn is n–th epistemic state.

4 An Interpreter Implementation of EPLAS

We show an interpreter implementation of EPLAS. We implemented the in-
terpreter with Java (J2SE 6.0) in order for the interpreter to be available on
various computer environments. We, however, implemented the interpreter by
naive methods because the interpreter is a prototype as the first step to con-
struct an epistemic programming environment. The interpreter consists of the
analyzer section and the attribute evaluation section. The analyzer section an-
alyzes a program in an input source file and makes a parse tree. It has been
implemented with SableCC [6]. Accordingly to semantic rules in the attributes
grammar of EPLAS, the attribute evaluation section evaluates attributes on a
parse tree made by the analyzer section. The attribute evaluation section has
the symbol table, the beliefs manager, the epistemic states manager, and the
reasoner to evaluate attributes.

The symbol table manages declaration of variables, functions, and procedures,
data types and structured types of variables. It also assure that EPLAS is a
strongly dynamic typed language. We implemented it with a hash table by a
popular method.

The beliefs manager manages all input and/or derived beliefs and all their
derivations trees, and provides functions to perform input belief, see tree,
and get ancestors. We implemented the beliefs manager as follows. The beliefs
manager has a set of tuples where a tuple consists of a belief and a derivation
tree of the belief. When performing input rule, the beliefs manager analyzes

EPLAS: An Epistemic Programming Language for All Scientists 411

Table 1. Vocabulary of A Language Producing Beliefs

Vocabulary Symbols
Constants a0, a1, ..., ai, ...
Variables x0, x1, ..., xi, ...
Functions f0, f1, ..., fi, ...
Predicates P0, P1, ..., Pi, ...
Connectives =>(entailment), &(and), !(negation)
Quantifiers @(forall), #(exists)
Punctuation (,), ,

an input string according to a belief form. The belief is formed by a language
including vocabulary in Table 1 and the following Production Rules 1 and 2.

Production Rule 1. Term
(1) Any constant is a term and any variable is also a term.
(2) If f is a function and t0, ..., tm are terms then f(t0, ..., tm) is a
term.
(3) Nothing else is a term.

Production Rule 2. Formula
(1) If P is a predicate and t0, ..., tm are terms then P(t0, ..., tm) is a
formula.
(2) If A and B are formulas then (A => B), (A & B), and (! A) are formulas.
(3) If A is a formula and x is a variable then (@xA), (#xA) are formulas.
(4) Nothing else is a formula.

The beliefs manager also adds new tuple of an input belief and a tree which
has only root node denoting the input belief into the set. When performing
see tree(A), the beliefs manager outputs a derivation tree of A with JTree.
When performing get ancestors(A), the beliefs manager collects beliefs in a
derivation tree of A by scanning the derivation tree and returns the beliefs.

The epistemic states manager manages all epistemic states from the primary
epistemic state to the terminal epistemic state, and provides functions to perform
expand, contract, contract derivation, return to, get state, and get id.
We implemented the epistemic states manager as follows. The epistemic states
has a sequence of sets of beliefs where a set of beliefs is an epistemic state, and the
sequence is variable-length. When performing expand(S), the epistemic states
manager appends a sum of a set of the bottom of the sequence and S to the
sequence. When performing contract(S), the epistemic states manager appends
a difference of a set of the bottom of the sequence and S. When performing
contract derivation(S), the epistemic states manager appends a difference of
a set of the bottom of the sequence and all beliefs in derivation trees of S to the
sequence. When performing return to(i), the epistemic states manager appends

412 I. Takahashi et al.

i–th epistemic state to the sequence. When performing get id, the epistemic
states manager returns a number of elements of the sequence. When performing
get state(i), the epistemic states manager returns a set of beliefs of the i–th
element of the sequence.

The reasoner provides functions to perform input rule and reason. We
implemented the epistemic states manager as follows. There is an automated for-
ward deduction system for general purpose entailment calculus EnCal [2,7]. En-
Cal automatically deduces new conclusions from given premises by
applying inference rules to the premises and deduced results. Therefore, the
reasoner has been implemented as an interface to EnCal. When performing in-
put rule, the reasoner analyzes an input string according to an inference rule
form. The inference rule form is “SLogicalSchema1, · · ·, SLogicalScheman,
SLogicalScheman+1.” “SLogicalSchema” is formed by a language including
vocabulary in Table 2 and the following Production Rules 1 and 3.

Table 2. Vocabulary of A Language Producing Semi Logical Schema

Vocabulary Symbols
Constants a0, a1, ..., ti, ...
Variables x0, x1, ..., xi, ...
Functions f0, f1, ..., fi, ...
Predicates P0, P1, ..., Pi, ...
Predicate Variable X1, X1, ..., Xi, ...
Formula Variable A0, A1, ..., Ai, ...
Connectives =>(entailment), &(and), !(negation)
Quantifiers @(forall), #(exists)
Punctuation (,), ,

Production Rule 3. Semi logical Schema
(1) Any formula variable is a semi logical formula.
(2) If P is a predicate or a predicate variable and t0, ..., tm are terms then
P(t0, ..., tm) is a semi logical formula.
(3) If A and B are semi logical formulas then (A => B), (A & B), and (! A) are
semi logical formulas.
(4) If A is a semi logical formula and x is a variable then (@xA), (#xA) are semi
logical formulas.
(5) Nothing else is a semi logical formula.

When performing reason(ir), the reasoner translates ir into an inference rule as
an EnCal form and current beliefs which the epistemic states manager returns
into formulas as an EnCal form, inputs these data to EnCal and executes EnCal,
and then, gets the formulas derived by ir, translates the formulas into an EPLAS
form, and makes the beliefs manager registers the formulas.

EPLAS: An Epistemic Programming Language for All Scientists 413

5 Concluding Remarks

As the first step to construct an epistemic programming environment, we
proposed the first epistemic programming language, named ‘EPLAS’, and its
interpreter implementation. EPLAS provides ways for scientists to write epis-
temic programs to help scientists with reasoning, dissolving contradictions, and
trial-and-error. We also presented an interpreter implementation of EPLAS. We
have provided the first environment to perform Epistemic Programming and run
epistemic programs. In future works, we would like to establish Epistemic Pro-
gramming methodology to make scientific discovery become a ‘science’ and/or
an ‘engineering’.

Acknowledgments

We would like to thank referees for their valuable comments for improving the
quality of this paper. The work presented in this paper was supported in part by
The Ministry of Education, Culture, Sports, Science and Technology of Japan
under Grant-in-Aid for Exploratory Research No. 09878061, and Grant-in-Aid
for Scientific Research (B) No. 11480079.

References

1. AISE Lab., Saitama University.: EPLAS Reference Manual. (2007)
2. Cheng, J.: Encal: An automated forward deduction system for general–purpose

entailment calculus. In Terashima, N., Altman, E., eds.: Advanced IT Tools, IFIP
World Conference on IT Tools, IFIP96 - 14th World Computer Congress. Chapman
& Hall (1996) 507–517

3. Cheng, J.: Epistemic programming: What is it and why study it? Journal of
Advanced Software Research 6(2) (1999) 153–163

4. Cheng, J.: A strong relevant logic model of epistemic processes in scientific discov-
ery. In Kawaguchi, E., Kangassalo, H., Jaakkola, H., Hamid, I.A., eds.: ”Information
Modelling and Knowledge Bases XI,” Frontiers in Artificial Intelligence and Appli-
cations. Volume 61., IOS Press (2000) 136–159

5. Flach, P.A., Kakas, A.C.: Abductive and inductive reasoning: background and is-
sues. In Flach, P.A., Kakas, A.C., eds.: Abduction and Induction: Essays on Their
Relation and Integration. Kluwer Academic Publishers (2000)

6. Gagnon, E.M., Hendren, L.J.: Sablecc http://www.sablecc.org.
7. Nara, S., Omi, T., Goto, Y., Cheng, J.: A general-purpose forward deduction en-

gine for modal logics. In Khosla, R., Howlett, R.J., Jain, L.C., eds.: Knowledge-
Based Intelligent Information and Engineering Systems, 9th International Confer-
ence, KES2005, Melbourne, Australia, 14-16 September, 2005, Proceedings, Part II.
Volume 3682., Springer-Verlag (2005) 739–745

8. Peirce, C.S.: Collected Papers of Charles Sanders Peirce. Harvard University Press
(1958)

	Introduction
	Requirements
	EPLAS
	An Interpreter Implementation of EPLAS
	Concluding Remarks

