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Abstract. We evaluate the effectiveness of neural networks as a tool for
predicting whether a particular combination of preconditioner and itera-
tive method will correctly solve a given sparse linear system Az = b. We
consider several scenarios corresponding to different assumptions about
the relationship between the systems used to train the neural network
and those for which the neural network is expected to predict behavior.
Greater similarity between those two sets leads to better accuracy, but
even when the two sets are very different prediction accuracy can be
improved by using additional computation.

Keywords: iterative methods, preconditioners, neural networks.

1 Introduction

Preconditioned methods are generally used to solve large, sparse linear systems
Ax = b when the time or memory requirements of a direct solver are unac-
ceptable. Ideally the preconditioner is inexpensive to compute and apply, and
the subsequently applied iterative solver works more effectively on the precon-
ditioned system. Unfortunately, because of the number and variety of existing
preconditioners, as well as the lack of a good understanding of how well any pre-
conditioned solver is likely to work for a given system, choosing a preconditioner
is rarely straightforward. As a result, there is interest in helping users choose a
preconditioner, with guidelines for setting parameter values, for their particu-
lar system. One option is to use the results of extensive experiments to suggest
rules-of-thumb (eg, [1-3]) — this technique can suggest default settings but not
when or how to adjust those defaults. Another, more recently explored option,
uses machine learning techniques to extract meaningful features for predicting
the behavior of preconditioned solvers (eg, [4,5]).

This paper contributes to the growing body of knowledge on using machine
learning techniques for this problem by asking whether neural networks can be
used to predict the behavior of preconditioned iterative solvers. In addition,
this work explores a broad range of scenarios in which a user might wish to
predict the behavior of a preconditioned solver. The first aspect considers the
context for the problem and the amount of highly relevant data that is likely
to be available. Is the system completely novel and therefore likely to be quite
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different from other systems that have already been solved? Does the system
closely resemble others that have already been solved and analyzed? Or has the
user already tried to solve the exact system using other preconditioners in the
past? The second aspect takes into consideration the relative cost of computing
the preconditioner and performing the subsequent iterative solve. If the first is
believed to be inexpensive, how much of an improvement can be gained by first
computing the preconditioner and using some data from that computation in
predicting the behavior of the subsequent solve?

After first describing how this work fits into the larger body of work on pre-
dicting the behavior of preconditioned iterative solvers, we describe the range
of parameters and scenarios that was explored, and finally discuss the results.
Overall, we find that neural networks are promising, even when the inputs consist
of only easily computable matrix values. We explore the importance of training
a neural network on matrices that are similar to those for which it is expected to
predict results. In the case where the two sets of matrices are different and the
accuracy suffers, we suggest a method for increasing the accuracy of the system
using some additional computation.

2 Background

Predicting the behavior of preconditioned iterative solvers has been studied in
papers including [3-5]. Throughout, assorted structural and numerical features
are extracted from a matrix, and attempts are made to use those features to
create a classifier that can take a matrix and recommend a particular precondi-
tioned solver by determining whether it is likely to converge to a solution.

In [3] they solve each matrix using different versions of preconditioned GM-
RES. Each matrix is labeled according to the behavior of the preconditioned
solver (e.g. zero pivot encountered or solve successful). For each preconditioner,
they describe the features of the matrices that correspond to a successful solve in
order to give helpful guidelines to the user. In [5] a combination of support vector
machines and clustering is used. After extracting assorted structural and numer-
ical features from each matrix, they cluster the matrices based on these features
and attempt to describe each cluster by its performance when different solvers
are applied. Depending on the consistency of behavior within each cluster, they
may also do further classification using support vector machines. In [4] boosting
and alternating decision trees are used to create a classifier. In all cases, predic-
tions and recommendations are generated for new matrices by first extracting
the same set of features. Our work follows the same general framework, but we
use a different machine learning technique, and we explore a broader range of
scenarios that might be of interest to a user. Furthermore, our primary goal is
not to describe a large software system, but simply to evaluate a single machine
learning technique.

In particular, we consider neural networks, a supervised machine learning
technique which has been used successfully in a variety of applications where
the output is believed to be a complex function of possibly noisy input data.
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Informally, a neural network is a web of interconnected nodes, each of which has
a set of weighted input edges and output edges. Each node computes a linear
function of the input signals and the edge weights, then passes the result to an
activation function which determines the output value for the node. Training a
neural network refers to learning the correct edge weights so that given an input
signal, the correct output signal is achieved. For a more thorough introduction,
see [6]. One of the disadvantages of neural networks is that, in general, little
insight can be gained into why a network makes particular predictions. Thus in
this initial study we focus primarily on making accurate predictions, rather than
on also extracting rules for explaining the preconditioner behavior on a finer
scale.

3 Methodology

Our primary goal is to train a neural network to distinguish between precon-
ditioned systems that can be solved by a given iterative solver, and those that
cannot. The network is first trained on examples, or instances, that each cor-
respond to a specific preconditioned linear system. We then use the network to
classify instances that were not a part of the training set.

In this section we describe the creation of the sample space, and the training
of the network. We also describe the explicit construction of training and testing
sets to model three scenarios users might encounter, as well as how information
from the preconditioned system can be used to increase prediction accuracy.

3.1 Construction of the Sample Space

Our test suite consists of 260 matrices from the University of Florida Sparse Ma-
trix Collection [7], on each of which we ran ILUTP Mem [8] preconditioned GM-
RES(50) [9]. ILUTP Mem allows the user to set the values of 3 parameters that
together control the memory required, and the accuracy provided, by the precon-
ditioner; we used a range of values for 1£il (0,1,2,3,4,5), droptol (0,.001,.01,.1),
and pivtol (0,.1,1). In addition, before computing the ILU factorization, ma-
trices were first permuted and scaled using MC64 [10,11] for stability, and then
using COLAMD [12,13] for sparsity. Note that by using value-based ILU pre-
conditioners, instead of the level-based ILU preconditioners used in [5], we are
working with a much larger number of parameter values. Each matrix was solved
72 different times, each time using a different combination of parameter values.
This generated a sample space of over 18,000 instances. Of these instances 49.7%
of them were successfully solved using preconditioned GMRES(50).

For input to the neural network we computed an assortment of statistics
about each matrix. We used 35 input values including 32 structural and numer-
ical statistics used in [5], as well as the values of the Ifil, droptol, and pivtol
input parameters to the ILUTP Mem preconditioner. Thus an instance in the
sample space is a 35-tuple: 32 extracted matrix features, and the values of the 3
parameters to the preconditioner. In some situations described below we used 3
additional input values that were computed by running the ILU preconditioner.
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3.2 Neural Network Parameters

The neural network used consisted of an input layer, a hidden layer, and an
output layer. The output layer contains a single node whose output was either
a 0, indicating that the preconditioned solver should be successful, or a 1, in-
dicating otherwise. The number of hidden nodes was initially chosen by the
Baum-Haussler heuristic, although some experiments were done with modified
values. The weights were initialized with random values from the range [—.3, .3]
and the learning rate was set at .3. (For more discussion of these terms, see [6].)

We use the Backpropagation algorithm to train the neural network because,
despite its simplicity, it can yield powerful results for multilayer neural networks.
After each training instance is propagated through the neural network, the actual
output is compared to the desired output to obtain an error value. The error
is propagated backward through the network and used to update the weight
values maintained at each node. Once the entire training set has been propagated
through the network, the network is tested on the validity set. If the error over
the entire validity set has increased since the last iteration, the network patience
is decreased. Training stops when the network patience reaches zero, or when
the error on the validity set falls below some threshold value. Once the training
stops, the weight values that correspond to the lowest error over the validity set
are loaded into the neural network, and the accuracy of the neural network is
evaluated on a set of test matrices.

Since a sample space size of 18,000 instances is smaller than the size rec-
ommended by the Baum-Haussler Rule, we used 17-fold cross validation. After
choosing 1000 instances for the test set, we divide the remaining instances into
17 potential validity sets. We then train and test our neural networks 17 times,
each time using the same test set, but a different validity and training set.

3.3 User Scenarios

When assigning instances to the testing, training, and validity sets, we considered
three different scenarios that a user might be interested in:

Previously Solved: This corresponds to the situation where the system of
interest has been studied before, but perhaps the user is curious about the
likely effectiveness of a different preconditioner or of changes to user-set
parameters. To simulate this scenario, we randomly choose 1000 instances
from the entire sample space to create the test set. The remaining instances
are used for the validity and training set. Thus for any single matrix, the
instance generated from trying to solve it using a particular setting of the
parameters might be in the testing set, while another instance with different
parameter settings might end up in the validity or training sets.

Novel: This corresponds to the situation where the system comes from a novel
application and is unlike any system seen before. In this scenario, we ran-
domly choose 15 matrices to create the test set. If one of these matrices
belongs to a family of matrices, we throw out these siblings so that they are
not used in the training or validity sets.
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Family: This corresponds to the situation where the system is similar to others
seen before (e.g. resulting from a finer meshing of an existing problem).
In this scenario, we randomly choose 15 matrices to create the test set. We
allow other matrices in the same family to remain in the training and validity
set. However for a given matrix in the testing set, any of the 72 instances
generated by this matrix will only occur in the testing set and not in either
the training or validity sets.

3.4 Using Information from the Preconditioner

Finally, we consider both the case where a user hopes to predict success based
solely on information about the system, and the case where a user is willing to
compute the preconditioner first and use information from this to predict the
success of a subsequently applied iterative solver. In the latter case, we include
information about the number of nonzeros in the computed preconditioner as
well as a value indicating whether the preconditioner was successful. This creates
an extended set of 38 input values to the neural network: 32 extracted matrix
features, 3 parameters to the preconditioner, and 3 additional values from the
preconditioned system. In both cases, whether information about the computed
preconditioner is used or not, we consider all three scenarios described in the
above section.

4 Results

In this section we first make some general observations, then present the results
when only information from the system is used for prediction, and finally the
results when additional information from computing the preconditioner is used.
Since a user could be concerned about various forms of accuracy, we give the
overall accuracy for all three user scenarios as well as the breakdown of incorrect
responses into false positives (type 1 errors in which the network mistakenly
predicts that a system is solvable) and false negatives (type 2 errors in which
the network mistakenly predicts that a system is unsolvable).

4.1 General Observations

In each scenario we varied the number of hidden nodes, testing a range of values
starting from the number recommended by the Baum-Haussler heuristic and
increasing until the network performance stopped improving. We found that the
number of hidden nodes affected the accuracy of the neural network, although
more hidden nodes was not always better. Since the difference in accuracy was
typically around 2%, and never more than 5%, in the rest of this section we
always use the best result obtained over all the number of hidden nodes tried.
In addition, since we used 17-fold cross validation we report on combined results
across all 17 runs.
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4.2 Using Information from Only the System

Initially we assume that the neural network is given only information about the
matrix and the values of the 1fil, droptol, and pivtol parameters given to the
preconditioner. Table 1 summarizes the results under each of the three scenarios
described in the previous section.

Table 1. Accuracy of classification with 35 input parameters

Previously Solved  Novel  Family

Correctly classified 92.5%  67.9% 79.1%
False positives 3.9% 14.6% 11.4%
False negatives 37%  17.5% 9.6%

Looking at the first row of Table 1, the best performance is in the Previously
Solved case, where 92.5% of instances in the test set were correctly classified.
In this case, the number of hidden nodes had little effect. However in the other
two situations, we found that the performance of the neural network increased
to a certain point as the number of hidden nodes increased, and then began to
decrease. For the Novel case the optimal number of hidden nodes was 36 and
with the Family scenario it was 38.

The other rows of Table 1 shows the type of errors made in each scenario.
Overall, the neural networks seem equally likely to mistakenly predict that the
system is solvable versus unsolvable.

4.3 Using Information from the Preconditioner

We then repeated the experiments for all three scenarios above using three ad-
ditional input parameters: whether the incomplete factorization was successful,
and the number of nonzeros in the upper and lower triangular incomplete factors.
Not surprisingly, as shown in the first row of Table 2, the accuracy increased in
all three cases.

Table 2. Accuracy of classification with 38 input parameters

Previously Solved  Novel  Family

Correctly classified 96.6%  73.5% 80.4%
False positives 1.1%  13.1% 11.2%
False negatives 2.3%  13.3% 8.3%

In the Previously Solved case, we correctly predicted the behavior of the
preconditioned solver for 96.6% of the testing instances. This number was very
consistent. Even though we report on the best performance (which was achieved
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using 38 hidden nodes), we note that the variance over all the different number
of hidden nodes tried was only .006.

At the other extreme, in the Novel case we were only able to predict the
behavior of the solver for 73.5% of the testing instances. The performance also
varied more (with a variance of 2.39) as a function of the number of hidden
nodes. The best performance here used 28 hidden nodes.

If we now look at the type of errors, we see that type 2 errors (false negatives)
are more common than type 1 errors in the Previously Solved scenario. This
means that the neural network is more likely to predict that a system cannot
be solved when, in fact, it can — however, since examples in the first scenario
are overwhelmingly correctly classified, this represents a very small number of
incorrect predictions. In the Family case the neural network is slightly more
likely to incorrectly predict that a system can be solved when it cannot, and in
the Novel scenario there is little bias in either direction.

5 Discussion

In this paper we evaluate the effectiveness of neural networks as a tool for predict-
ing the behavior of preconditioned iterative solvers under a range of scenarios,
using matrix statistics that are relatively cheap to compute. The largest factor
influencing prediction accuracy is the degree to which the training set is rep-
resentative of the testing set. When the two sets are very similar, the neural
network is highly accurate even when inexpensive matrix features, versus more
expensive information about the preconditioner, are used as input. Not surpris-
ingly, as the two sets become less similar, the accuracy drops. However, even
when the two sets bear minimal resemblance to each other as in the Novel case
discussed previously, the accuracy can be improved by adding information from
the computed preconditioner. It is unfortunate that these neural networks do
not seem strongly biased towards either type 1 or type 2 errors, since it means a
user cannot make any assumptions about whether the prediction is likely to be
conservative.

We are currently experimenting with using principal component analysis both
to reduce the training time for the neural network, and to explain the behavior of
the neural network. Preliminary results show that applying PCA to the sample
space before training the neural network allows us to get the same accuracy (96%
in the Previously Solved case), using only 15 inputs instead of 38. This points to a
high level of redundancy and noise in the data. In addition, we plan to apply PCA
to the weight values in the neural network. The hope is that this will determine
which features are the most significant for prediction. In the situation where a user
isinterested in a completely novel system, this may enable us to create training sets
of matrices that are similar to that system in a meaningful way.

Overall, we find these initial results encouraging, although the fact that we
only considered ILU-preconditioned GMRES(50) limits the generalizability of
these results. Clearly in the future it would also be desireable to perform these
tests over a larger number of preconditioners, iterative solvers, and matrices.
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