
Divisible E-Cash Systems Can Be Truly
Anonymous�

Sébastien Canard1 and Aline Gouget2

1 France Télécom R&D, 42 rue des Coutures, F-14066 Caen, France
2 Gemalto, 6, rue de la Verrerie, F-92190 Meudon, France

Abstract. This paper presents an off-line divisible e-cash scheme where
a user can withdraw a divisible coin of monetary value 2L that he can
parceled and spend anonymously and unlinkably. We present the con-
struction of a security tag that allows to protect the anonymity of honest
users and to revoke anonymity only in case of cheat for protocols based
on a binary tree structure without using a trusted third party. This is
the first divisible e-cash scheme that provides both full unlinkability and
anonymity without requiring a trusted third party.

1 Introduction

Electronic cash systems allow users to withdraw electronic coins from a bank, and
then to pay a merchant using electronic coins preferably without communicating
with the bank or a trusted party during the payment. Finally, the merchant
deposits the spent coins to the bank.

Electronic cash provides user anonymity against both the bank and the mer-
chant during a purchase in order to emulate the perceived anonymity of regular
cash transaction. It must be impossible to link two spending protocols and a
spending protocol to a withdrawal protocol.

As it is easy to duplicate electronic data, an e-cash system must prevent
a user from double-spending. Ideally, the anonymity of honest users must be
protected and the identity of cheaters must be recovered without using a trusted
third party. An electronic payment system must also prevent a merchant from
depositing the same coin twice.

To be practical, an e-cash system must be based on efficient protocols. The
most critical protocol is the spending phase between the user and the merchant
that must be reasonably efficient. It should also be possible to withdraw or spend
several coins more efficiently than repeating several times a single withdrawal or
spending protocol.

1.1 Related Works

The compact E-cash scheme [4] allows to withdraw efficiently a wallet containing
2L coins and provides all the security properties mentioned above. One solution
� This work has been partially financially supported by the European Commission

through the IST Program under Contract IST-2002-507932 ECRYPT and by the
French Ministry of Research RNRT Project “CRYPTO++” .

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 482–497, 2007.
c© International Association for Cryptology Research 2007

Divisible E-Cash Systems Can Be Truly Anonymous 483

to improve the efficiency of the spending phase is to manage a wallet that con-
tains coins with several monetary values as it was done in [8]; the main drawback
is that the user must choose during the withdrawal protocol how many coins he
wants for each monetary value.

Divisible e-cash schemes allow a user to withdraw a coin of monetary value
2L and then to spend this coin in several times by dividing the value of the
coin. The aim is to allow a user to efficiently spend a coin of monetary value
2�, 0 ≤ � ≤ L, (i.e. more efficiently than repeating 2� times a spending pro-
tocol). Many off-line divisible e-cash systems have been proposed in the litera-
ture [22,23,13,14,21,9,20,19] providing part of the security properties mentioned
above. The first practical divisible e-cash system was proposed by Okamoto [21]
and improved by Chan et al. in [9]. Both schemes provide anonymity of users
but not unlinkability since it is still possible to link several spends from a single
divisible coin.

The first unlinkable divisible e-cash system that fulfills the usual properties of
anonymity and unlinkability was proposed in [20] and improved in [19]. The main
drawback of these two systems is that they require a trusted third party to get the
identity of the user in case of double-spend detection: this is consequently what
we can call a fair divisible e-cash system. Moreover, the unlinkability provided
by [20,19] is not strong since the merchant and the bank know which part of the
withdrawn divisible coin the user is spending which is an information leak on
the user.

None of the divisible e-cash schemes of the state of the art provides simulta-
neously strong unlinkability and truly anonymity of users.

1.2 Our Contribution

We present a strong unlinkable and anonymous divisible off-line e-cash system
without trusted third party. We first provide a generic construction and next
apply it to the construction of Nakanishi and Sugiyama [20]. Our system is the
first that provides the user anonymity such that it is impossible for anybody
to make any link between spends and withdraws. Furthermore, our construction
does not require a trusted third party to revoke the anonymity of a user that has
spent twice the same coin. From a theoretical point of view, the identity of the
user can only be revealed when such a case happens. This is the first divisible
e-cash system providing this security property.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 describes the security model and
requirements for a divisible e-cash system. In Section 3, we present the general
principle of the construction. Section 4 is the main one: it contains the new
divisible e-cash called DCS. Finally, in Section 5, we give the security proofs of
our construction.

484 S. Canard and A. Gouget

2 Security Model

We adopt the model of divisible e-cash system without trusted third party. The
three usual players are the user U , the bank B and the merchant M. The security
parameter is denoted by k.

2.1 Algorithms

– ParamKeyGen(k): a probabilistic algorithm outputting the parameters of the
system Params (Params contains the parameter k).

– BKeyGen(Params): a probabilistic algorithm executed by B outputting the
key pair (skB, pkB).

– KeyGen(Params): a probabilistic algorithm executed by U (resp. M) out-
putting (skU , pkU) (resp. (skM, pkM)).

– Withdraw(B(skB, pkB, pkU , Params), U(skU , pkU , pkB, Params)): an inter-
active protocol between B and U . At the end, either U gets a divisible coin
C of monetary value 2L (L belongs to Params) and outputs OK, or U out-
puts ⊥. The output of B is either its view VWithdraw

B of the protocol (including
pkU), or ⊥.

– Spend(U(2�, pkM, C, Params), M(skM, pkB, Params)): an interactive pro-
tocol between U and M. At the end, either M obtains a master serial num-
ber S and a proof of validity Π and outputs (S, Π) or M outputs ⊥. Either
U updates C by saving the part of the divisible coin he spent (i.e. the value
S) and outputs OK, or U outputs ⊥.

– Deposit (M((S, Π), skM, pkM, pkB, Params), B(pkM, Params)): an inter-
active protocol between M and B. During the deposit, B receives (S, Π)
from M, checks that it is fresh and that Π is correct. If not, B outputs ⊥1.
Else B computes 2� serial numbers ˜S1, . . . , ˜S2� from (S, Π) and Params. If
one of the serial number (˜Si, S

′, Π ′) already belongs to L, then the bank
outputs (⊥2, S, Π, S′, Π ′). Otherwise, B adds (˜Si, S, Π), 1 ≤ i ≤ 2�, to its
list L of spent coins, credits M’s account, and returns L. M’s output is OK
or ⊥.

– Identify((S1, Π1), (S2, Π2), Params): a deterministic algorithm executed
by B that outputs a public key pkU and a proof ΠG. If Ms who had submitted
Π1 and Π2 are not malicious, then ΠG is evidence that pkU is the registered
public key of a user that double-spent a coin.

– VerifyGuilt(pkU, ΠG, Params): a deterministic algorithm executed by any
actor that outputs 1 if the proof is correct and 0 otherwise. This verification
permits anyone to be sure that the user with public key pkU is guilty of
double-spending a coin.

2.2 Notions of Security

In the following, it is assumed that the overlying experiment has run the algo-
rithm ParamKeyGen on input k to obtain the parameters Params.

Divisible E-Cash Systems Can Be Truly Anonymous 485

– Unforgeability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the public key pkB and Params. Suppose that A interacts K times
with an honest bank during withdrawal protocols, then the probability that
the number of valid coins that has been spent is at least 2LK+1 is negligible.

– Unlinkability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the key pair (pkB, skB) and Params. At the end, A chooses two
honest users 0 and 1. A bit b is secretly and randomly chosen. Then, a
spending protocol is played by A with user b (it is assumed that both honest
users still have unspent coins). Finally, A outputs a bit b′. We require that
for every A playing this game, the probability that b = b′ differs from 1/2
by a fraction that is at most negligible.

– Identification of double-spenders. Let A be a p.p.t. Turing Machine.
At the start of the game, A is given the public key pkB and Params. The
probability that a Deposit protocol between an honest merchant and an
honest bank outputs (⊥2, S, Π, S′, Π ′) such that the output of Identify
algorithm on inputs (S, Π, S′, Π ′) is not the public key pkU of a corrupted
user is negligible.

– Exculpability. Let A be a p.p.t. Turing Machine. At the start of the game,
A is given the key pair (pkB, skB) and Params. During the game, A inter-
acts with honest users to supply them coins. At the end, A constructs two
spent coins (S1, Π1) and (S2, Π2). The probability that the outputs of the
Identify algorithm on inputs (S1, Π1) and (S2, Π2) is the public key pkU
of an honest user together with a valid proof ΠG is negligible.

Remark 1. Notice that the exculpability property implies that the bank cannot
create withdrawals for which the user has not participated. We don’t need any
extra security property, such as the proposal in [28].

3 General Description

In an anonymous e-cash system without a trusted third party, spending a sin-
gle coin consists in generating a valid serial number S to allow double-spending
detection and a valid security tag T masking the identity of the spender. The
spender has to prove that S and T are well-formed without giving any infor-
mation about his identity. In particular, the identity of the spender must be
recovered only in case of double-spending by using the security tag T .

The main motivation of divisible e-cash is to provide a method to withdraw
or spend several coins more efficiently than repeating several times a single
withdrawal or spending protocol. We provide a general approach to construct
divisible e-cash systems strongly unlinkable and truly anonymous (the user iden-
tity can be recovered only in case of fraud). This construction can be applied
using several basic cryptographic tools.

3.1 Truly Anonymous E-Cash Scheme Based on Binary Trees

The general principle of our construction is derived from the classical binary tree
approach [21,9,20] with slight modifications. Each divisible coin of monetary

486 S. Canard and A. Gouget

value 2L is assigned to a binary tree of L + 2 levels. The tree root (level 0) with
monetary value 2L is assigned to a serial number denoted by N0,0. Any other
node has a monetary value corresponding to half of the amount of its parent
node, except for the leaves that have no monetary value: they are “dead” leaves.
For every level i, 0 ≤ i ≤ L, the 2i nodes are assigned serial numbers denoted
by Ni,j with 1 ≤ j ≤ 2i, except for the “dead” leaves that are not related to any
serial number. Any divisible e-cash system should verify the divisibility rule.

Definition 1. When a node N is used, none of descendant and ancestor nodes
of N can be used, and no node can be used more than once.

This rule is satisfied if, and only if, over-spending is protected. The general
principle of our proposal consists in using a single master serial number from
which several serial numbers can be derived. Thus, each node of the tree, which
includes the leaves, is also related to a particular value called a tag key. During
the spending protocol, the identity of the spender is encrypted with a tag key
in such a way that the decryption key can be derived only in case of a double-
spending. Using the binary tree approach, each node of the tree is related to a
tag key with the following properties.

– The root tag key and the identity of the user are signed (in a blind manner)
by the bank during the withdrawal protocol.

– From the tag key of a node N , it is possible for everyone to compute the tag
keys related to the descendant nodes of N . It consequently exists a public
deterministic function F that takes as input a tag key Ki,b0 (where i is the
level of the targeted node in the tree and b0 ∈ {0, 1} depends on the position
of K in the tree1), a bit b (0 for left and 1 for right) and possibly some public
parameters Params and that outputs a new tag key Ki+1,b.

F : (Ki,b0 , b, Params) −→ Ki+1,b = F(Ki,b0 , b, Params).

– From the tag key of a node, it is impossible (without the knowledge of the
root tag key) to compute a tag key which is not related to a descendant of
the targeted node.

– The serial number of a particular node is the concatenation of the two chil-
dren tag keys. Notation is given in Figure 1.

During the spending protocol, the user computes the tag key of the node he wants
to spend. This tag key is used to compute the security tag, i.e. the encryption
of the spender identity. This encryption should be verifiable and should include
randomness. This randomness should be provided by the merchant to ensure
the freshness of the spending, i.e., to prevent merchant from sending twice the
same coin to the bank. The user also computes the tag keys related to the two
direct descendants of the spent node. The concatenation of these two keys is the
serial number of the spent coin. This serial number is transmitted during the
spend protocol. Later, the bank will compute all the serial numbers of the leaves

1 b0 = 0 if and only if the targeted node belongs to the left subtree of its ancestor.

Divisible E-Cash Systems Can Be Truly Anonymous 487

K2,0

K4,8 K4,9K4,10 K4,11 K4,15K4,0 K4,1K4,2 K4,3 K4,4 K4,5 K4,7

K0,0

K4,6 K4,13K4,14K4,12

K1,1

K2,1 K2,2 K2,3

K3,7K3,6K3,5K3,4K3,3K3,2K3,1K3,0

K1,0

Fig. 1. General principle - Tree of keys

of the tree in order to detect a possible double-spending. If a double-spending
is detected, then the bank has access to the encryption of the identity (from
one spending) and the corresponding decryption key (from the other spending).
Then, the bank can easily find the identity of the cheater.

Example 1. Assume U wants to spend four coins. Then, U selects four unitary
coins, e.g. those associated to the node K1,0. The user U sends to M the values
T = EK1,0(Id, R), LK = K2,0, RK = K2,1, and S = LK‖RK. The random
value R used in the encryption scheme is computed using values sent by the
merchant. The user must also prove that the coins are signed by the bank and
that it will be possible to identify a double-spender. Consequently, the spending
protocol consists also in computing a zero-knowledge proof of knowledge Φ that
corresponds to the predicates:

– T is well-formed, i.e. EK1,0(Id, R) has been computed using:
• the tag key K1,0 derived using F on inputs the root tag key K0,0 signed

by the bank,
• the random R that has been chosen by the merchant,
• the identity Id signed by the bank.

– LK and RK are well-formed, i.e., K2,0 and K2,1 are both derived from K1,0
using F .

– If LK and RK are well-formed, this implies that the serial number S is also
well-formed.

To construct a truly anonymous divisible e-cash system, it is then necessary to
provide a function F , a verifiable encryption scheme E and a proof Φ. We give
an example in Section 4.

3.2 Useful Tools

Proofs of Knowledge. We use zero-knowledge proofs of knowledge constructed
over a cyclic group G either of prime order q or of unknown order: proof of

488 S. Canard and A. Gouget

equality of two known representations [10,6], proofs of knowledge of a discrete
logarithm [26,17], of a representation, of a double discrete logarithm PK(α/z =
gα ∧ y = g

gα
2

1) [27,20], proof of the “or” statement PK(α/T1 = hα
1 ∨ T2 =

hα
2) [11,25]. We also need a proof of knowledge of one out of two double discrete

logarithm PK(α/T1 = ghα
1 ∨ y = ghα

2) which is a combination of the two above
proofs. These proofs can also be used non interactively by using the Fiat-Shamir
heuristic [16].

Camenisch-Lysyanskaya Signature Schemes. These signature schemes are
proposed in [5] with in addition some specific protocols:

– an efficient protocol between a user U and a signer S that permits U to
obtain from S a signature σ of some commitment C on values (x1, . . . , xl)
unknown from S. S computes CLSign(C) and U gets σ = Sign(x1, . . . , xl)
that can be verified by Verif(σ, (x1, . . . , xl)) = 1.

– an efficient proof of knowledge of a signature on committed values, denoted
by PK(α1, . . . , αl, β/β = Sign(α1, . . . , αl)).

These constructions are quite close to group signature schemes. This is the case
of the two following examples, one based on the ACJT signature scheme [1],
secure under the Flexible RSA assumption [15], and the other based on the BBS
one [2], secure under the q-SDH assumption [2].

4 Divisible E-Cash System DCS

We apply the general construction presented in Section 3.1 to the binary tree
used in the system described in [20]. The function F is chosen to be the mod-
ular exponentiation. For each level i, there are three linked generators gi,0 for
“left”, gi,1 for “right” and gi,2 to compute the security tag. For a node at level
i − 1 represented by the tag key denoted by Ki−1,b0 , the tag key of, e.g. the left
children, is Ki,0 = g

Ki−1,b0
i,0 . For the tag key Ki,b and a random value R comput-

ing using merchant data, the encryption of the user identity pkU is defined to
be pkUg

Ki,b·R
i+1,2 . In the following, we assume that H is a collision-resistant hash

function.

4.1 Setup

We consider a group G of order oG . The elements h0,h1, h2 are random generators
of G. G1 = 〈g1〉 is a subgroup of Z

∗
oG and each group Gi = 〈gi〉 must be a subgroup

of Z
∗
oi+1

where oi+1 is the order of Gi+1. For example [20], it is possible to take Gi

as a subgroup of Z
∗
oi+1 for the prime oi+1 = 2oi +1 with all i. As a consequence,

the group Gi is related to the level i of the tree. The following generators are
randomly chosen: g in G, g1,0, g1,1, g1,2 in G1, g2,0, g2,1, g2,2 in G2, . . . , gL+1,0,
gL+1,1, gL+1,2 in GL+1 whose discrete logarithms to the base g1, g2, . . . , gL+1 are
unknown, respectively. All these data compose the public parameters Params

Divisible E-Cash Systems Can Be Truly Anonymous 489

of the system and can be computed by the bank. The bank B computes the key
pair (skB, pkB) of a Camenisch-Lysyanskaya signature scheme that will permit
it to sign a divisible coin, using the CLSign algorithm.

A user U (resp. a merchant M) can compute its key pair (skU , pkU) (resp.
(skM, pkM)) by choosing randomly u ∈ [0, oG [(resp. m ∈ [0, oG [) and computing
gu (resp. gm). The value u (resp m) is the private key skU (resp. skM) and gu

(resp. gm) is equal to the public key pkU (resp. pkM).

4.2 Withdrawal Protocol

During a withdrawal protocol, U interacts with B. U ’s inputs are pkB, skU , pkU
and Params, and B’s inputs are pkU , skB, pkB and Params.

s = s′ + r′ (mod p)

U = PK(α, β, γ/pkU = gα ∧ C′ = hβ
0 hα

1 hγ
2)

Verif(σ, (s, u, r)) ?= 1
C = (s, u, r, σ)

VWithdraw
B = (C, pkU , U, r′, σ)

r′, σ

C′, U, pkU

Verify U
r′ ∈ Z

∗
oG

U B

C′ = hs′
0 hu

1 hr
2

s′, r ∈ Z
∗
oG

C = C′hr′
0

σ = CLSign(C)

Fig. 2. Withdrawal protocol

The withdrawal protocol permits U to obtain a new divisible coin by inter-
acting with B as described in Figure 2. A divisible coin corresponds to a (blind)
CL signature done by B on a secret s and the secret key u of U . Both U and
B participate to the randomness of the secret s. At the end of the Withdraw
protocol, U gets a divisible coin C = (s, u, r, σ = Sign(s, u, r)).

4.3 Spending Protocol

When U wants to spend to M a sub-coin of value 2� (� = L−i) from his divisible
coin C, he chooses an unspent node of the level i, e.g. the node Ni,j . A spending
protocol of the node Ni,j consists in the following.

1. M sends to U a random value rand and U computes R = H(pkM‖rand).
2. U randomly chooses g̃, h̃ ∈ G, g̃1 ∈ G1, g̃2 ∈ G2, . . . , g̃i+1 ∈ Gi+1.
3. U executes the algorithm presented in Figure 3 (in pseudo-code) for the

node Ni,j , outputting the values2 (˜V0, . . . , ˜Vi, V), using the path from the

2 The values �V0, . . . , �Vi are computed to prove that the value V is well computed. See
proof Φ below and [20].

490 S. Canard and A. Gouget

Input: i, j

Output: (V0, . . . , Vi, V)
r̃ ← Rand(), V ← gs, V0 ← gsh̃r̃, CurrentNode ← root

If i = 0, then return (V0, V)
a ← 1, b ← 2i

For k = 1 to i

Vk ← gV
k

If a ≤ j ≤ a + (b − a − 1)/2, then \\ Ni,jbelongs to leftSubTree(CurrentNode)
V ← (gk,0)V , b ← a + (b − a − 1)/2 \\ CurrentNode ← leftSon(CurrentNode)

Else \\ Ni,j belongs to rightSubTree(CurrentNode)
V ← (gk,1)V , a = a + (b − a + 1)/2 \\ CurrentNode ← rightSon(CurrentNode)

return (V0, . . . , Vi, V)

Fig. 3. Spending protocol - Computation of V

root tree to the node Ni,j . Next, U computes the security tag: LK = gV
i+1,0,

RK = gV
i+1,1, T = pkUgV ·R

i+1,2 and S = LK‖RK.

Example 2. Assume U wants to spend four coins (the same as in Example 1.

The user U sends to the merchant M the values LK = g
ggs

1,0
2,0 , RK = g

ggs

1,0
2,1 ,

T = pkU(g
R·ggs

1,0
2,2) and S = LK‖RK since V = ggs

1,0.

4. U proves to M the validity of LK, RK, T (and thus the validity of S) using a
non-interactive zero-knowledge proof of knowledge of a signature of B on the
values (s, u, r) and that the value LK, RK, T are correctly computed. This
proof of knowledge is constructed from a zero-knowledge proof of knowledge
using the Fiat-Shamir heuristic. This proof is as follows:

Φ = PK
(

σ, s, u, r, r̃, α1, . . . , αi+1, β /

σ = Sign(s, u, r) ∧ ˜V0 = g̃sh̃r̃ ∧ ˜V1 = g̃gs

1 ∧ ˜V1 = g̃α1
1 ∧

(˜V2 = g̃
g

α1
1,0

2 ∨ ˜V2 = g̃
g

α1
1,1

2) ∧ ˜V2 = g̃α2
2 ∧ . . . ∧

(˜Vi+1 = g̃
g

αi
i,0

i+1 ∨ ˜Vi+1 = g̃
g

αi
i,1

i+1) ∧ ˜Vi+1 = g̃
αi+1
i+1 ∧

LK = g
αi+1
i+1,0 ∧ RK = g

αi+1
i+1,1 ∧ T = pkUg

R·αi+1
i+1,2

)

5. U sends the spent coins (S, Π) to M, with Π = {2�, T, Φ, R, ˜V0, . . . , ˜Vi}.

4.4 Deposit Protocol

When M wants to deposit a coin (S, Π) to B, M just sends the coin (S, Π) to
B. The proof Π should include the monetary value 2� of the divisible coin, the
security tag T , the proof of knowledge Φ and the random data R provided by
the merchant. B checks the validity of Φ and the consistency with S. If (S, Π)
is not a valid coin, B rejects the deposit. Else, B computes, from S, 2� serial
numbers ˜Sk1 , . . . ˜Sk2�

corresponding to the 2�+1 dead leaves of the sub-tree. This

Divisible E-Cash Systems Can Be Truly Anonymous 491

is done by applying several modular exponentiation functions to S, using the
right generators. B has to deal with 2� unitary coins (˜Skj , S, Π), 1 ≤ j ≤ 2�.

For every unitary coin (˜Skj , S, Π), B checks if there is already an entry
(˜Skj , S

′, Π ′) in the database. If there is no entry in the database for the ser-
ial number ˜Skj , then B accepts the deposit of the coin (˜Skj , S, Π), credits the
pkM’s account and add (˜Skj , S, Π) to the database of spent coins. Else, there is
an entry (˜Skj , S

′, Π ′) in the database. Then, B checks the freshness of merchant
randomness R in Π compared to Π ′. If it not fresh, M is a cheat and B refused
the deposit. If R is fresh, B accepts the deposit of the coin (˜Skj , S, Π), credits
the pkM’s account and add (˜Skj , S, Π, S′, Π ′,) to the list of double-spenders. For
every entry of the database of double-spenders, B will executes the Identify
algorithm.

4.5 Identify

Assume that a double detection has been done. Then B knows two accepted
spending (2I1 , S1 = LK1‖RK1, T1, R1, Φ1) with I1 = L − i1 and (2I2 , S2 =
LK2‖RK2, T2, R2, Φ2) with I2 = L − i2 such that e.g. S1 is an ancestor of S2
or S1 = S2. If S1 = S2 then the bank can directly get the public key pkU by

computing
(

T R2
1 /T R1

2

)1/(R2−R1)
= pkU . If S1 is an ancestor of S2, then the bank

computes the masking value gV2
I2+1,2 (s.t. T2 = pkUgR2·V2

I2+1,2) from the knowledge
of LK1 and RK1 and the path3 from N j1

i1
up to N j2

i2
as described in Figure 4.

Then, B computes the public key pkU as follows: (T2)
1

R2 /gV2
I2+1,2 = pkU .

Input: i1, j1, i2, j2
Output: V2

CurrentNode ← Nj1
i1

If Nj2
i2

belongs to leftSubTree(CurrentNode), then
V2 ← LK1; CurrentNode ← leftSon(CurrentNode);

Else
V2 ← RK1; CurrentNode ← rightSon(CurrentNode);

For k = i1 + 2 to i2 do
If Nj2

i2
belongs to leftSubTree(CurrentNode) , then

V2 ← (gk,0)V2 ; CurrentNode ← leftSon(CurrentNode)
Else

V2 ← (gk,1)V2 ; CurrentNode ← rightSon(CurrentNode)
k = k + 1

return V2

Fig. 4. Identify protocol - Computation of V2

3 The values Nj1
i1

and Nj2
i2

are not know by B but B knows the path from Nj1
i1

up to
Nj2

i2
since it knows the path used to compute the colliding serial numbers.

492 S. Canard and A. Gouget

4.6 Verify Guilt

The algorithm VerifyGuilt can be executed by any actor from the parame-
ters of the system Params and a proof ΠG. One can parse the proof ΠG as
(

(2�1 , S1, R1, T1, Π1), (2�2 , S2, R2, T2, Π2)
)

and next run Identify on these val-
ues. If the algorithm Identify returns a public key pkU , then one can check if Π1
is consistent with (2�1 , S1, R1, T1) and if Π2 is consistent with (2�2 , S2, R2, T2).
If both are consistent then accept, else reject.

5 Security Arguments

In this section, we provide the Theorem that stipulates that the DCS scheme is
a secure divisible e-cash system.

Theorem 1. In the random oracle model, the DCS scheme is secure:

– If the CL signature scheme is unforgeable, then DCS is unforgeable.
– Under the DDH assumption, DCS is unlinkable.
– If the CL signature scheme is unforgeable, then DCS permits the identifica-

tion of double-spenders.
– Under the DL assumption (and the Flexible RSA assumption if DCS relies

on the ACJT scheme), DCS has the exculpability property.

Proof. We have to show that DCS verifies all security properties.

Unforgeability. We want to show that if an adversary A is able to break the
unforgeability of our construction, then it is possible to break the unforgeability
of the CL signature scheme under adaptive chosen message attack.

We can interact with A during the withdrawal protocol by playing the role of
an honest bank with access to the signature oracle. After each successful spend-
ing executed by A, we extract, using standard technique, the values (u, s, r, σ)
satisfying the relation embedded into the valid proof of knowledge Π . Since there
are more spent coins than A can legitimely own, and since there is no detection of
double-spending (by assumption), then it is necessary that, among all extracted
values (uj , sj, rj , σj), one signature σ on a message m = (s, u, r) is unknown
and does not come from the signature oracle. Thus, this one more signature is a
signature (forgery) in the CL’s scheme on the message m = (u, s, r).

As the CL signature scheme is proven secure against adaptive chosen message
attacks under the Flexible RSA assumption (if the scheme relies on the ACJT
scheme) or the q-SDH (if the scheme relies on the BBS scheme), it follows that
A cannot succeed with non negligible probability.
Because our proof requires rewinding to extract s′ and r from an adversary A,
our proof is valid only against sequential attacks. Indeed, in a concurrent setting
where the attacker is allowed to interact with the bank in an arbitrarily inter-
leaving manner, our machine may be forced to rewind an exponential number
of times. This drawback can be overcome by using for instance well-know tech-
niques [12] which would require from the user to encrypt s′ and r in a verifiable
manner [7].

Divisible E-Cash Systems Can Be Truly Anonymous 493

Unlinkability. We want to show that if an adversary A is able to break the
unlinkability of our construction, then it is possible to break an instance of the
Diffie-Hellman problem. In fact, we use a variant of the Diffie-Hellman problem,
called Matching Multi Diffie-Hellman (MMDH) problem, and we prove in Ap-
pendix A that if someone is able to solve the MMDH problem, then it is possible
to solve a given instance of the DDH problem.

We can interact with A during the withdraw protocol by playing the role of
an honest user except for the two first interactions where we use the MMDH
instance. During spending protocols, we can interact with A by playing the role
on an honest user, except when the divisible coin corresponds to one of the two
divisible coins associated with the MMDH instance to be solved.

We can win the game when A chooses the two first users (corresponding to
the MMDH instance) and thus use the MMDH instance during the execution of
the final spend. If A does not choose users i0 and i1 for the challenge we need
to play again the game.

We denote by qU the average number of users created by A. Our success
probability is ε′ = 1 − (1 − (1/2 + ε/2))qU ≡ 1/2 + qUε/2 within polynomial
T ′ = qUT + τ , where τ is polynomial.

Remark 2. In the simulation, we use the instance of the MMDH problem to
interact with A. We also need to choose a value for the bit b. If our choice of
b is correct, then there is no problem and we will be able to conclude with the
advantage ε of A. If this choice is uncorrect, A has a probability exactly equal to
1/2 as ours. Repeating the game many times, our success probability of solving
the MMDH instance is greater than 1/2.

Identification of Double-spenders. We want to show that if an adversary A
is able to break the identification of double-spenders property, then it is possible
to break the unforgeability of the CL signature scheme.

We have access to a signature oracle taking as input a commitment and out-
putting a signature on committed values. We interact with A during withdrawal
protocols by playing the role of an honest bank. We also interact with A during
spending protocols playing the role of the merchant. Note that there is no honest
users in the game. After each successful spending executed by A, we extract the
values (u, s, r, σ) satisfying the relation embedded into the valid proof of knowl-
edge Π . When there is a double-spending, i.e. (⊥1, S1, Π1), (S2, Π2), that means
that there exist a valid serial number S̃ which can be computed from both S1
and S2. Furthermore, the proof Π1 is consistent with S1 and the proof Π2 is
consistent with S2 and R1 �= R2 where R1 is the random chosen by the mer-
chant in Π1 and R2 is the random chosen by the merchant in Π2. Both Π1 and
Π2 contains a proof of knowledge of a signature of the bank on the master serial
number seed s used to generate S1, S2 and S̃. Thus, these two signatures σ1 and
σ2 are such that at least one of the two is different from the signatures obtained
during the execution of the Withdrawal protocols submitted to the signature

494 S. Canard and A. Gouget

oracle. This signature (σ1 or σ2) is thus a forgery on CL signature scheme. As the
CL signature scheme is proven secure against adaptive chosen message attacks,
it follows that A cannot succeed with non-negligible probability.

Exculpability. The adversary A wins the game if he can falsely accuse an
honest user of a double-spending. This means that the adversary can interact
with honest users to obtain spending from them and he wins if he can produce
one spend (S′, T ′, Π ′) related to a valid one (S′, T ′, Π ′) and such that the output
of Identify((S, T, Π), (S′, T ′, Π ′)) is a public key pkU of a honest user (with
non negligible probability).

The security proof of the exculpability involves forking lemma-like technique
for an attacker that exploits both valid spending played by honest users and
valid withdrawals played by honest users when the extractability of the RO
proofs-of-knowledge relies on the DL assumption in order to falsely accuse an
honest user. If the Camenisch-Lysysanskaya scheme of the withdrawal protocol
uses a group of unknown order, then the exculpability relies on both the DL
assumption for an attacker that exploits valid spendings played by honest users
in order to falsely accuse an honest user, and on the factorization assumption
to ensure the non-malleability and the soundness of the proof of knowledge Φ
(see [3]).

6 Conclusion

In this paper, we present the first off-line divisible e-cash scheme that provides
strong unlinkability and truly anonymity. We introduced the idea of using a
security tag in a divisible e-cash scheme. The anonymity of users is achieved
without impacting the performance of the spending protocol and without using
a trusted third party. The spending protocol exploits the binary structure under-
lying the divisible coin in order to get an efficient spending protocol. However,
even if the new scheme permits the spending of multiple coins at a time, it uses
double-exponentiation proofs for the spending phase which is still a little expen-
sive. Thus, for a small number of coins at a time, the spending is still expensive.
Another possible improvement for the scheme could be to find a method to de-
tect double spending without computing 2L serial numbers for a divisible coin
of monetary value 2L.

Acknowledgements

We are grateful to Pascal Paillier and Jacques Traoré for their suggestions of
improvement, and to Serge Fehr and anonymous referees for their valuable
comments. We also wish to mention that a similar work has been indepen-
dently done by Jan Camenisch, Markulf Kohlweiss, Anna Lysyanskaya and Maria
Meyerovich.

Divisible E-Cash Systems Can Be Truly Anonymous 495

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably
Secure Coalition-resistant Group Signature Scheme. Advances in Cryptology -
Crypto’00, volume 1880 of LNCS, pages 255-270, 2000.

2. D. Boneh, X. Boyen and H. Shacham. Short Group Signatures using Strong Diffie
Hellman. Advances in Cryptology - Crypto’04, volume 3152 of LNCS, pages 41-55,
2004.

3. F. Boudot and J. Traoré. Efficient Publicly Verifiable Secret Sharing Schemes with
Fast or Delayed Recovery. ICISC’99, volume 1726 of LNCS, pages 87-102, 1999.

4. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-cash. Advances in
Cryptology - Eurocrypt’05, volume 3494 of LNCS, pages 302-321, 2005.

5. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. Advances in Cryptology - Crypto’04, volume 3152 of LNCS,
pages 56-72, 2004.

6. J. Camenisch and M. Michels. Proving in Zero-knowledge that a Number is the
Product of Two Safe Primes. Advances in Cryptology - Eurocrypt’99, volume 1592
of LNCS, pages 107-122, 1999.

7. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In D. Boneh, editor, Advances in Cryptology - Crypto ’03,
volume 2729 of LNCS, pages 126-144. Springer, 2003.

8. S. Canard, A. Gouget, and E. Hufschmitt. A Handy Multi-coupon System. Applied
Cryptography and Network Security - ACNS 2006, volume 3989 of LNCS, pages
66-81, 2006.

9. A.H. Chan, Y. Frankel, and Y. Tsiounis. Easy Come - Easy Go Divisible Cash.
Advances in Cryptology - Eurocrypt’98, volume 1403 of LNCS, pages 561-575,
1998.

10. D. Chaum and T. Pedersen. Transferred Cash Grows in Size. Advances in Cryp-
tology - Eurocrypt’92, volume 658 of LNCS, pages 390-407, 1993.

11. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. Advances in Cryptology -
Crypto’94, volume 839 of LNCS, pages 174-187, 1994.

12. I. Damgard. Efficient Concurrent Zero-knowledge in the Auxiliary String Model.
Advances in Cryptology - Eurocrypt ’00, volume 1807 of LNCS, pages 418-430,
2000.

13. S. D’Amingo, and G. Di Crescenzo. Methodology for Digital Money based on Gen-
eral Cryptographic Tools. Advances in Cryptology - Eurocrypt’94, volume 950 of
LNCS, pages 156-170, 1994.

14. T. Eng, and T. Okamoto. Single-term Divisible Coins. Advances in Cryptology -
Eurocrypt’94, volume 950 of LNCS, pages 306-319, 1994.

15. E. Fujisaki and T. Okamoto. Statistical Zero-knowledge Protocols to Prove Mod-
ular Polynomial Relations. Advances in Cryptology - Crypto’97, volume 1294 of
LNCS, pages 16-30, 1997.

16. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. Advances in Cryptology - Crypto’86, volume 263 of LNCS,
pages 186-194, 1986.

17. M. Girault, G. Poupard and J. Stern. On the Fly Authentication and Signature
Schemes Based on Groups of Unknown Order. Advances in Cryptology - Journal
of Cryptology, Volume 19, Number 4. Pages 463-487, Springer-Verlag, 2006.

496 S. Canard and A. Gouget

18. H. Handschuh, Y. Tsiounis, and M. Yung. Decision Oracles are Equivalent to
Matching Oracles. Public Key Cryptography PKC ’99, volume 1560 of LNCS,
pages 276-289. Springer, 1999.

19. T. Nakanishi, M. Shiota, and Y. Sugiyama. An Unlinkable Divisible Electronic
Cash with User’s Less Computations using Active Trustees. ISITA 2002, 2002.

20. T. Nakanishi and Y. Sugiyama. Unlinkable Divisible Electronic Cash. ISW’00,
pages 121-134, 2000.

21. T. Okamoto. An Efficient Divisible Electronic Cash Scheme. Advances in Cryptol-
ogy - Crypto’95, volume 963 of LNCS, pages 438-451, 1995.

22. T. Okamoto, K. Ohta. Universal Electronic Cash. Advances in Cryptology -
Crypto’91, volume 576 of LNCS, pages 324-337, 1992.

23. J.C. Pailles. New Protocols for Electronic Money. Advances in Cryptology - Asi-
acrypt’92, volume 718 of LNCS, pages 263-274, 1993.

24. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, Volume 13 - Number 3. Pages 361-396, Springer-
Verlag, 2000.

25. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On Monotone Formula
Closure of SZK. FOCS 1994, pages 454-465, 1994.

26. C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. Advances
in Cryptology - Crypto’89, volume 435 of LNCS, pages 239-252, 1990.

27. M. Stadler. Publicly Verifiable Secret Sharing. Advances in Cryptology - Crypto’96,
volume 1070 of LNCS, pages 190-199, 1996.

28. M. Trolin. A stronger definition for anonymous electronic cash. Cryptology ePrint
Archive: Report 2006/241. 2006.

A Matching Multi Diffie-Hellman problem

The problem underlying the property of unlinkability for DCS is the Matching
Multi Diffie-Hellman problem (MMDH). We show that MMDH can be used to
solve the Decisional Diffie-Hellman problem (DDH).

Decisional Diffie-Hellman (DDH) problem: given a random generator g ∈
G where G has prime order and the values hx, hy, hz, the problem consists in
deciding if xy = z or not.

Matching Multi Diffie-Hellman (MMDH) problem: let H, H1 and H2 be
groups of prime order such that H1 is a subgroup of Z

∗
o where o is the order

of H2. Given three random generators h ∈ H, h1 ∈ H1 and h2 ∈ H2 and the

values hα0 , hα1 , h
h

αb
1

2 and h
h

α
b̄

1
2 where b ∈ {0, 1}, the problem consists in deciding

if b = 0 or 1.

Decisional Multi Diffie-Hellman (DMDH) problem: let H, H1 and H2
be groups of prime order such that H1 is a subgroup of Z

∗
o where o is the order

of H2. Given three random generators h ∈ H, h1 ∈ H1 and h2 ∈ H2 and the

values hα, h
hβ
1

2 , the problem consists in deciding if α = β or not.

Divisible E-Cash Systems Can Be Truly Anonymous 497

Derived Decisional Diffie-Hellman (DDDH) problem: given random gen-
erators g1, g2 ∈ G where G has prime order and the values ga

1 , gb
2, the problem

consists in deciding if a = b or not.

The problem MMDH is at least as difficult as DMDH. In fact, the MMDH
is the matching problem related to the decisional one DMDH. Therefore, Hand-
schuh, Tsiounis and Yung show [18] that decision oracles are equivalent to match-
ing oracles, which can be applied to our context.

The problem DMDH is at least as difficult as DDDH. Indeed, given an instance
(g1, g2, g

a
1 , gb

2) of the DDDH problem, we can transform it into an instance (h =

g1, h1, h2 = g2, h
α = ga

1 , h
hβ
2

1 = h
gb
2

1) where h1 is taken at random, of the DMDH
problem. Thus, a = b if and only if α = β.

The problem DDDH is at least as difficult as DDH. Indeed, given an instance
(g, gx, gy, gz) of the DDH problem, we can transform is into an instance (g1 =
g, g2 = gx, g1 = gx, g2 = gz) of the DDDH problem. Thus, we have z = xy if and
only if a = b.

We deduce that MMDH is at least as difficult as DDH.

	Introduction
	Related Works
	Our Contribution
	Organization of the Paper

	Security Model
	Algorithms
	Notions of Security

	General Description
	Truly Anonymous E-Cash Scheme Based on Binary Trees
	Useful Tools

	Divisible E-Cash System ${DCS}$
	Setup
	Withdrawal Protocol
	Spending Protocol
	Deposit Protocol
	Identify
	Verify Guilt

	Security Arguments
	Conclusion
	Matching Multi Diffie-Hellman problem

