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Abstract. The advent of the Java Card standard has been a major
turning point in smart card technology. With the growing acceptance of
this standard, understanding the performance behaviour of these plat-
forms is becoming crucial. To meet this need, we present in this paper, a
benchmark framework that enables performance evaluation at the byte-
code level. The first experimental results show that bytecode execution
time isolation is possible.
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1 Introduction

With more than one billion copies per year, smart cards are an important device
of today’s information society. The development of the Java Card standard made
this device even more popular: capable of processing a subset of the platform
independent, object oriented, and widely used programming language Java, the
Java Card puts smart card technology at the disposal of many programmers
and significantly shortens the time to market for smart card applications [3].
Moreover, cards are “open platforms” in the sense that programs (applets) can
be added, that is, uploaded and executed on the platforms.

In this context, understanding the performance behaviour of Java Card plat-
forms is important to the Java Card community (users, smart card manufactur-
ers, card software providers, card users, card integrators, etc.). Currently, there
is no solution on the market which makes it possible to evaluate the performance
of a smart card that implements Java Card technology. In fact, the programs
which realize this type of evaluations are generally proprietary and not avail-
able to the whole of the Java Card community. Hence, the only existing and
published benchmarks are used within research laboratories (e.g., SCCB project
from CEDRIC laboratory [7U8] or IBM Research [13]). However, benchmarks are
important in the smart card area. Indeed, from smart card manufacturers point
of view, standards will be more and more important in the smart card industry,
as it is the case currently for the information technology domain. Furthermore, it
is of primary importance to differentiate the products of the companies especially
when the products are standardized. From a smart card customers point of view,
benchmarks allow to understand the platform performance in terms of evalua-
tion and prediction. It helps choose a service according to its QoS, its execution
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time or its memory consumption. Besides, being able to efficiently measure the
performance of a cryptographic device such as a smart card in terms of time,
memory or power consumption might be used to perform some security attacks
and evaluations.

In this paper, we propose a general benchmarking solution to establish the
execution time of Java Card bytecodes. We show that our proposed solution
allows us to ascertain the feasibility of bytecode execution time isolation. Here,
we restrict ourselves to presenting the comparative performances of arithmetic
operations on several smart cards.

The remainder of this paper is organised as follows. In section 2 we give a
brief introduction of the Java Card technology and present some related bench-
marking solutions. Section [B] presents our benchmark framework and describes
a general solution to achieve bytecode execution time isolation. We explain in
section [ how we revise the general solution to suit arithmetic operations bench-
marking. Section [f] shows the results pertaining to arithmetic performance and
also presents how the stability of the result is a function of the execution fre-
quency of the bytecode under analysis. We present some future works in section
and conclude in section [

2 Java Card and Benchmarking

2.1 Java Card Technology

Java Card technology provides means of programming smart cards [6/I] with a
subset of the Java programming language. Today’s smart cards are small com-
puters, providing 8, 16 or 32 bits CPU with clock speeds ranging from 5 up
to 40MHz, ROM memory between 32 and 64KB, EEPROM memory (writable,
persistent) between 16 and 32KB and RAM memory (writable, non-persistent)
between 1 and 4KB. Smart cards communicate with the rest of the world through
application protocol data units (APDUs, ISO 7816-4 standard). The communi-
cation is done in master-slave mode. It is always the terminal application that
initializes the communication by sending the command APDU to the card and
then the card replies by sending a response APDU (possibly with empty con-
tents). In case of Java powered smart cards, besides, the operating system, the
card’s ROM contains a Java Card Virtual Machine (JCVM) which implements
a subset of the Java programming language and allows Java Card applets to run
on the card.

A Java Card applet should implement the install method responsible for
the initialization of the applet (usually it just calls the applet constructor) and
a process method for handling incoming command APDUs and sending the
response APDUs back to the host. There can be more than one applet existing
on a single card, but there can be only one active at a time (the active one is
the most recently selected by the Java Card Runtime Environment — JCRE).
A normal Java compiler is used to convert the source code into Java bytecodes.
Then a converter must be used to convert the bytecode into a more condensed
form (CAP format) that can be loaded onto a smart card. The converter also
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checks that no unsupported features (like floats, strings, etc.) are used in the
bytecode. This is sometimes called off-card or off-line bytecode verification.

2.2 Some Attempts for Measuring Java Card Performance

Currently, there is no standard benchmark suite which can be used to demon-
strate the use of the JCVM and to provide metrics for comparing Java Card
platforms, thus allowing the Java Card users to take decision about which envi-
ronments are most suitable for their needs. In fact, even if numerous benchmarks
have been developed around the JVM, there are few works that attempt to eval-
uate the performance of smart cards.

For example, SCCB (Smart Card CNAM Benchmark) from CEDRIC labora-
tory [7I8]), was initially a very ambitious project which aimed at measuring the
performance of Java Card platforms. Unfortunately, the results obtained during
experiments were not accurate because the measurements were initiated at the
Java Card language level and were neglecting the basic operations defined at the
bytecode level.

Another interesting work is that carried out by the IBM BlueZ secure systems
group and concretized through a Master thesis [13]. JCOP framework has been
used to perform a series of tests to cover the communication overhead, DES
performance and reading and writing operations into the card’s memory (RAM
and EEPROM).

Markantonakis in [TI0] presents some performance comparisons between the
two most widely used terminal APIs, namely PC/SC and OCF. He measures
some operations such as: connecting/disconnecting to the smart card reader,
selecting the smart card application, sending APDUs, etc.

Guyot et al. in [9] describe how to handle session mobility by storing session
information in smart card. In this special context, they evaluate the performance
of smart cards by implementing real services and by observing how fast the cards
could retrieve and suspend a given session.

Papapanagiotou et al. in [I2] evaluate the performance of two online certificate
revocation and validation protocols on two different Java Card platforms in order
to determine which protocol is more efficient for smart card use.

Chaumette et al. in [4)2] show the performance of a Java Card grid with
respect to the scalability of the grid and with different types of cards.

Regarding the problem that we address here, the works of Guyot et al. and
Papapanagiotou et al. are used in particular contexts and do not deal with Java
Card platforms while Chaumette et al. deal with the performance of a grid rather
than that of a single smart card.

3 General Benchmarking Framework

3.1 Introduction

Our research work falls under the MESURE project [I1], a project funded by
the French administration (ANR), which aims at developing a set of open source
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tools to measure the performance of Java Card platforms. Currently, we have
developed benchmarks covering some VM related characteristics, such as arith-
metic. In this paper, we have chosen to present only the results pertaining to the
arithmetic benchmarks because they are completely finished, compared to others
(memory specific operations for example). The benchmarks have been developed
under the Eclipse environment based on JDK 1.6, with JSR268. The underlying
ISO 7816 smart card architecture forces us to measure the time a Java Card
platform takes to answer to a command APDU, and to use that measure to de-
duce the execution time of some bytecodes. The benchmarking development tool
covers two parts: the script part and the applet part. The script part, entirely
written in Java, defines an abstract class that is used as a template to derive
test cases characterized by relevant measuring parameters such as, the operation
type to measure, the number of loops, etc. A method run() is executed in each
script to interact with the corresponding test case within the applet. Similarly,
on the card is defined an abstract class that defines three methods:

— a method setUp() to perform any memory allocation needed during the
lifetime test case.

— a method run() used to launch the tests corresponding to the test case of
interest, and

— a method cleanUp() used after the test is done to perform any clean-up.

The testing applet is capable of recognizing all the test cases and to launch a
particular test by executing its run method.

Our Eclipse environment integrates the Converter tool from Sun MicroSys-
tems, which is used to convert a standard Java applet class into a JCA file during
a first step. This file is completed pseudo-automatically by integrating the oper-
ations to be tested with the Java Card Assembly instructions, as we explain in
the following paragraph. The second step consists in capgenerating the JCA file
into a CAP file, so that the applet could be installed on any Java Card platform.

3.2 Isolating Bytecode Execution Time

Benchmarking bytecodes within Java Card platforms requires some subtle means
in order to obtain execution results that reflect as accurately as possible the
actual execution time of the isolated execution time of an arithmetic bytecode.
This is because there exists a significant and non-predictable elapse of time
between the beginning of the measure, characterized by the starting of the timer
on the computer, and the actual execution of the bytecode of interest. This is also
the case the other way round. Indeed, when performing a request on the card,
the execution call has to travel several software and hardware layers down to the
card’s hardware and up to the card’s VM (vice versa upon response). This non-
predictability is mainly dependent on hardware characteristics of the benchmark
environment (such as the card acceptance device (CAD), PC’s hardware, etc),
the OS level interferences, services and also on the PC’s VM.
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To minimize the effect of these interferences, we need to isolate the execution
time of the bytecodes of interest, while ensuring that their execution time is
sufficiently important to be measurable.

The maximization of the bytecodes execution time requires a test applet struc-
ture with a loop having a large upper bound, which will execute the bytecodes
for a substantial amount of time. On the other hand, to achieve execution time
isolation, we need to compute the isolated execution time of any auxiliary byte-
code upon which the bytecode of interest is dependent. For example if sadd is
the bytecode of interest, then the bytecodes that need to be executed prior to
its execution are those in charge of loading its operands onto the stack, like two
sspush. Thereafter we subtract the execution time of an empty loop and the
execution time of the auxiliary bytecodes from that of the bytecode of interest
to obtain the isolated execution time of the bytecode. As presented in figure [T]
the actual test is performed within a method (run) to ensure that the stack is
freed after each invocation, thus guaranteeing memory availability.

Applet framework  Test Case

process() { run() {
i=0 op1
While i <= L op2
DO {
run() opn
i=1i+1 opo
} }
}

Fig. 1. Test framework for a bytecode opo

In figure[:

— L represents the chosen loop upper bound;

— opo represents the bytecode of interest;

— op; for i € [1..n] represents the auxiliary bytecodes necessary to perform the
bytecode opy.

To compute the mean isolated execution time of opy we need to perform the
following calculation:

M(opo) = " (0P0) = mL(EMPIYIO0R) 5 pg(op)
i=1

Where :

— M (op;) is the mean isolated execution time of the bytecode op;.

— my(op;) is the mean global execution time of the bytecode op;, including
interferences coming from other operations performed during the measure-
ment, both on the card and on the computer, with respect to a loop size L.
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These other operations represent for example auxiliary bytecodes needed to
execute the bytecode of interest, or OS and JVM specific operations. The
mean is computed over a significant number of tests. It is the only value that
is experimentally measured.

— Emptyloop represents the execution of a case where the run method does
nothing.

The formula presented above implies that prior to computing M (opy) we need
to compute M (op;) for i € [1..n].

4 Arithmetics

The benchmarking of arithmetic operations requires some fine-tunings. As arith-
metic operations take in general a negligible amount of time to execute, the pro-
posed general solution may not give satisfying results. More precisely, though
having a large upper bound L ensures a certain degree of accuracy in our mea-
surements, this involves making some very long and unpractical measurements.
Whereas, if we perform our tests with a smaller upper bound, we can still have
some cases where m(op;) < m(Emptyloop) (due to the small execution time of
arithmetic operations), which are mainly due to sudden load changes within the
benchmark platform. Consequently, this can affect adversely the mean execution
time of the test. To minimize these undesirable situations, our solution, consists
in executing repeatedly as many times as possible the bytecode of interest within
the run method. Some smart cards might perform some security countermea-
sures (see [0]) that will degrade the execution time of multiple similar bytecodes
executed in a row. In that case, our general solution will still work but we will
need to perform a very large number of loops which will make the overall test
tedious.

However, in the case of arithmetic operations, increasing the number of execu-
tions of the arithmetic bytecode by k times does not necessarily entail k execu-
tions of its auxiliary bytecodes (ops...op,) (generally sspush operations). This is
due to the fact that an arithmetic operation always ends up pushing an operand
onto the stack, corresponding to its result. Therefore, we can take advantage of
this to optimize the overall benchmark execution time. When benchmarking an
arithmetic operation requiring two operands, for instance a sadd operation, the
run method will contain k executions of sadd, preceded by only k+ 1 executions
of sspush, instead of 2k. See figure 21

The computation of the mean isolated execution time for a binary arithmetic
operation opgy, when taking into account k executions of opy for every iteration,
is presented as follows :

M (opg) = m(opo) —Z”L)L((]f?mptyloop) — (k+1) x M(sspush num)
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Where :

my (sspush num)) — my(Emptyloop)

M (sspush num) = sk

run method to isolate opo run method to isolate sspush

run(){ run(){
sspush num sspush num
(k) {sspush i (k) {sspush num
opo
¥ ¥

Fig. 2. run methods for binary arithmetic operations

5 Performance Results

5.1 Arithmetic Performance

We have evaluated the arithmetic performance of three Java Card 2.2 platforms
denoted respectively 3060, 4045 and 2046. Cards 3060 and 2046 were designed
respectively in 2006 and 2004 by the same manufacturer, whereas card 4045 was
manufactured in 2004 by another provider. The benchmarks have been carried
out by measuring the execution time of distinct arithmetic operations for each
Java Card platform. The results presented in figure[Bshow the isolated execution
time of some arithmetic operations. As we can notice, the sadd bytecode for each
card is approximately similar in time to the ssub, sor, sand and sxor bytecodes,
which is normal since they are similar binary operations. We can also observe
that sneg is the fastest one since it needs only one operand.

m
=
o
IS
=
C
L
= [ 3060
9 W 2046
x W 4045
[}
c
@©
9}
=

sadd ssub smul sdiv srem sneg sshl sshr sor sand sxor

Bytecode

Fig. 3. Arithmetic performances of three cards
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Fig. 4. Linearity evaluation on M (sadd)

With this test we have also been able to assess the characteristics of the three
Java Card platforms vis-a-vis the arithmetic implementations of their JCVM.
For instance, we can observe that for the cards 3060 and 4045, the sshl bytecode
has nearly the same execution time as that of smul or sshr, whereas in card 2046
its execution time is nearer to that of sdiv or srem. From this observation, we
can easily assume that sshl is implemented by a division in card 2046.

In conclusion, when comparing the performances of the three Java Card plat-
forms, we can clearly see that card 3060 has slightly better performance than
card 2046, whereas both of them outperform greatly card 4045.

5.2 Linearity of the Results

With our proposed bytecode execution time measurement solution, we expect
that the mean execution time of the isolated bytecodes will stabilize after a
certain loop size. We have checked for this linearity on the two cards 3060 and
4045. Figure @l shows the mean execution time of a simple isolated sadd over 100
measures, based on each loop size. During this test, we have made use of the
parameter P2 of the APDU command to change the loop size.

As we can notice, the measures tend to reach a certain degree of stability
as the loop size increases, though the results obtained for the two cards are
dissimilar. We can also observe that their execution behaviour follows the same
general pattern over the loop size range. This confirms the reliability of our
proposed “bytecode execution time isolation” technique.

In general, the execution time stabilization is dependent upon factors such as
the CAD, its driver, the computer OS, the CPU load during the test as well as
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Instruction set
Opcode |Mnemonic Reference loop Opcode |Mnemonic Reference loop
0 nop empty loop 117,118 |<t>lookupsw itch 1 <t>load | 1 goto
1 aconst_null empty loop 119-121 |<t>return
2-8 sconst_<n> empty loop 122 return
9-15 iconst_<n> empty loop 123-126 |getstatic_<t> empty loop
16-20 <t1><t2>push empty loop 127-130 |putstatic_<t> 1 <t>load
21 <t>load empty loop 131-134 |getfield_<t> 1 aload
24-35 <t>load_<n> empty loop 135-138 |putfield_<t> 1 aload | 1 <t>load
36-39 <t>aload 1 aload | 1 sload 139 invokevirtual
40-42 <t>store 1 <t>load 140 invokespecial
43-54 <t>store_<n> 1 <t>load 141 invokestatic
55-58 <t>astore 1 aload | 1 sload | 1 <t>load 142 invokeinterface
59 pop 1 sload 143 new empty loop
60 pop2 2 sload 144 new array 1 sload
61 dup 1 sload 145 anew array 1 sload
62 dup2 2 sload 146 arraylength 1 aload
63 dup_x 1 bspush | n sload 147 athrow
64 sw ap_x 1 bspush | n sload 148 checkcast 1 aload
65-88 <t><arithmetic_operation> |2 <t>load 149 instanceof 1 aload
89,90 <t>inc empty loop 150,151 |<t>inc_w empty loop
91-94 <t1>2<t2> 1 <t1>load 152-159 |if<cond>_w 1 sload
95 icmp 2 iload 160-167 |if_<t>cmp<cond> w |2 <t>load
96-103  |if<cond> 1 sload 168 goto_w nop
104-111 |if_<t>cmp<cond> 2 <t>load 169-172 |getfield_<t> w 1 aload
112 goto nop 173-176 |getfield_<t>_this empty loop
113 lisr 177-180 |putfield_<t> w 1 aload | 1 <t>load
114 ret 181-184 |putfield_<t>_this 1 <t>load
115,116 |<t>tablesw itch 1 <t>load | 1 goto

Fig. 5. Instruction Set

the card itself. For instance, in the case of the CAD, as the precision may vary
from one CAD to another, the confidence in the results for a given loop size
will vary. As a result, the loop size necessary to obtain an accurate and stable
measure will depend generally upon the test environment, hence the needfulness
for a loop size calibration prior to testing.

6 Future Works

6.1 Expanding the Test to Other Bytecodes

In the near future, we plan to expand the test to all bytecodes. Here also, our
approach, at the outset, will be to track back any auxiliary bytecode necessary
to satisfy the bytecode dependencies. The result of this dependency analysis is
presented in figure[Bl We categorise the terms upon which the bytecodes operate
as follows:

t = albli|s
n == m 1]|0[1]2|3|4]5
cond = eq|ne|gt|gellt|le

t represents the set of data types used, objects (a), bytes (b), integers (i) and
shorts (s). n represents the allowed integer constants used. cond represents the
different execution conditions.
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For most of the cases, the test will follow the general framework presented in
section Bl However, we will still be confronted to some exceptional cases such
as those presented in the grayed background cells of the table. Indeed, the ex-
ecution time of these bytecodes cannot be isolated. One possible solution is to
pair bytecodes execution. For instance, we can measure the execution time of a
method invocation (such as invokestatic) and the return bytecode as a whole.

6.2 Other Issues

In this paper we have focused on benchmarking Java Card bytecodes. But in
the next few months, our objective will be to evaluate the execution time at the
Java Card API level.

With the benchmark results, obtained at the bytecode and API levels, we
will also be able to evaluate the performance of several execution scenarios of
applets. The evaluation will require the analysis of an applet structure both at
the bytecode and API levels to establish the bytecodes and methods used as
well as their frequencies. The potential execution time of a given applet will be
defined as a function of the frequency of methods/bytecodes and their benchmark
results.

7 Conclusion

With the wide use of Java in smart card technology, there is a need to evaluate the
performance and characteristics of these platforms in order to ascertain whether
they fit the requirements of the different application domains. For the time being,
there is no open source benchmark solution for Java Card. The objective of our
project [I1] is to satisfy this need by providing a set of freely available tools,
which, in the long term, will be used as a benchmark standard.

In this paper, we have proposed, through our general benchmark framework, a
“bytecode execution time isolation” technique that helps us assess the execution
time of a bytecode, with OS level and hardware interferences removed.

We have shown via experimental tests that our technique produces accurate
results with a confidence varying with respect to the test environment used.
Indeed, stability of the result is strongly dependent on the frequency of the
execution of the bytecode under scrutiny. We discussed that to obtain an accurate
and stable measure, there is a need to calibrate the benchmark framework prior
to testing.
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