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Abstract. Using a scenario of multiple mobile observing platforms (UAVs) mea-
suring weather variables in distributed regions of the Pacific, we are develop-
ing algorithms that will lead to improved forecasting of high-impact weather
events. We combine technologies from the nonlinear weather prediction and plan-
ning/control communities to create a close link between model predictions and
observed measurements, choosing future measurements that minimize the ex-
pected forecast error under time-varying conditions.

We have approached the problem on three fronts. We have developed an infor-
mation-theoretic algorithm for selecting environment measurements in a compu-
tationally effective way. This algorithm determines the best discrete locations and
times to take additional measurement for reducing the forecast uncertainty in the
region of interest while considering the mobility of the sensor platforms. Our
second algorithm learns to use past experience in predicting good routes to travel
between measurements. Experiments show that these approaches work well on
idealized models of weather patterns.

1 Introduction

Recent advances in numerical weather prediction (NWP) models have greatly improved
the computational tractability of long-range prediction accuracy. However, the inherent
sensitivity of these models to their initial conditions has further increased the need
for accurate and precise measurements of the environmental conditions. Deploying an
extensive mobile observation network is likely to be costly, and measurements of the
current conditions may produce different results in terms of improving forecast perfor-
mance [1,2]. These facts have led to the development of observation strategies where
additional sensors are deployed to achieve the best performance according to some
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measures such as expected forecast error reduction and uncertainty reduction [3]. One
method for augmenting a fixed sensor network is through the use of “adaptive” or “tar-
geted” observations where mobile observing platforms are directed to areas where ob-
servations are expected to maximally reduce forecast error under some norm (see, for
example, NOAA’s Winter Storm Reconnaissance Program [4]). The hypothesis is that
these directed measurements provide better inputs to the weather forecasting system
than random or gridded use of the observing assets.

This paper describes an adaptive observation strategy that integrates nonlinear weat-
her prediction, planning and control to create a close link between model predictions
and observed measurements, choosing future measurements that minimize the expected
forecast error under time-varying conditions. The main result will be a new framework
for coordinating a team of mobile observing assets that provides more efficient mea-
surement strategies and a more accurate means of capturing spatial correlations in the
system dynamics, which will have broad applicability to measurement and prediction
in other domains. We first describe the specific non-linear weather prediction model
used to develop our adaptive observation strategy, and then describe a global targeting
algorithm and a local path planner that together choose measurements to minimize the
expected forecast error.

2 Models of Non-linear Weather Prediction

While there exist large-scale realistic models of weather prediction such as the Navy’s
Coupled Ocean Atmosphere Prediction System (COAMPS), our attention will be re-
stricted to reduced models in order to allow computationally tractable experiments
with different adaptive measurement strategies. The Lorenz-2003 model is an extended
model of the Lorenz-95 model [1] to address multi-scale feature of the weather dynam-
ics in addition to the basic aspects of the weather motion such as energy dissipation,
advection, and external forcing. In this paper, the original one-dimensional model is
extended to two-dimensions representing the mid-latitude region (20 − 70 deg) of the
northern hemisphere. The system equations are

ẏij = − ξi−2α,jξi−α,j +
1

2�α/2� + 1

k=+�α/2�∑

k=−�α/2�
ξi−α+k,jyi+k,j

− μηi,j−2βηi,j−β +
μ

2�β/2� + 1

k=+�β/2�∑

k=−�β/2�
ηi,j−β+kyi,i+k (1)

− yij + F

where

ξij =
1

2�α/2� + 1

k=+�α/2�∑

k=−�α/2�
yi+k,j , ηij =

1
2�β/2� + 1

k=+�α/2�∑

k=−�β/2�
yi,j+k, (2)

where i = 1, . . . , Lon, j = 1, . . . , Lat. The subscript i denotes the west-to-eastern grid
index, while j denotes the south-to-north grid index. The dynamics of the (i, j)-th grid
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point depends on its longitudinal 2α-interval neighbors (and latitudinal 2β) through the
advection terms, on itself by the dissipation term, and on the external forcing (F = 8
in this work). When α = β = 1, this model reduces to the two-dimension Lorenz-95
model [3]. The length-scale of this model is proportional to the inverse of α and β in
each direction: for instance, the grid size for α = β = 2 amounts to 347 km × 347 km.
The time-scale is such that 0.05 time units are equivalent to 6 hours in real-time.

2.1 State Estimation

A standard approach to state estimation and prediction is to use a Monte Carlo (en-
semble) approximation to the extended Kalman Filter, in which each ensemble member
presents an initial state estimate of the weather system. These ensembles are propagated
(for a set forecast time) through the underlying weather dynamics and the estimate (i.e.,
the mean value of these ensembles) is refined by measurements (i.e., updates) that are
available through the sensor network. The particular approximation used in this work is
the sequential ensemble square root filter [5] (EnSRF). In the EnSRF, the propagation of
the mean state estimate and covariance matrix amounts to a nonlinear integration of en-
semble members, improving the filtering of non-linearities compared to standard EKF
techniques and mitigating the computational burden of maintaining a large covariance
matrix [6,5]. The ensemble mean corresponds to the state estimate, and the covariance
information can be obtained from the perturbation ensemble,

P = X̃X̃T /(LE − 1), X̃ ∈ R
LS×LE (3)

where LS is the number of state variables and LE is the ensemble size. X̃ is the pertur-
bation ensemble defined as

X̃ = η
(
X − x̄ × 1T

)
(4)

where X is the ensemble matrix, a row concatenation of each ensemble member, and x̄
is the ensemble mean, the row average of the ensemble matrix. η( ≥ 1) is the covariance
inflation factor introduced to avoid underestimation of the covariance by finite ensemble
size. The propagation step for EnSRF is the integration

Xf (t + Δt) =
∫ t+Δt

t

Ẋdt, X(t) = Xa(t), (5)

with Xf and Xa denoting the forecast and analysis ensemble, respectively. The mea-
surement update step for the EnSRF is

x̄a = x̄f + K(y − Hx̄f ) (6)

X̃a = (I − KH)X̃f (7)

where y denotes the observation vector and H is the linearized observation matrix.
K denotes the appropriate Kalman gain, which can be obtained by solving a non-
linear matrix equation stated in terms of X[5]. The sequential update process avoids
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solving a nonlinear matrix equation and provides a faster method for determining K.
The ensemble update by the m-th observation is

X̃m+1 = X̃m − αmβmpm
i ξ̃m

i , (8)

αm = 1/
(
1 +

√
βmRi

)
, βm = 1/ (Pm

ii + Ri) (9)

where measurement is taken for i-th state variable. pm
i , ξ̃m

i , and Pm
ii are the i-th column,

the i-th row, and the (i, i) element of the prior perturbation matrix Pm respectively. αm

is the factor for compensating the mismatch of the serial update and the batch update,
while βmpm

l amounts to the Kalman gain.
Figure 1(a) shows an example true state of a Lorenz model (top) over the 36×9 state

variables. The bottom frame shows the estimated state at the same time. This estimate is
computed from an EnSRF using 200 ensemble members. Observations are taken at 66
fixed (routine) locations represented by blue circles; note that there are regions where
routine observations are sparse, representing areas such as open ocean where regular
measurements are hard to acquire. Figure 1(b) (top) shows the squared analysis error
between true state and ensemble estimates from the upper figure, that is, the actual fore-
cast error. The lower panel shows the ensemble variance, that is, the expected squared
forecast error. Note that the expected and true error are largely correlated; using 200 en-
semble members was enough to estimate the true model with reasonable error as shown
in the figures.

(a) True vs. Estimated State (b) Performance Analysis

Fig. 1. (a) Top panel: the true state of the Lorenz system, where the intensity correlates with the
state value. Lower panel: The estimated state of the system, using 200 ensemble members. (b)
Top panel: the actual forecast error. Lower panel: the ensemble variance.

For the purposes of forecast error, we are typically interested in improving the
forecast accuracy for some small region such as the coast of California, rather than
the entire Pacific. A verification region is specified as X[v] and verification time tv
in our experiments, as shown by the red squares in Figure 1. Our goal is therefore
to choose measurements of X at time t to minimize the forecast error at X[v] at
time tv .
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Fig. 2. (a) Multi-UAV targeting in the grid space-time. (b) Targeting of four sensor platforms
for the purpose of reducing the uncertainty of 3-day forecast over the west coast of North
America.

3 A Targeting Algorithm for Multiple Mobile Sensor Platforms

The targeting problem is how to assign multiple sensor platforms (e.g. UAVs) to posi-
tions in the finite grid space-time (Figure 2a) in order to reduce the expected forecast
uncertainty in the region of interest X[v]. We define the targeting problem as selecting
n paths consisting of K (size of the targeting time window) points that maximize the
information gain at X[v] of the measurements taken along the selected paths.

A new, computationally efficient backward selection algorithm forms the backbone
of the targeting approach. To address the computation resulting from the expense of
determining the impact of each measurement choice on the uncertainty reduction in the
verification site, the backward selection algorithm exploits the commutativity of mutual
information. This enables the contribution of each measurement choice to be computed
by propagating information backwards from the verification space/time to the search
space/time. This significantly reduces the number of times that computationally expen-
sive covariance updates must be performed. In addition, the proposed targeting algo-
rithm employs a branch-and-bound search technique to reduce computation required
to calculate payoffs for suboptimal candidates, utilizing a simple cost-to-go heuristics
based on the diagonal assumption of the covariance matrix that provides an approximate
upper bound of the actual information gain. The suggested heuristic does not guaran-
tee an optimal solution; nevertheless, in practice it results in a substantial reduction in
computation time while incurring minimal loss of optimality, which can be improved
by relaxing a bounding constraint.

Figure 2(b) depicts an illustrative solution of the four-agent (black ♦, �, �, ∗) tar-
geting problem for enhancing the 3-day forecast of the west coast of North America
(red �); the time interval between the marks is three hours.

The computation time of the targeting algorithm grows exponentially with the num-
ber of sensor platforms and the size of the targeting window increase, in spite of the
reduction in computational cost. Thus, further approximations that decompose the com-
putation and decision making into different topologies and choices on the planning
horizon will be explored. These have been shown to avoid the combinatorial explo-
sion of the computation time, and the performance of the approximation scheme turns
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out to depend highly on the communication topology between agents. The existence of
inter-agent sharing of the up-to-date covariance information has also been shown to be
essential to achieve performance.

4 Trajectory Learning

Given a series of desired target locations for additional measurements, an appropriate
motion trajectory must be chosen between each pair of locations. Rather than directly
optimizing the trajectory based on the current state of the weather system, the sys-
tem will learn to predict the best trajectory that minimizes the forecast by examining
past example trajectories. The advantage to this approach is that, once the predictive
model is learned, each prediction can be made extremely quickly and adapted in real
time as additional measurements are taken along the trajectory. The second advantage
is that by careful selecting the learning technique, a large number of factors can be con-
sidered in both the weather system and the objective function, essentially optimizing
against a number of different objectives, again without incurring a large computational
penalty.

The problem of learning a model that minimizes the predicted forecast error is that
of reinforcement learning, in which an agent takes actions and receives some reward
signal. The goal of the agent is to maximize over its lifetime the expected received
reward (or minimize the received cost) by learning to associate actions that maximize
reward in different states. Reinforcement learning algorithms allow the agent to learn a
policy π : x → a, mapping state x to action a in order to maximize the reward.

In the weather domain, our cost function is the norm of the forecast error at the
verification state variables (X[v]) at the verification time tv , so that the optimal policy
π∗ is

π∗(X) = argmin
π∈Π

EXtv [v]

[∥∥∥(X̃tv [v]|h(π),X) − Xtv [v]
∥∥∥
]

(10)

If our set of actions is chosen to be a class of paths through space, such as polynomial
splines interpolating the target points, then the policy attempts to choose the best spline
to minimize our expected forecast error. Notice that this policy maps the current state
X to the action a; however, the policy does not have access to the current weather state
but only the current estimate of the weather given by the EnSRF. The learner therefore
computes the policy that chooses actions based on the current estimate given by the
mean X̃ and covariance Σ of the ensemble.

In order to find the optimal policy π∗, a conventional reinforcement learning al-
gorithm spends time trying different trajectories under different examples of weather
conditions, and modelling how each trajectory predicts a different forecast error. The
learning problem then becomes one of predicting, for a given EnSRF estimate X̃ and
Σ, the expected forecast error ξ ∈ R for each possible trajectory a ∈ A:

(X̃, Σ) × A → R. (11)

Once this functional relationship is established, the controller simply examines the pre-
dicted error ξ for each action a given the current state estimate and chooses the action
with the least error.



1144 N. Roy et al.

With access to a weather simulator such as the Lorenz model, we can simplify this
learning problem by turning our reinforcement learning problem into a “supervised”
learning problem, where the goal of the learner is not to predict the forecast error ξ
of each possible trajectory conditioned on the current weather estimate, but rather to
predict the best trajectory, a converting the regression problem of equation (11) into a
classification problem, that is,

(X̃, Σ) → A. (12)

Although regression and classification are closely linked (and one can often be writ-
ten in terms of another), we can take advantage of some well-understood classification
algorithms for computing policies. The classification algorithm used is the multi-class
Support Vector Machine [7], which assigns a label (i.e., our optimal action) to each ini-
tial condition. The SVM is a good choice to learn our policy for two reasons: firstly, the
SVM allows us to learn a classifier over the continuous state space (X̃, Σ). Secondly,
the SVM is generally an efficient learner of large input spaces with a small number of
samples; the SVM uses a technique known as the “kernel trick” [7] to perform classifi-
cation by projecting each instance to a high-dimensional, non-linear space in which the
inputs are linearly separable according to their class label.

4.1 Experimental Results

Training data for the Lorenz model was created by randomly generating initial condi-
tions of the model, creating a set of ensemble members from random perturbations to
the initial conditions and then propagating the model. Figure 3(a) shows a plot of 40
initial conditions used as training data created by running the model forward for several
days and sampling a new initial condition every 6 hours, re-initializing the model every
5 days. Each row corresponds to a different training datum Xt, and each column cor-
responds to a state variable X i. While the data are fairly random, the learner can take
advantage of the considerable temporal correlation; notice the clear discontinuity in the
middle of the data where the model was re-initialized.

(a) Training Data (b) Example trajectories

Fig. 3. (a) A plot of 40 training instances X. Each column corresponds to a state variable Xi and
each row is a different Xt. (b) Three example trajectories from our action space A. Our action
space consisted of 5 trajectories that span the region from the same start and end locations.

Each training instance was labelled with the corresponding optimal trajectory. We
restricted the learner to a limited set of 5 actions or candidate trajectories, although
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this constraint will be relaxed in future work. All candidate trajectories started from the
same mid-point of the left side of the region and ended at the same mid-point of the right
side of the region. Three examples of the five trajectories are shown in Figure 3(b); the
trajectories were chosen to be maximal distinct through the area of sparse routine obser-
vations in the centre of the region. From the initial condition, the model and ensemble
were propagated for each trajectory. During this propagation, routine observations were
taken every 5 time units and then a forecast was generated by propagating the ensemble
for time equivalent to 2 and 4 days, without taking additional observations. The forecast
error was then calculated by the difference between the ensemble estimate and the true
value of the variables of the verification region. Each initial condition was labelled with
the trajectory that minimized the resultant forecast error.

(a) Forecast Error
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(b) Forecast Error Loss

Fig. 4. (a) Forecast error at the verification region after 2 days for the 200 largest losses in test
data, sorted from least to greatest. (b) Forecast error loss, where the loss is taken with respect to
the forecast error of the best trajectory.

Figure 4(a) shows the forecast error of best, median, worst and SVM trajectory for
the 200 most difficult (highest forecast error) initial conditions in terms of the forecast
error in the verification region. Notice that the forecast error of the SVM trajectory
tracks the best trajectory relatively closely, indicating good performance. Figure 4(b) is
an explicit comparison between the worst, median and SVM trajectories compared to
the best trajectory for the same 200 most difficult training instances. Again, the SVM
has relatively little loss (as measured by the difference between the forecast error of the
SVM and the forecast error of the best trajectory) for many of these difficult cases.

In training the learner, two different kernel (non-linear projections in the SVM) were
tested, specifically polynomial and radial basis function (RBF) kernels. Using cross-
validation and a well-studied search method to identify the best kernel fit and size, a
surprising result was that a low-order polynomial kernel resulted in the most accurate
prediction of good trajectories. A second surprising result is that in testing different
combinations of input data, such as filter mean alone, compared to filter mean and filter
covariance, the filter covariance had relatively little effect on the SVM performance.
This effect may be related to the restricted action class, but further investigation is
warranted.
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5 Conclusion

The spatio-temporal character of the data and chaotic behavior of the weather model
makes adaptive observation problem challenging in the weather domain. We have de-
scribed two adaptive observation techniques, including a targeting algorithm and a
learning path planning algorithm. In the future, we plan to extend these results using
the Navy’s Coupled Ocean Atmosphere Prediction System (COAMPS), a full-scale re-
gional weather research and forecasting model.
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