
Compatibility of Scalapack with the Discrete
Wavelet Transform

Liesner Acevedo1,2, Victor M. Garcia1, and Antonio M. Vidal1

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{lacevedo, vmgarcia, avidal}@dsic.upv.es
2 Departamento de Técnicas de Programación

Universidad de las Ciencias Informaticas
Carretera a San Antonio de los Baños Km 2 s/n, La Habana, Cuba

Abstract. Parallelization of the Discrete Wavelet Transform (DWT)
oriented to linear algebra applications, specially the solution of large
linear systems, is studied in this paper. We propose that for parallel ap-
plications using linear algebra and wavelets, it can be advantageous to
use directly the two-dimensional block cyclic distribution (2DBC), used
in ScaLAPACK [1]. Although the parallel computation of the DWT may
be faster with other data distributions, the efficiency of the 2DBC distri-
bution for some linear algebra applications can make it more appropriate.
We have tested this approach implementing a preconditioner for itera-
tive solution of linear systems, which uses wavelets and was proposed in
[2]. The results using the 2DBC Distribution are better than those ob-
tained with a popular parallel data distribution for computing wavelets,
the ”Communication-Efficient” scheme proposed in [3].

Keywords: Discrete Wavelet Transform, Parallel Linear Algebra, Scala-
pack.

1 Introduction

The Discrete Wavelet transform is still a very recent field, so that it is the subject
of active research. The number of applications which can benefit from this tool
increases nearly every day, such as time series analysis, signal analysis, signal
denoising, signal and image compression, fractals, and many more.

The main motivation of this work has been the parallelization of linear algebra
algorithms which use wavelets at any stage. There are many papers describing
different techniques for the parallelization of the DWT; however, the algorithms
described in these papers put the emphasis in computing the DWT as fast as
possible; therefore the data distribution among the processors is chosen to min-
imize the computing time needed to obtain the transformed matrix.

In linear algebra algorithms, the matrix obtained after applying the DWT
may have to be used for some calculation far more expensive than the DWT

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 152–159, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compatibility of Scalapack with the Discrete Wavelet Transform 153

in itself, such as solution of linear systems. The standard parallel library for
linear systems with dense matrices is ScaLAPACK. However, in order to use the
ScaLAPACK functions the matrix must be distributed using the bidimensional
block cyclic distribution (2DBC distribution), the ScaLAPACK standard. If the
matrix is not distributed in this way, one must face either a redistribution of
the matrix, (with a high communication cost) or a heavy load imbalance (if no
redistribution is done).

We propose to compute the DWT directly over the matrix distributed with
the 2DBC distribution. As an application study, we have applied it to the paral-
lelization of a multilevel preconditioner proposed by T. Chan and K. Chen in [2],
based on the DWT and the Schur complement method.

The paper starts by giving a small review of the DWT and its application
to solution of linear systems. In that section, the multilevel preconditioner is
described. Then starts the main part of paper, where the results about parallel
DWT are presented. Finally, the code implementing the parallel version of the
preconditioner is described, and some numerical results are given.

2 Discrete Wavelet Transform

The theoretical background of the DWT is based on the concept of Multiresolu-
tion analysis and is already quite well known. However, these concepts are not
useful when considering the implementation details and the parallelization, so
that we will refer to the interested reader to the following references: [4,5].

The DWT applied over a signal or vector is obtained through digital filters,
a lowpass filter G determined by the coefficients {gi}D

i=1 and a highpass filter H

{hi}D
i=1.

Not all pairs of highpass and lowpass filters are valid for a DWT; however,
there are many such pairs. This means that the DWT is not a single, unique
operation, since it depends on the filters. The orthogonal wavelets are the most
popular group of wavelets. In this case, to obtain a reversible DWT the filter
coefficients must satisfy hi = (−1)igi. The length D of the filter is called the
”order” of the wavelet. For simplicity, we shall concentrate only on orthogonal
wavelets, and, among these, only on the wavelets depending on short filters, since
these will minimize the communications in the parallel DWT.

A single stage of the DWT (or a one-level DWT) over a vector v of length
n = 2k is performed, first, convolving both filters with the vector v, obtaining two
sequences of length n. Next, every even element of these sequences is discarded,
and the resulting sequences (of length n

2) are assembled together.
These two steps are equivalent to the multiplication of the data vector by the

matrix Wn =
(

H
G

)
, where H and G (of dimension n

2 × n) are

H =

⎛
⎜⎜⎜⎝

h1 h2 ... hD 0 · · · · · · · · · · · · 0
0 0 h1 h2 ... hD 0 · · · · · · 0

0 · · · · · · . . .
. . .

. . .
... 0

h3 h4 · · · hD 0 · · · 0 h1 h2

⎞
⎟⎟⎟⎠ (1)

154 L. Acevedo, V.M. Garcia, and A.M. Vidal

The matrix G has the same structure. This product would result in

Wn · v =
(

H · v
G · v

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
...

dn/2
s1
...

sn/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where the di are the high frequency (or ”detail”) components and the si are the
low frequency (or ”smooth”) components. If the wavelet is orthogonal, then the
matrix Wn must be orthogonal as well. The orthogonal wavelets with shorter
filters are the Haar wavelet, with coefficients

(
g1 =

√
2

2 , g2 =
√

2
2

)
The L-Level DWT (or, simply, the DWT) is obtained applying L times the

one-level DWT over the low frequency part of the data vector.
The two-dimensional wavelet transform is applied to a matrix by applying

1-D transforms along each dimension. So, a one-level 2-D DWT applied over a
matrix T0 ∈ �n,n can be written as T̃0 = WnT0W

T
n , with Wn defined as above.

In this case, we obtain the following partition:

T̃0 = WnT0W
T
n =

(
A1 B1
C1 T1

)
, (3)

where T1 = GT0G
T , A1 = HT0H

T , B1 = HT0G
T and C1 = GT0H

T .
If, as usual, we want to apply more than one DWT level, at least two different

possibilities appear. The so-called ”Standard” DWT form of a matrix is obtained
applying the L-level DWT over the columns, and then applying the L-level DWT
over the rows. The Non-Standard form [6] is obtained applying a one level DWT
over the rows, and one over the columns (obtaining a partition as in (3). Then,
another one-level DWT by rows (WT

n/2) and another DWT by columns (Wn/2)
are applied over the low-frequency submatrix T1, and this is repeated L times,
always over the low frequency submatrix.

When working with matrices, the choice usually is the Non-Standard form
or some slightly different version, such as the level-by level form, proposed
in [2]. Therefore, all the considerations from now on will be referred to the
Non-Standard version.

2.1 Wavelets and Linear Systems

There are several research lines, oriented towards efficient solution of linear sys-
tems using wavelets [6,7]. One of these is based on the decomposition shown in
equation (3). The main algorithm of interest for us is the recursive Wavelet-Schur
preconditioner proposed by Chan and Chen in [2].

It is not possible for us, due to space reasons, to give an appropriate descrip-
tion of the algorithm. Therefore we will only give a brief outline; all the details
can be found in [2].

Compatibility of Scalapack with the Discrete Wavelet Transform 155

This algorithm uses the block decomposition (3) produced by the DWT. To
build a preconditioner, the submatrices A1, B1 and C1 are approximated by
”band approximations” (all the elements except those on the desired band are
set to zero), and the Schur complement method is used to solve, approximately,
a linear system with this new matrix. Combining this technique with standard
iterative methods (GMRES, Richardson)[8] a multilevel algorithm for solution
of linear systems is built.

The implementation of this algorithm requires the computation of several
DWT levels of a matrix, the computation of matrix-vector products of DWT-
transformed matrices, and, in the inner level, needs the solution of a linear
system through LU decomposition, where the coefficient matrix is again a DWT-
transformed matrix.

2.2 Parallel DWT; Data Distributions

The parallel DWT of a matrix is relatively simple to implement [3]. The most
critical issue is the data distribution to avoid communications. The scheme with
seemingly better properties is the ”Communication-efficient” (C-E) DWT pro-
posed by Nielsen and Hegland [3], in which the matrix is distributed by block of
contiguous columns.

On the other hand (as mentioned above), if the matrix should be used as
coefficient matrix for solution of linear systems, it would be better to use a
2DBC distribution, the used as basis of the Scalapack library. The ScaLAPACK
data distribution is described in detail in [1]. Here we only show an example.
Let us consider the bidimensional grid of processors of Figure 1.

Fig. 1. Bidimensional processor mesh

Figure 2 shows how a matrix would be distributed over the processor mesh in
Fig.1. The distribution for C-E DWT is displayed on the left, while the figure on
the right shows a possible two dimensional cyclic distribution, suitable for use
with Scalapack.

We will examine now which are the communications needed for the compu-
tation of a single wavelet level, using both distributions. Let us start with the
C-E distribution.

156 L. Acevedo, V.M. Garcia, and A.M. Vidal

Fig. 2. Matrix on the left, distributed by columns (for C-E DWT); on the right, a
possible two-dimensional cyclic distribution

Using basic results from the Nielsen-Hegland paper [3], we have that with the
column distribution every processor will need, for each row, D−2 elements from
the processor holding the columns on the right. These elements are needed to
compute the row-oriented 1D DWT. (Since in this distribution each processor
holds complete columns, there is no need of communications for the column-
oriented 1D DWT). The only exception is the last processor (P11 in the figure),
which must receive these elements form the first processor (P00 in the Figure).

Therefore, considering all rows, each processor will need N · (D −2) elements,
and the total number of words to be transferred is P · N · (D − 2), where P is
the number of processors.

Using a 2DBC distribution, the communications are somewhat more involved.
Let us assume first that the matrix is distributed over a square processor mesh
of diameter

√
P , and that the block size, Nb divides exactly the dimension of

the matrix n. So,if k = N
Nb

, then the total number of blocks in the matrix is k2.
Let us consider now a single block, located, for the example, in the processor

P00. Using the same result from [3] mentioned above, we obtain that to complete
the DWT of that block, the processor P00 should receive Nb·(D−2) elements from
the processor P01 (needed for the row-oriented DWT) and another Nb · (D − 2)
elements from the processor P10 (for the column-oriented DWT). If we consider
the last row of blocks, these should be receiving the same amount of data, but
from the processor(s) holding the first row of blocks, like in the CE distribution.
If we consider the last column of blocks, it would happen exactly the same.

It turns out that every block (no matter in which processor are they located)
requires a communication of 2Nb · (D − 2) words . Therefore, for a single DWT
level, the total number of words to be transferred shall be k2 · 2Nb · (D − 2) =
2N ·k · (D − 2). Clearly, for ”normal” values of P and Nb, more communications
are needed with the 2DBC distribution.

Of course, if we were interested only in computing the DWT, it would not be
sensible to consider a Scalapack-like distribution, since it is simpler and more
efficient to compute the DWT with the communication-efficient strategy. Nev-
ertheless, the situation changes when, as in this case, some linear algebra tasks
must be performed in parallel with the transformed matrices.

Compatibility of Scalapack with the Discrete Wavelet Transform 157

3 Example of Application: Parallel Implementation of
the Wavelet-Schur Preconditioner

The Wavelet-Schur preconditioner, described briefly above, is a good example of
algorithm which might benefit of the use of the ScaLAPACK library. It needs to
compute several matrix-vector products and, above all, it needs to solve a dense
linear system.

To test the performance of the data distributions considered, we have written
a parallel linear system iterative solver, based on GMRES and preconditioned
with the Wavelet-Schur preconditioner.

The GMRES method for dense matrices in a 2DBC distribution is imple-
mented easily using the PBLAS and ScaLAPACK functions for the matrix-vector
product, saxpy update, dot product and 2-norm: pdgemv, pdaxpy, pddot and
pdnorm2. In the coarsest level where the direct method is used, the LU decom-
position of ScaLAPACK pdgesv is used.

The band approximations of the A, B and C matrices have been chosen as
diagonal matrices.

The linear systems used to evaluate the parallel algorithm proposed were
generated with the following matrices:

ai,j =
{

2 if i = j
1

|i−j| otherwise
(4)

For simplicity, the sizes of the matrix have been chosen as powers of two:
768, 1152, · · · , 4024. All the tests were carried out in a cluster with 20 2GHz
Intel Xeon biprocessors, each one with 1 Gbyte of RAM, disposed in a 4x5
mesh with 2D torus topology and interconnected through a SCI network. The
processor grids used have sizes 2 × 2 , 3 × 3 and 4 × 4 and the block size was 32.

3.1 Numerical Results

The table 1 and 2 shows the CPU times of the algorithm in sequential and
parallel versions, using 1 and 2 wavelet levels in the proposed processor meshes
with the 2DBC Distribution.

The same algorithm was implemented as well computing the parallel DWT
with the CE distribution. It would have been interesting to apply directly the
algorithm for solution of linear systems to the CE distribution, but the ScaLA-
PACK routine for the LU decomposition request that the matrix is distributed
using square blocks, so that it cannot be used with the distribution by blocks of
columns used for the communication-efficient DWT. Therefore, the matrix had to
be redistributed to a 2DBC distribution after computing the DWT (The redistri-
bution was done using the ScaLAPACK redistribution subroutine pdgemr2d).

So, the difference between execution times for both distributions can be assigned
entirely to the redistribution of the matrix form the CE (column) distribution to
a 2DBC distribution. The results in that case can be seen in Tables 3 and 4.

158 L. Acevedo, V.M. Garcia, and A.M. Vidal

Table 1. CPU time (sec.) for the algorithm with 1 wavelet level, Scalapack distribution

N 768 1152 1536 1920 2304 2688 3072 3456 3840 4224
1 Processor 0.15 0.36 0.68 1.14 1.76 2.45 3.41 4.76 6.19 7.93

2 × 2 Processors 0.13 0.29 0.40 0.62 0.80 1.07 1.40 1.80 2.29 2.76
3 × 3 Processors 0.08 0.14 0.20 0.29 0.42 0.52 0.69 0.93 1.17 1.42
4 × 4 Processors 0.05 0.10 0.12 0.18 0.25 0.32 0.43 0.56 0.72 0.85

Table 2. CPU time (sec.) for the algorithm with 2 wavelet level, Scalapack distribution

N 768 1152 1536 1920 2304 2688 3072 3456 3840 4224
1 Processor 0.13 0.26 0.47 0.76 1.13 1.65 1.96 2.80 3.37 4.22

2 × 2 Processors 0.12 0.23 0.30 0.47 0.64 0.78 0.98 1.17 1.37 1.63
3 × 3 Processors 0.07 0.12 0.14 0.21 0.29 0.39 0.43 0.61 0.66 0.79
4 × 4 Processors 0.05 0.08 0.09 0.13 0.17 0.23 0.27 0.35 0.40 0.46

Table 3. CPU time (sec.) for the algorithm with 1 wavelet level, Communication-
efficient distribution

N 768 1152 1536 1920 2304 2688 3072 3456 3840 4224
1 Processor 0.15 0.36 0.68 1.14 1.76 2.45 3.41 4.76 6.19 7.93

2 × 2 Processors 0.22 0.49 0.70 1.08 1.50 2.03 2.62 3.30 4.14 4.98
3 × 3 Processors 0.25 0.38 0.58 0.87 1.13 1.47 1.92 2.44 3.07 3.66
4 × 4 Processors 0.26 0.40 0.52 0.77 0.98 1.33 1.66 2.13 2.64 3.15

Table 4. CPU time (sec.) for the algorithm with 2 wavelet level, Communication-
efficient distribution

N 768 1152 1536 1920 2304 2688 3072 3456 3840 4224
1 Processor 0.13 0.26 0.47 0.76 1.13 1.65 1.96 2.80 3.37 4.22

2 × 2 Processors 0.14 0.27 0.38 0.59 0.81 1.04 1.31 1.54 1.83 2.21
3 × 3 Processors 0.18 0.25 0.31 0.42 0.56 0.70 0.85 1.07 1.20 1.43
4 × 4 Processors 0.27 0.34 0.41 0.52 0.53 0.60 0.69 0.86 0.99 1.15

It is quite clear (and obvious) that the times using directly the ScaLAPACK
distribution are significantly better than the sequential times and the times ob-
tained with the C-E distribution. Considering that the parallel computation of
the DWT is faster with the CE distribution than with the 2DBC distribution,
this means that the time needed to redistribute the matrix (from the CE distri-
bution to the 2DBC distribution) is quite large. The efficiencies obtained are not
very good in any case, due to the high communications requirements of the LU
decomposition and the matrix-vector products. However, the efficiency improves
when the number of processors and the size of the problem increases; in the case
of the 2DBC distribution, the improvement is more pronounced.

Compatibility of Scalapack with the Discrete Wavelet Transform 159

4 Conclusions

In this paper we have considered the computation of the parallel DWT of a
matrix, and specially to its application in numerical linear algebra applications.

We have shown that the 2DBC distribution is an interesting distribution for
computing the parallel DWT, since it would allow the direct use of ScaLAPACK
routines. As an example, the Wavelet-Schur preconditioner has been parallelized
with good results with respect to the sequential versions, and with respect to
the same algorithm using the C-E DWT proposed by Nielsen and Hegland.

Acknowledgement

This work has been supported by Spanish MCYT and FEDER under Grant
TIC2003-08238-C02-02.

References

1. L.S. Blackford et al., Software, Enviroment, Tools. ScaLAPACK Users Guide, SIAM
(1997).

2. T.F. Chan, K. Chen, On Two Variants of an Algebraic Wavelet Preconditioner,
SIAM J. Sci. Comput.,24 (2002),260–283

3. O.M. Nielsen, M.A. Hegland, A Scalable Parallel 2D Wavelet Transform
Algorithm. REPORT TR-CS-97-21, Australian National University, 1997.
http://cs.anu.edu.au/techreports.

4. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series
In Applied Mathematics, Vol. 61. Society for Industrial and Applied Mathematics
Philadelphia, 1992.

5. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to software. A.K.
Peters, IEEE Press, 1994.

6. G. Beylkin, R. Coifman, V. Rokhlin, Fast Wavelet Transforms and Numerical algo-
rithms I, Commun. Pure Appl. Math., XLIV (1991), pp. 141-183.

7. T.F. Chan, W.P. Tang, W.L. Wan, Wavelet sparse approximate inverse precondi-
tioners, BIT, 37 (1997), pp. 644-660.

8. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, H. Vorst, Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods, Society for Industrial and Applied Mathematics,
Philadelphia, 1993.

	Introduction
	Discrete Wavelet Transform
	Wavelets and Linear Systems
	Parallel DWT; Data Distributions

	Example of Application: Parallel Implementation of the Wavelet-Schur Preconditioner
	Numerical Results

	Conclusions

