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Abstract. With computer networks spreading into a variety of new en-
vironments, the need to authenticate and secure communication grows.
Many of these new environments have particular requirements on the
applicable cryptographic primitives. For instance, several applications
require that communication overhead be small and that many messages
be processed at the same time. In this paper we consider the suitability
of public key signatures in the latter scenario. That is, we consider sig-
natures that are 1) short and 2) where many signatures from (possibly)
different signers on (possibly) different messages can be verified quickly.

We propose the first batch verifier for messages from many (certified)
signers without random oracles and with a verification time where the
dominant operation is independent of the number of signatures to verify.
We further propose a new signature scheme with very short signatures,
for which batch verification for many signers is also highly efficient. Prior
work focused almost exclusively on batching signatures from the same
signer. Combining our new signatures with the best known techniques
for batching certificates from the same authority, we get a fast batch ver-
ifier for certificates and messages combined. Although our new signature
scheme has some restrictions, it is the only solution, to our knowledge,
that is a candidate for some pervasive communication applications.

1 Introduction

As the world moves towards pervasive computing and communication, devices
from vehicles to dog collars will soon be expected to communicate with their
environments. For example, many governments and industry consortia are cur-
rently planning for the future of intelligent cars that constantly communicate
with each other and the transportation infrastructure to prevent accidents and
to help alleviate traffic congestion [11,37]. Raya and Hubaux suggest that ve-
hicles will transmit safety messages every 300ms to all other vehicles within a
minimum range of 110 meters [36], which in turn may retransmit these messages.
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For such pervasive systems to work properly, there are many competing con-
straints [11,37,27,36]. First, there are physical limitations, such as a limited spec-
trum allocation for specific types of communications and the potential roaming
nature of devices, that require that messages be kept very short and (security)
overhead be minimal [27]. Yet for messages to be trusted by their recipients,
they need to be authenticated in some fashion, so that entities spreading false
information can be held accountable. Thus, some short form of authentication
must be added. Third, different messages from many different signers may need
to be verified and processed quickly (e.g., every 300ms [36]). A possible fourth
constraint that these authentications remain anonymous or pseudonymous, we
leave as an exciting open problem.

In this work, we consider the suitability of public key signatures to the needs of
pervasive communication applications. Generating one signature every 300ms is
not a problem for current systems, but transmitting and/or verifying 100+ mes-
sages per second might pose a problem. Using RSA signatures for example seems
attractive as they are verified quickly, however, one would need approximately
3000 bits to represent a signature on a message plus the certificate (i.e., the pub-
lic key and signature on that public key) which might be too much (see Section
8.2 of [36]). While many new schemes based on bilinear maps can provide the
same security with significantly smaller signatures, they take significantly more
time to verify.

1.1 Our Contributions

Now, if one wants both, short signatures and short verification times, it seems
that one needs to improve on the verification of the bilinear-map based schemes.
In this paper we take this route and investigate the known batch-verification
techniques and to what extent they are applicable to such schemes. More pre-
cisely, the main contributions of this paper are:

1. We instantiate the general batch verification definitions of Bellare, Garay,
and Rabin [2] to the case of signatures from many signers. We also do this for
a weaker notion of batch verification called screening and show the relation
of these notions to the one of aggregate signatures. Surprisingly, for most
known aggregate signature schemes a batching algorithm is provably not
obtained by aggregating many signatures and then verifying the aggregate.

2. We present a batch verifier for the Waters IBS scheme [39,7]. To our knowl-
edge, this is the first batch verifier for a signature scheme without random
oracles. When identities are k1 bits and messages are k2 bits, our algorithm
verifies n Waters IBS signatures using only (k1+k2+3) pairings. Individually
verifying n signatures would cost 3n pairings.

3. We present a new signature scheme, CL*, derived from the Camenisch and
Lysyanskaya signature scheme [8]. We show that CL* can be realized with-
out random oracles when the message space is polynomial. CL* signatures
require only one-third the space of the original CL signatures– on par with
the shortest signatures known [5] –, but users may only issue one signature
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per period (e.g., users might only be allowed to sign one message per 300ms).
We present a batch verifier for these signatures from many different signers
that verifies n signatures using only three total pairings, instead of the 5n
pairings required by n original CL signatures. Yet, our batch verifier has the
restriction that it can only batch verify signatures made during the same
period. CL* signatures form the core of the only public key authentication,
known to us, that is extremely short and highly efficient to verify in bulk.

4. Often signatures and certificates need to be verified together. This happens
implicitly in IBS schemes, such as Waters. To achieve this functionality with
CL* signatures, we use a known batch verifier for the Boneh, Lynn, and
Shacham signatures in the random oracle model [5,4] that can batch verify
n signatures from the same signer using only two pairings.

1.2 Batch Verification Overview

Batch cryptography was introduced in 1989 by Fiat [17] for a variant of RSA.
Later, in 1994, Naccache, M’Räıhi, Vaudenay and Raphaeli [35] gave the first
efficient batch verifier for DSA signatures, however an interactive batch verifier
presented in an early version of their paper was broken by Lim and Lee [31].
In 1995 Laih and Yen proposed a new method for batch verification of DSA
and RSA signatures [29], but the RSA batch verifier was broken five years later
by Boyd and Pavlovski [6]. In 1998 Harn presented two batch verification tech-
niques for DSA and RSA [22,23] but both were later broken [6,25,26]. The same
year, Bellare, Garay and Rabin took the first systematic look at batch verifi-
cation [2] and presented three generic methods for batching modular exponen-
tiations, called the random subset test, the small exponents test and the bucket
test which are similar to the ideas from [35,29]. They showed how to apply these
methods to batch verification of DSA signatures and also introduced a weaker
form of batch verification called screening. In 2000 some attacks against differ-
ent batch verification schemes, mostly ones based on the small exponents test
and related tests, were published [6]. These attacks do not invalidate the proof
of security for the small exponents test, but rather show how the small expo-
nents test is often used in a wrong way. However, they also describe methods
to repair some broken schemes based on this test. In 2001 Hoshino, Masayuki
and Kobayashi [24] pointed out that the problem discovered in [6] might not
be critical for batch verification of signatures, but when using batch verification
to verify for example zero-knowledge proofs, it would be. In 2004 Yoon, Cheon
and Kim proposed a new ID-based signature scheme with batch verification [15],
but their security proof is for aggregate signatures and does not meet the def-
inition of batch verification from [2]; hence their title is somewhat misleading.
Of course not all aggregate signature schemes claim to do batch verification. For
example Gentry and Ramzan present a nice aggregate signature scheme in [19]
that does not claim to be, nor is, a batch verification scheme. Other schemes
for batch verification based on bilinear maps were proposed [12,40,41,42] but all
were later broken by Cao, Lin and Xue [10]. In 2006, a method was proposed for
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identifying invalid signatures in RSA-type batch signatures [30], but Stanek [38]
showed that this method is flawed.

1.3 Efficiency of Prior Work and Our Contributions

Efficiency will be given as an abstract cost for computing different functions.
We begin by discussing prior work on RSA, DSA, and BLS signatures mostly for
single signers, and then discuss our new work on Waters, BLS, and CL signatures
for many signers. Note that Lim [32] provides a number of efficient methods for
doing m-term exponentiations and Granger and Smart [21] give improvements
over the naive method for computing a product of pairings, which is why we
state them explicitly.

m-MultPairCostsG,H s m-term pairings
∏m

i=1 e(gi, hi) where gi ∈ G, hi ∈ H.
m-MultExpCostsG(k) s m-term exponentiations

∏m
i=1 gai where g ∈ G, |ai| = k.

PairCostsG,H s pairings e(gi, hi) for i = 1 . . . s, where gi ∈ G, hi ∈ H.
ExpCostsG(k) s exponentiations gai for i = 1 . . . s where g ∈ G, |ai| = k.
GroupTestCostsG Testing whether or not s elements are in the group G.
HashCostsG Hashing s values into the group G.
MultCosts s multiplications in one or more groups.

If s = 1 we will omit it. Throughout this paper we assume that n is the number of
message/signature pairs and �b is a security parameter such that the probability
of accepting a batch that contains an invalid signature is at most 2−�b .

RSA* is a modified version of RSA by Boyd and Pavlovski [6]. The difference
to normal RSA is that the verification equation accepts a signature σ as valid
if ασe = m for some element α ∈ Z∗

m of order no more than 2, where m is
the product of two primes. The signatures are usually between 1024 − 2048 bits
and the same for the public key. A single signer batch verifier for this signature
scheme with cost n-MultExpCost2Zm

(�b) + ExpCostZm
(k), where k is the number

of bits in the public exponent e, can be found in [6]. Note that verifying n
signatures by verifying each signature individually only costs ExpCostnZm

(k), so
for small values of e (|e| < 2�b/3) the naive method is a faster way to verify
RSA signatures and it can also handle signatures from multiple signers. Bellare
et al. [2] presents a screening algorithm for RSA that assumes distinct messages
from the same signer and costs 2n + ExpCostZm

(k).

DSA** is a modified version of DSA from [35] compatible with the small expo-
nents test from [6]. There are two differences to normal DSA. First there is no
reduction modulo q, so the signatures are 672 bits instead of 320 bits and second,
individual verification should check both a signature σ and −σ and accept if one
of them holds. Messages and public keys are both 160 bits long. Using the small
exponents test the cost is n-MultExpCostG(�b) + ExpCost2G(160) + HashCostnG +
MultCost2n+1 multiplications. This method works for a single signer only.



250 J. Camenisch, S. Hohenberger, and M.Ø. Pedersen

Waters IBS is the Waters 2-level hierarchical signature scheme from [7] for
which we provide a batch verifier without random oracles in Section 4. An in-
teresting property of this scheme is that the identity does not need to be ver-
ified separately. Identities are k1 bits, messages are k2 bits and a signature is
three group elements in a bilinear group. The computational effort required
depends on the number of messages and the security parameters. Let M =
n-MultExpCostGT

(�b) + n-MultExpCost3G(�b) + PairCost3G,G + GroupTestCost3n
G +

MultCost4 and refer to the table below for efficiency of the scheme. We assume
that k1 < k2.

n < k1 : M +n-MultPairCost2G,G + ExpCost2n
G (�b) + MultCostk1+k2

k1 ≤ n ≤ k2 : M +k1-MultPairCostG,G + n-MultPairCostG,G

+n-MultExpCostk1
G

(�b) + ExpCostnG(�b) + MultCostk2

n > k2 : M +k1-MultPairCostG,G + k2-MultPairCostG,G

+n-MultExpCost2G(�b)

The naive application of Waters IBS to verify n signatures costs PairCost3n
G,G +

MultCostn(k1+k2+3). Also note that in many applications we do not need to trans-
mit the identity as a separate parameter, as it is given to us for free. For example
as the hardware address of the network interface card.

BLS is the signature scheme by Boneh, Lynn and Shacham [5,4]. We discuss
batch verifiers for BLS signatures based on the small exponents test. For a screen-
ing algorithm, aggregate signatures by Boneh, Gentry, Lynn and Shacham [3]
can be used. The signature is only one group element in a bilinear group and
the same for the public key. For different signers the cost of batch verifica-
tion is n-MultPairCostG,G +n-MultExpCostG(�b)+PairCostG,G +ExpCostnGT

(�b)+
GroupTestCostnG+HashCostnG, but for single signer it is only n-MultExpCost2G(�b)+
PairCost2G,G + GroupTestCostnG + HashCostnG.

CL* is a new variant of Camenisch and Lysyanskaya signatures [8] presented in
Section 5. The signature is only one bilinear group element and the same for the
public key. Batch verification costs n-MultExpCost2G(�b) + n-MultExpCostG(|w| +
�b)+PairCost3G,G +GroupTestCostnG +HashCostnG, where w is the output of a hash
function. However, the scheme has some additional restrictions.

Bucket Test. Bellare, Garay and Rabin [2] provide a method called the bucket
test which is even more efficient than the small exponents test for large values
of n. We note that one can use the tests we outline in this paper as subroutines
to the bucket test to further speed up verification.

2 Definitions

Recall that a digital signature scheme is a tuple of algorithms (Gen, Sign, Verify)
that also is correct and secure. The correctness property states that for all
Gen(1�) → (pk , sk), the algorithm Verify(pk , m, Sign(sk , m)) = 1.
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There are two common notions of security. Goldwasser, Micali, and Rivest [20]
defined a scheme to be unforgeable as follows: Let Gen(1�) → (pk , sk). Sup-
pose (m, σ) is output by a p.p.t. adversary A with access to a signing oracle
Osk (·) and input pk . Then the probability that m was not queried to Osk (·) and
yet Verify(pk , m, σ) = 1 is negligible in �. An, Dodis, and Rabin [1] proposed
the notion of strong unforgeability, where if A outputs a pair (m, σ) such that
Verify(pk , m, σ) = 1, then except with negligible probability at some point oracle
Osk (·) was queried on m and outputted signature σ exactly. In other words, an
adversary cannot create a new signature even for a previously signed message.
Our batch verification definitions work with either notion. The signatures used
in Section 4 meet the GMR [20] definition, while those in Section 5 meet the
ADR [1] definition.

Now, we consider the case where we want to quickly verify a set of signa-
tures on (possibly) different messages by (possibly) different signers. The input
is {(t1, m1, σ1), . . . , (tn, mn, σn)}, where ti specifies the verification key against
which σi is purported to be a signature on message mi. We extend the defini-
tions of Bellare, Garay and Rabin [2] to deal with multiple signers. And this is
an important point that wasn’t a concern with only a single signer: one or more
of the signers may be maliciously colluding.

Definition 1 (Batch Verification of Signatures). Let � be the security pa-
rameter. Suppose (Gen, Sign, Verify) is a signature scheme, n ∈ poly(�), and
(pk1, sk1), . . . , (pkn, skn) are generated independently according to Gen(1�). Then
we call probabilistic Batch a batch verification algorithm when the following con-
ditions hold:

– If Verify(pk ti
, mi, σi) = 1 for all i ∈ [1, n], then Batch((pk t1 , m1, σ1), . . . ,

(pk tn
, mn, σn)) = 1.

– If Verify(pk ti
, mi, σi) = 0 for any i ∈ [1, n], then Batch((pk t1 , m1, σ1), . . . ,

(pk tn
, mn, σn)) = 0 except with probability negligible in k, taken over the

randomness of Batch.

Note that Definition 1 does not require verification keys to belong to honest
users, only to keys that were generated honestly (and are perhaps now held
by an adversary). In practice, users could register their keys and prove some
necessary properties of the keys at registration time.

Confusion between Batch Verification, Aggregate Signatures, and Screening. As
we discussed in the introduction, several works (e.g., [15,16]) claim to do batch
verification when, in fact, they often meet a weaker guarantee called screening [2].
However, in most cases the confusion is about words, e.g. when the words batch
verification are used to describe an aggregate signature scheme.

Definition 2 (Screening of Signatures). Let � be the security parameter.
Suppose (Gen, Sign, Verify) is a signature scheme, n ∈ poly(�) and (pk∗, sk∗) ←
Gen(1�). Let Osk∗(·) be an oracle that on input m outputs σ = Sign(sk∗, m). Then
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for all p.p.t. adversaries A, we call probabilistic Screen a screening algorithm
when μ(�) defined as follows is a negligible function:

Pr[(pk∗, sk∗) ← Gen(1�), (pk1, sk1) ← Gen(1�), . . . , (pkn, skn) ← Gen(1�),

D ← AOsk∗ (·)(pk∗, (pk1, sk1), . . . , (pkn, skn)) :
Screen(D) = 1 ∧ (pk∗, mi, σi) ∈ D ∧ mi �∈ Q] = μ(�),

where Q is the set of queries that A made to O.

The above definition is generalized to the multiple-signer case from the single-
signer screening definition of Bellare et al. [2].

Interestingly, screening is the (maximum) guarantee that most aggregate sig-
natures offer if one were to attempt to batch verify a group of signatures by
first aggregating them together and then executing the aggregate-verification al-
gorithm. Consider the aggregate signature scheme of Boneh, Gentry, Lynn and
Shacham [3] based on the BLS signatures [5,4]. First, we describe the BLS sig-
natures. Let e : G × G → GT , where g generates the group G of prime order q.
Gen chooses a random sk ∈ Zq and outputs pk = gsk . A signature on message
m is σ = H(m)sk , where H is a hash function. To verify signature σ on message
m, one checks that e(σ, g) = e(H(m), pk). Given a group of message-signature
pairs (m1, σ1), . . . , (mn, σn) (all purportedly from the same signer), BGLS ag-
gregates them as A =

∏n
i=1 σi. Then all signatures can be verified in aggregate

(i.e., screened) by testing that e(A, g) = e(
∏n

i=1 H(mi), pk ). This scheme is not,
however, a batch verification scheme since, for any a �= 1 ∈ G, the two invalid
message-signature pairs P1 = (m1, a · H(m1)sk ) and P2 = (m2, a

−1 · H(m2)sk )
will verify under Definition 2 (as BGLS prove [3]), but will not verify under
Definition 1. Indeed, for some pervasive computing applications only guarantee-
ing screening would be disastrous, because only P1 may be relevant information
to forward to the next entity – and it won’t verify once it arrives! To be fair,
batch verification is not what aggregate schemes were designed to do, but it is a
common misuse of them.

Let D = {(t1, m1, σ1), . . . , (tn, mn, σn)}. We note that while Screen(D) = 1
does not guarantee that Verify(pk ti

, mi, σi) for all i; it does guarantee that the
holder of sk ti authenticated mi. Thus, we can always prove this by first creat-
ing a new signature scheme (Gen, Sign, Verify′) where the verification algorithm
Verify′ is modified w.r.t. the original scheme as follows. Apart from the original
signatures, it also accepts signatures σ′

i derived from D such that if and only
if for all (ti, mi, σi) ∈ D, Verify′(pk ti

, mi, σ
′
i) = 1 we have Screen(D) = 1. One

method to construct σ′
i would be to give a zero-knowledge proof of knowledge

of D such that Screen(D) = 1, although (using the naive solution) these new
signatures σ′

i will require O(n) space and Verify′ will run in O(n) time.

3 Algebraic Setting and Group Membership

Bilinear Groups. Let BSetup be an algorithm that, on input the security para-
meter 1�, outputs the parameters for a bilinear map as (q, g, G, GT , e), where
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G, GT are of prime order q ∈ Θ(2�). The efficient mapping e : G × G → GT is
both: (Bilinear) for all g ∈ G and a, b ← Zq, e(ga, gb) = e(g, g)ab; and (Non-
degenerate) if g generates G, then e(g, g) �= 1. Following prior work, we write G

and GT in multiplicative notation, although G is actually an additive group. Our
constructions from Section 5 also work in the setting e : G1 × G2 → GT , where
G1 and G2 are distinct groups, possibly without efficient isomorphisms between
them, but it is more tedious to write. However, this later implementation allows
for the shortest group elements. We note that if the Waters IBS scheme also
works in this setting, so will our proposed batch verifier in Section 4.

Testing Membership in G. In a non-bilinear setting, Boyd and Pavlovski [6]
observed that the proofs of security for many previous batch verification or
screening schemes assumed that the signatures (potentially submitted by a ma-
licious adversary) were elements of an appropriate subgroup. For example, it
was common place to assume that signatures submitted for batch DSA verifi-
cation contained an element in a subgroup G of Z

∗
p of prime order q. Boyd and

Pavlovski [6] pointed out efficient attacks on many batching algorithms via ex-
ploiting this issue. Of course, group membership cannot be assumed, it must be
tested and the work required by this test might well obliterate all batching effi-
ciency gains. E.g., verifying that an element y is in G by testing if yq mod q = 1;
easily obliterates the gain of batching DSA signatures. Boyd and Pavlovski [6]
suggest methods for overcoming this problem through careful choice of q.

In this paper, we will work in a bilinear setting, and we must be careful to
avoid this common mistake in batch verification. To do so, we must say more
about the groups in which we are working. Let E be an elliptic curve over a finite
field Fp and let O denote the point at infinity. We denote the group of points on
E defined over Fp as E(Fp). Then, a prime subgroup G ⊆ E(Fp) of order q is
chosen appropriately for our mapping. Our proofs will require that elements of
purported signatures are members of G and not E(Fp)\G. The question is: how
efficiently can this fact be verified? Determining whether some data represents
a point on a curve is easy. The question is whether it is in the correct subgroup.
Assuming we have a bilinear map e : G1 × G2 → GT . In all the schemes we use,
signatures are in G1, so this is the group we are interested in testing membership
of. Elements in G1 will always be in Fp and have order q, so we can use cofactor
multiplication: The curve has hq points over Fp, so if an element y satisfies the
curve equation and hy �= O (here G1 is expressed in additive notation), then that
element is in G1. If one chooses a curve with h = 1 then this test is trivial, but
even if h > 1, but still much smaller than q, this test is efficient. Chen, Cheng
and Smart discuss this and ways to test membership in G2 in [14].

4 Batch Verification Without Random Oracles

In this section, we present a method for batch verifying signatures together
with their accompanying certificates. We propose using Waters Two-Level Hi-
erarchical Signatures [39,7] with the first level corresponding to the certificate
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and the second level used for signing messages. We assume all certificates orig-
inate from the same authority. The scheme is secure under the Computational
Diffie-Hellman assumption in the plain model. This batch verification method
can execute in different modes, optimizing for the lowest runtime. Let n be
the number of certificate/signature pairs, let 2k1 be the number of users, and
let k2 be the bits per message. Then our batch verifier will verify n certifi-
cate/signature pairs with asymptotic complexity of the dominant operations
roughly MIN{(2n + 3) , (k1 + n + 3) , (n + k2 + 3) , (k1 + k2 + 3)}. Suppose
there are one billion users (k1 = 30) and RIPEMD-160 is used to hash all the
messages (k2 = 160), then when n ≥ 64 batching becomes faster than individual
verification. However, one can imagine many usage scenarios where devices send
predefined messages requiring less than 160 bits, e.g., ISO defined error mes-
sages. For example, if k1 = 30 and k2 = 32, then when n ≥ 22 batching should
be used.

4.1 Batch Verification for Waters IBS

We describe a batch verification algorithm for the Waters IBS scheme from [7],
where the number of pairings depends on the security parameter and not on the
number of signatures. We assume that the identities are bit strings of length k1
and the messages are bit strings of length k2. First we describe the signature
scheme. Let BSetup(1�) → (q, g, G, GT , e).

Setup: First choose a secret α ∈ Zq and calculate A = e(g, g)α. Then pick two
random integers y′, z′ ∈ Zq and two random vectors y = (y1, . . . , yk1) ∈ Zk1

q

and z = (z1, . . . , zk2) ∈ Zk2
q . The master secret key is MK = gα and the

public parameters are given as: PP = g, A, u′ = gy′
, u1 = gy1, . . . , uk1 =

gyk1 , v′ = gz′
, v1 = gz1 , . . . , vk2 = gzk2

Extract: To create a private key for a user with identity ID = (κ1, . . . , κk1) ∈
{0, 1}k1, select r ∈ Zq and return KID =

(
gα(u′ ∏k1

i=1 uκi

i )r, g−r
)
.

Sign: To sign a message m = (m1, . . . , mk2) ∈ {0, 1}k2 using private key K =
(K1, K2), select s ∈ Zq and return S =

(
K1(v′

∏k2
j=1 v

mj

j )s, K2, g
−s

)
.

Verify: To verify a signature S = (S1, S2, S3) from identity ID = (κ1, . . . , κk1)
on message M = (m1, . . . , mk2), check that e(S1, g) · e(S2, u

′ ∏k1
j=1 u

κj

j ) ·
e(S3, v

′ ∏k2
j=1 v

mj

j ) = A. If this equation holds, output accept; otherwise out-
put reject.

We now introduce a batch verifier for this signature scheme. The basic idea
is to adopt the small exponents test from [2] and to take advantage of the pecu-
liarities of bilinear maps. Let KeyGen, Sign and Verify be as before.

Batch Verify: Let κi
j and mi

k denote the j’th bit of the identity of the i’th
signer respectively the k’th bit in the message signed by the i’th signer, and
let Si = (Si

1, S
i
2, S

i
3) denote the signature from the i’th signer. First check

if Si
1, S

i
2, S

i
3 ∈ G for all i. If not; output reject. Otherwise generate a vector
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Δ = (δ1, . . . , δn) where each δi is a random element of �b bits from Zq and
set P = e(

∏n
i=1 Si

1
δi , g) · e(

∏n
i=1 Si

2
δi , u′) · e(

∏n
i=1 Si

3
δi , v′). Depending on

the values of k1, k2 and n (c.f. below), pick and check one of the following
equations:

n∏

i=1

Aδi = P ·
n∏

i=1

e(Si
2
δi

,

k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (1)

n∏

i=1

Aδi = P ·
k1∏

j=1

e(
n∏

i=1

Si
2
δiκ

i
j , uj) ·

n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (2)

n∏

i=1

Aδi = P ·
k1∏

j=1

e(
n∏

i=1

Si
2
δiκ

i
j , uj) ·

k2∏

j=1

e(
n∏

i=1

Si
3
δim

i
j , vj) (3)

Output accept if the chosen equation holds; otherwise output reject.

Let us discuss which equation should be picked. Assume that k1 < k2 (i.e.,
that fewer bits are used for the identities of the users than for the messages). If
n < k1 use equation 1, if k1 ≤ n ≤ k2 use equation 2; otherwise use equation 3.

Theorem 1. The above algorithm is a batch verifier for the Waters IBS.

Proof. First we prove that Verify(IDt1 , M1, S1) = · · · = Verify(IDtn , Mn, Sn) =
1 ⇒ Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1. This follows from the veri-
fication equation for the Waters IBS scheme:

n∏

i=1

Aδi =
n∏

i=1

⎛

⎝e(Si
1, g) · e(Si

2, u
′

k1∏

j=1

u
κi

j

j ) · e(Si
3, v

′
k2∏

j=1

v
mi

j

j )

⎞

⎠

δi

= e(
n∏

i=1

Si
1
δi

, g) ·
n∏

i=1

e(Si
2
δi

, u′
k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

, v′
k2∏

j=1

v
mi

j

j )

= P ·
n∏

i=1

e(Si
2
δi

,

k1∏

j=1

u
κi

j

j ) ·
n∏

i=1

e(Si
3
δi

,

k2∏

j=1

v
mi

j

j ) (4)

Since for all i, Verify(IDti , Mi, Si) = 1, Si
2 is a valid part of a signature, and

hence Si
2 ∈ G. This means that we can write Si

2 = gbi for some bi ∈ Zq and get
∏n

i=1 e(Si
2
δi ,

∏k1
j=1 u

κi
j

j ) =
∏n

i=1 e(gδibi , g
�k1

j=1 yjκi
j ) = e(g, g)

�n
i=1

�k1
j=1 δibiyjκi

j =
∏k1

j=1 e(g
�n

i=1 δibiκ
i
j , gyj) =

∏k1
j=1 e(

∏n
i=1 Si

2
δiκ

i
j , uj). We can do the same with

∏n
i=1 e(Si

3
δi ,

∏k2
j=1 v

mi
j

j ), so correctness of the different verification equations fol-
lows from this and equation 4.

We must now show the other direction. This proof is an application of the
technique for proving the small exponents test in [2]. Since Si

1, S
i
2, S

i
3 ∈ G we
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can write Si
1 = gai , Si

2 = gbi and Si
3 = gci for some ai, bi, ci ∈ Zq. This means

that the verification equation for Waters IBS can be rewritten as:

e(g, g)α = e(ga, g) · e(gb, gy′
g
�k1

j=1 yjκj ) · e(gc, gz′
g
�k2

j=1 zjmj )

= e(g, g)a+y′b+z′c+b
�k1

j=1 yjκj+c
�k2

j=1 zjmj (5)

Using 5 we can rewrite equation 1 as:

e(g, g)
�n

i=1 δiα = e(g, g)
�n

i=1 δi

�
ai+y′bi+z′ci+bi

�k1
j=1 yjκj+ci

�k2
j=1 zjmj

�
(6)

Setting βi = α−
(
ai + y′bi + z′ci + bi

∑k1
j=1 yjκ

i
j + ci

∑k2
j=1 zjm

i
j

)
and rewriting

equation 6 we get:

e(g, g)
�n

i=1 δiα−�n
i=1 δi

�
ai+y′bi+z′ci+bi

�k1
j=1 yjκj+ci

�k2
j=1 zjmj

�
= 1

⇒
n∑

i=1

δiα −
n∑

i=1

δi

⎛

⎝ai + y′bi + z′ci + bi

k1∑

j=1

yjκj + ci

k2∑

j=1

zjmj

⎞

⎠ ≡ 0 (mod q)

⇒
n∑

i=1

δiβi ≡ 0 (mod q) (7)

Assume that Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1, but for at least
one i it is the case that Verify(IDti , Mi, Si) = 0. Assume wlog that this is true
for i = 1, which means that β1 �= 0. Since q is a prime then β1 has an inverse γ1
such that β1γ1 ≡ 1 (mod q). This and equation 7 gives us:

δ1 ≡ −γ1

n∑

i=2

δiβi (mod q) (8)

Given (IDti , Mi, Si) where i = 1 . . . n, let E be an event that occurs if
Verify(IDt1 , M1, S1) = 0 but Batch((IDt1 , M1, S1), . . . , (IDtn , Mn, Sn)) = 1, or
in other words that we break batch verification. Note that we do not make any
assumptions about the remaining values. Let Δ′ = δ2, . . . , δn denote the last
n − 1 values of Δ and let |Δ′| be the number of possible values for this vector.
Equation 8 says that given a fixed vector Δ′ there is exactly one value of δ1 that
will make event E happen, or in other words that the probability of E given a
randomly chosen δ1 is Pr[E|Δ′] = 2−�b . So if we pick δ1 at random and sum over
all possible choices of Δ′ we get Pr[E] ≤

∑|Δ′|
i=1 (Pr[E|Δ′] · Pr[Δ′]). Plugging in

the values, we get: Pr[E] ≤
∑2�b(n−1)

i=1

(
2−�b · 2−�b(n−1)

)
= 2−�b . �

5 Faster Batch Verification with Restrictions

In this section, we present a second method for batch verifying signatures to-
gether with their accompanying certificates. We propose using the BLS signa-
ture scheme [5] for the certificates and a modified version of the CL signature



Batch Verification of Short Signatures 257

scheme [8] for signing messages. This method requires only two pairings to verify
n certificates (from the same authority) and three pairings to verify n signatures
(from possibly different signers). The cost for this significant efficiency gain is
some usage restrictions, although as we will discuss, these restrictions may not
be a problem for some of the applications we have in mind.

Certificates: We use a batch verifier for BLS signatures from the same author-
ity as described in Section 5.1. The scheme is secure under CDH in the ran-
dom oracle model. To verify n BLS certificates costs n-MultExpCost2G(�b) +
PairCost2G,G + GroupTestCostnG + HashCostnG, using the Section 1.2 notation.

Signatures: We describe a new signature scheme CL* with a batch verifier
in Section 5.2. The scheme is secure under the LRSW assumption in the
plain model when the message space is a polynomial and in the random
oracle model when the message space is super-polynomial. We assume that
there are discrete time or location identifiers φ ∈ Φ. A user can issue at
most one signature per φ (e.g., this might correspond to a device being al-
lowed to broadcast at most one message every 300ms) and only signatures
from the same φ can be batch verified together. To verify n CL* signa-
tures, costs n-MultExpCost2G(�b) + n-MultExpCostG(|w| + �b) + PairCost3G,G +
GroupTestCostnG + HashCostnG, where w is the output of a hash function.

5.1 Batch Verification of BLS Signatures

We describe a batch verifier for many signers for the Boneh, Lynn, and Shacham
signatures [5,4] described in Section 2, using the small exponents test [2].

Batch Verify: Given purported signatures σi from n users on messages Mi for
i = 1 . . . n, first check that σi ∈ G for all i and if not; output reject. Oth-
erwise compute hi = H(Mi) and generate a vector δ = (δ1, . . . , δn) where
each δi is a random element of �b bits from Zq. Check that e(

∏n
i=1 σδi

i , g) =∏n
i=1 e(hi, pk i)δi . If this equation holds, output accept; otherwise output reject.

Theorem 2. The algorithm above is a batch verifier for BLS signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons.

Single Singer for BLS. However, BLS [5,4] previously observed that if we have
a single signer with public key v, the verification equation can be written as
e(

∏n
i=1 σδi

i , g) = e(
∏n

i=1 hδi

i , v) which reduces the load to only two pairings.

Theorem 3 ([5,4]). The algorithm above is a single-signer, batch verifier for
BLS signatures.

5.2 A New Signature Scheme CL*

In this section we introduce a new signature scheme secure under the LRSW as-
sumption [33], which is based on the Camenisch and Lysyanskaya signatures [8].
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Assumption 4 (LRSW Assumption). Let BSetup(1�) → (q, g, G, GT , e). Let
X, Y ∈ G, X = gx, and Y = gy. Let OX,Y (·) be an oracle that, on input a value
m ∈ Z∗

q , outputs a triple A = (a, ay, ax+mxy) for a randomly chosen a ∈ G. Then
for all probabilistic polynomial time adversaries A(·), ν(�) defined as follows is a
negligible function:

Pr[(q, g, G, GT , e) ← BSetup(1�); x ← Zq; y ← Zq; X = gx; Y = gy;

(m, a, b, c) ← AOX,Y (q, g, G, GT , e, X, Y ) : m /∈ Q ∧ m ∈ Z
∗
q ∧

a ∈ G ∧ b = ay ∧ c = ax+mxy] = ν(�) ,

where Q is the set of queries that A made to OX,Y (·).
The Original CL Scheme. Recall the Camenisch and Lysyanskaya signa-
tures [8]. Let BSetup(1�) → (q, g, G, GT , e). Choose the secret key (x, y) ∈ Z

2
q at

random and set X = gx and Y = gy. The public key is pk = (X, Y ). To sign a
message m ∈ Z∗

q , choose a random a ∈ G and compute b = ay, c = axbxm. Out-
put the signature (a, b, c). To verify, check whether e(X, a) · e(X, b)m = e(g, c)
and e(a, Y ) = e(g, b) holds.

CL*: A version of the CL Scheme Allowing Batch Verification. Our
goal is to batch-verify CL signatures made by different signers. That is we need
to consider how to verify equations of the form e(X, a) · e(X, b)m = e(g, c) and
e(a, Y ) = e(g, b). The fact that the values X , a, b, and c are different for each
signature seems to prevent efficient batch verification. Thus, we need to find a
way such that many different signers share some of these values. Obviously, X
and c need to be different. Now, depending on the application, all the signers can
use the same value a by choosing a as the output of some hash function applied
to, e.g., the current time period or location. We then note that all signers can use
the same b in principle, i.e., have all of them share the same Y as it is sufficient
for each signer to hold only one secret value (i.e., sk = x). Indeed, the only
reason that the signer needs to know Y is to compute b. However, it turns out
that if we define b such that loga b is not known, the signature scheme is still
secure. So, for instance, we can derive b in a similar way to a using a second hash
function. Thus, all signers will virtually sign using the same Y per time period
(but a different one for each period).

Let us now describe the resulting scheme. Let BSetup(1�) → (q, g, G, GT , e).
Let φ ∈ Φ denote the current time period or location, where |Φ| is polynomial.
Let M be the message space, for now let M = {0, 1}∗. Let H1 : Φ → G,
H2 : Φ → G, and H3 : M × Φ → Zq be different hash functions.

KeyGen: Choose a random x ∈ Zq and set X = gx. Set sk = x and pk = X .
Sign: If this is the first call to Sign during period φ ∈ Φ, then on input message

m ∈ M, set w = H3(m||φ), a = H1(φ), b = H2(φ) and output the signature
σ = axbxw. Otherwise, abort.

Verify: On input message-period pair (m, φ) and purported signature σ, com-
pute w = H3(m||φ), a = H1(φ) and b = H2(φ), and check that e(σ, g) =
e(a, X) · e(b, X)w. If true, output accept; otherwise output reject.
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Theorem 5. Under the LRSW assumption in G, the CL* signature scheme is
existentially unforgeable in the random oracle model for message space M =
{0, 1}∗.

Proof. We show that if there exists a p.p.t. adversary A that succeeds with
probability ε in forging CL* signatures, then we can construct a p.p.t. adversary
B that solves the LRSW problem with probability ε · |Φ|−1 · q−1

H in the random
oracle model, where qH is the maximum number of oracle queries A makes to
H3 during any period φ ∈ Φ. Recall that |Φ| is a polynomial. Adversary BOX,Y (·)

against LRSW operates as follows on input (q, g, G, GT , e, X, Y ). Let � be the
security parameter. We assume that Φ is pre-defined. Let qH be the maximum
number of queries A makes to H3 during any period φ ∈ Φ.

1. Setup: Send the bilinear parameters (q, g, G, GT , e) to A. Choose a random
w′ ∈ M and query OX,Y (w′) to obtain an LRSW instance (w′, a′, b′, c′).
Choose a random φ′ ∈ Φ. Treat H1, H2, H3 as random oracles. Allow A
access to the hash functions H1, H2, H3.

2. Key Generation: Set pk∗ = X . For i = 1 to n, choose a random sk i ∈ Zq

and set pk i = gski . Output to A the keys pk∗ and all (pk i, sk i) pairs.
3. Oracle queries: B responds to A’s hash and signing queries as follows. Choose

random ri and si in Zq for each time period (except φ′). Set up H1 and H2
such that:

H1(φi) =

{
gri if φi �= φ′

a′ otherwise
(9)

and

H2(φi) =

{
gsi if φi �= φ′

b′ otherwise
(10)

Pick a random j in the range [1, qH ]. Choose random tl,i ∈ Zq, such that
tl,i �= w′, for l ∈ [1, qH ] and i ∈ [1, |Φ|]. Set up H3 such that:

H3(ml||φi) =

{
tl,i if φi �= φ′ or l �= j

w′ otherwise
(11)

B records m∗ := mj . Finally, set the signing query oracle such that on the
lth query involving period φi:

Osk∗(ml||φi) =

⎧
⎪⎨

⎪⎩

abort if φi = φ′ and l �= j

c′ else if φi = φ′ and l = j

XriX(si)tl,i otherwise
(12)

4. Output: At some point A stops and outputs a purported forgery σ ∈ G

for some (ml, φi). If φi �= φ′, B did not guess the correct period and thus
B outputs a random guess for the LRSW game. If ml = m∗ or the CL*
signature does not verify, A’s output is not a valid forgery and thus B outputs
a random guess for the LRSW game. Otherwise, B outputs (tl,i, a′, b′, σ) as
the solution to the LRSW game.
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We now analyze B’s success. If B is not forced to abort or issue a random guess,
then we note that σ = H1(φi)xH2(φi)xH3(ml||φi). In this scenario φi = φ′ and
tl,i �= w′. We can substitute as σ = (a′)x(b′)x(tl,i). Thus, we see that (tl,i, a′, b′, σ)
is indeed a valid LRSW instance. Thus, B succeeds at LRSW whenever A suc-
ceeds in forging CL* signatures, except when B is forced to abort or issue a
random guess. First, when simulating the signing oracle, B is forced to abort
whenever it incorrectly guesses which query to H3, during period φ′, A will even-
tually query to Osk∗(·, ·). Since all outputs of H3 are independently random, B
will be forced to abort at most q−1

H probability. Next, provided that A issued a
valid forgery, then B is only forced to issue a random guess when it incorrectly
guesses which period φ ∈ Φ that A will choose to issue its forgery. Since, from
the view of A conditioned on the event that B has not yet aborted, all outputs
of the oracles are perfectly distributed as either random oracles (H1, H2, H3) or
as a valid CL* signer (Osk∗). Thus, this random guess is forced with probabil-
ity at most |Φ|−1. Thus, if A succeeds with ε probability, then B succeeds with
probability ε · |Φ|−1 · q−1

H . �

Theorem 6. Under the LRSW assumption in G, the CL* signature scheme is
existentially unforgeable in the plain model when |M| is polynomial.

Proof sketch. If there exists a p.p.t. adversary A that succeeds with probability
ε in forging CL* signatures when |M| = poly(�), then we can construct a p.p.t.
adversary B that solves the LRSW problem with probability ε · |Φ|−1 · |M|−1.
Canetti, Halevi, and Katz [9] described one method of constructing a universal
one-way hash function that satisfies a polynomial number of input/output con-
straints, i.e., pairs (xi, yi) such that H(xi) = yi. Furthermore, we note that H1,
H2 and H3 have |Φ|, |Φ|, and |Φ| · |M| constraints, respectively. Since these are
all polynomials, B can efficiently construct the appropriate hash functions. The
analysis follows the proof with random oracles.

Efficiency Note. First, we observe that the CL* signatures are very short, re-
quiring only one element in G. Since the BLS signatures also require only one
element in G, and since a public key for the CL* scheme is also only one group
element, the entire signature plus certificate could be transmitted in three G

elements. In order to get the shortest representation for these elements, we need
to use asymmetric bilinear maps e : G1 × G2 → GT , where G1 �= G2, which will
allow elements in G1 to be 160 bits and elements of G2 to be 1024 bits for a se-
curity level comparable to RSA-1024 [28,18]. For BLS this means that the public
key will be around 1024 bits, but since we use it for single signer, the public key
of the certifying authority is probably embedded in the systems at production
time. For CL* signatures we need to hash into G1 which according to Galbraith,
Paterson and Smart [18] can be done efficiently. To summarize; using BLS and
CL* we can represent the signature plus certificate using approximately 1344
bits with security comparable to RSA-1024, compared to around 3072 bits for
actually using RSA-1024. We note that this is based on current state of the art
for pairings, and might improve in the future.
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Second, suppose one uses the universal one-way hash functions described by
Canetti, Halevi, and Katz [9] to remove the random oracles from CL*. These
hash functions require one exponentiation per constraint. In our case, we may
require as many as |Φ| · |M| constraints. Thus, the cost to compute the hashes
may dampen the efficiency gains of batch verification. However, our scheme
will benefit from improvements in the construction of universal one-way hash
functions with constraints. To keep |Φ| small in practice, users might need to
periodically change their keys.

Batch Verification of CL* Signatures. Batch verification of n signatures
σ1, . . . , σn on messages m1, . . . , mn for the same period φ can be done as follows.
Assume that user i with public key Xi signed message mi. Set wi = H(mi||φ).
First check if σi ∈ G for all i. If not; output reject. Otherwise pick a vector
Δ = (δi, . . . , δn) with each element being a random �b-bit number and check
that e(

∏n
i=1 σδi

i , g) = e(a,
∏n

i=1 Xδi

i ) · e(b,
∏n

i=1 Xwiδi

i ). If this equation holds,
output accept; otherwise output reject.

Theorem 7. The algorithm above is a batch verifier for CL* signatures.

Proof. The proof is similar to proof 4.1 and omitted for space reasons.

6 Conclusions and Open Problems

In this paper we focused on batch verification of signatures. We overviewed
the large body of existing work, almost exclusively dealing with single signers.
We extended the general batch verification definition of Bellare, Garay and Ra-
bin [2] to the case of multiple signers. We then presented, to our knowledge,
the first efficient and practical batch verification scheme for signatures without
random oracles. We focused on solutions that comprehended the time to verify
the signature and the corresponding certificate for the verification key. First, we
presented a batch verifier for the Waters IBS that can verify n signatures using
only (k1 +k2 +3) pairings (the dominant operation), where identities are k1 bits
and messages are k2 bits. This is a significant improvement over the 3n pairings
required by individual verification. Second, we presented a solution in the ran-
dom oracle model that batch verifies n certificates and n CL* signatures using
only 5 pairings. Here, CL* is a variant of the Camenisch-Lysyanskaya signatures
that is much shorter, allows for efficient batch verification from many signers,
but where only one signature can be safely issued per period.

It is an open problem to find a fast batch verification scheme for short sig-
natures without the period restrictions from Section 5. Perhaps this can be
achieved by improving the efficiency of our scheme in Section 4, using some of
the techniques applied to the Waters IBE by Naccache [34] and Chatterjee and
Sarkar [13]. Another exciting open problem is to develop fast batching schemes
for various forms of anonymous authentication such as group signatures, e-cash,
and anonymous credentials.
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