
Predicting Palmitoylation Sites Using a
Regularised Bio-basis Function Neural Network

Zheng Rong Yang

School of Engineering, Computer Science and Mathematics
University of Exeter, UK

Abstract. Palmitoylation is one of themost important post-translational
modifications involving molecular signalling activities. Two simple meth-
ods have been developed very recently for predicting palmitoylation sites,
but the sensitivity (the prediction accuracy of palmitoylation sites) of
both methods is low (< 65%). A regularised bio-basis function neural
network is implemented in this paper aiming to improve the sensitivity.
A set of protein sequences with experimentally determined palmitoyla-
tion sites are downloaded from NCBI for the study. The protein-oriented
cross-validation strategy is used for proper model construction. The ex-
periments show that the regularised bio-basis function neural network
significantly outperforms the two existing methods as well as the support
vector machine and the radial basis function neural network. Specifically
the sensitivity has been significantly improved with a slightly improved
specificity (the prediction accuracy of non-palmitoylation sites).

Keywords: Palmitoylation site prediction, bio-basis function, regulari-
sation.

1 Introduction

Palmitoylation is a hydrophobic protein-modification activity where fatty acids
are covalently attached to cysteine residues of membrane proteins. In biochem-
istry and enzymology study, it has been observed that this hydrophobic protein-
modification activity uses cellular and viral membrane proteins for signal
transmission [1]. It is still unknown what the molecular signals for palmitoy-
lation are. Although palmitoylation is known to be a reversible activity with
cycles of acylation and deacylation, the relevant enzymatic mechanism has not
been completely known because some palmitated proteins are found without
any enzyme source present. Despite of these observations, palmitoylation activ-
ity has been widely studied in various areas including most signalling pathway
activities [2], [3]. For instance, Smotrys et al showed that most trafficking and
protein-protein interactions as well as enzyme activities depend on the existence
of palmitated proteins [4]. They also showed that palmitated proteins can en-
hance the membrane interactions and the reversibility of palmitoylation is an
attractive mechanism for regulating protein activity and cell signalling. Li and
Yang have found that most palmitoylation-deficient mutant Env proteins are
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soluble when extracted by ice-cold TX-100 and stay at the bottom of the gra-
dients in their study of the association between the Maurine leukaemia virus
Env protein and lipid rafts [5]. Palmitoylation has also been studied in disease-
related subjects. For instance, Yu and Lee have found that two cysteine residues
(257 and 261) at the C-terminal of NS4B have lipid modifications (palmitoyla-
tion) in studying the polymerization of Hepatitis C virus NS4B protein [6]. They
concluded that site-specific mutagenesis of these cysteine residues are important
for protein-protein interactions in the formation of HCV RNA replication com-
plex. Another example of disease-related biology study of palmitoylation activity
is vacuolar events. Peng and Tang showed that palmitoylation targets Vac8p to
specific membrane sub-domains for vacuole homotypic fusion at three cysteine
residues (4, 5 and 7) [7].

Specificity study of post-translational modifications like phosphorylation,
methylation, sumoylation and palmitoylation is a very important subject in sys-
tems biology research for understanding how proteins are responding to extra-
cellular cues for information transmission along signalling pathways. One of the
important subjects in studying post-translational modifications is to identify
where the modifications are or where proteins are binding for the modifications.
For this kind of study, it is generally not necessary to view whole protein sequences.
Rather, one normally focuses on a small area of a binding site or a few residues
around a functional site. This study is commonly termed as protein functional site
prediction which involves the use of a set of peptides (short regions of protein se-
quences) with known functional status, i.e. functional or non-functional. In this
context, a functional peptide is the one with a palmitoylation site.

The earliest work on protein functional site prediction were normally based on
frequency estimate. For example, the h function [8], where the frequency of 20
amino acids at each residue is calculated from a set of functional peptides. The
estimated frequencies are then stored in a computer program for prediction. The
major shortcoming of this method is that they usually result in high sensitivity
and low specificity. Some statistical models like hidden Markov models (HMM)
[9], discriminant analysis [10] and quadratic discriminant analysis [11] have also
been used for data mining protein peptides. However, a HMM model also has a
high sensitivity and a low specificity [12].

Neural networks and the support vector machine [13], [14] have been applied
to data mining protein peptides as well. For instance, neural networks have been
used in signal peptide cleavage site prediction [15], glycoproteins linkage site pre-
diction [16], enzyme active site prediction [17], phosphorylation site prediction
[18], and water active site prediction [19]. The support vector machine has been
used for the prediction of translation initiation sites [20], the prediction of phos-
phorylation sites [21], the prediction of T-cell receptor [22], and the prediction
of protein-protein interactions [23].

In the context of predicting palmitoylation sites, Zhou et al first employed a
clustering and scoring strategy to build a model to predict palmitoylation sites
in early 2006 [24]. In the same group, Xue et al employed a Naive Bayes method
to predict palmitoylation sites in late 2006 [25]. They have used 105 protein
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sequences with 245 palmitoylation sites being experimentally determined. Based
on these protein sequences, 977 non-palmitoylation peptides with various lengths
were generated, each having a cysteine in the middle. Their model [25] is able
to make total prediction accuracy 86.74% with the sensitivity 58.37%, the speci-
ficity 93.86% and the Matthews’ correlation coefficient 0.5618. In comparison,
they have used the support vector machine and the radial basis function neu-
ral network. For the former, the specificity is 94.47%, the sensitivity is 64.49%
and the Matthews’ correlation coefficient is 0.623. For the latter, the sensitivity
is 95.09%, the specificity is 55.51% and the Matthews’ correlation coefficient is
0.5664. It can be seen that all have a low sensitivity from 58.37% to 64.49%. For
the Naive Bayes method, they found that the optimal window size is six. For
the support vector machine, they found that the optimal window size is seven.
For the radial basis function neural network, they found that the best window
size is eight. In dealing with amino acids, they employed the orthogonal coding
mechanism where each amino acid is coded using a 20-bit long orthogonal binary
vector [26].

Although the orthogonal coding mechanism has been widely used for various
protein peptide modelling tasks, it may not well code biological information
in peptides. The bio-basis function neural network was therefore developed for
proper coding of amino acids in 2003 [27], [28]. The bio-basis function neural
network has been successfully used for Trypsin cleavage site prediction [27], HIV
cleavage site prediction [28], [30], [29], disordered protein prediction [31], [32],
phosphorylation site prediction [33], [12], glycoprotein O-linkage site prediction
[34], Caspase cleavage site prediction [35], SARS-CoV protease cleavage site
prediction [36], signal peptide prediction [37], [38], and T-cell epitope prediction
[39]. In all these applications, no regularisation was applied. This means that the
models may possibly overfit to the training peptides. With the regularisation
theory [40], we can constrain the model parameters to trade off between bias
and variance so as to improve model generalisation capability when a proper
regularisation constant is determined. This has been widely studied in neural
network community [41], [42].

In this study, a regularised bio-basis function neural network is implemented
for improving palmitoylation site prediction sensitivity using the data down-
loaded from NCBI. First, the regularised bio-basis function neural network is
introduced and then how data downloaded from NCBI are organised for simu-
lation is discussed. Particularly, the protein-oriented cross-validation strategy is
discussed for proper model construction. A comparison will be given showing if
the regularised bio-basis function neural network can improve the sensitivity for
palmitoylation site prediction.

2 Regularised Bio-basis Function Neural Network

Before discussing the regularised bio-basis function neural network, the bio-
basis function neural net is briefly discussed. Given two peptides si and sj ,
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the likelihood that they are from the same ancestor through evolution is L =∏d
k=1 p(sik, sjk). Here d is the number of residues in two peptides, p(sik, sjk)

is the probability that both sik and sjk occur in si and sj at the same time.
Applying a logarithm operation on the likelihood function leads to

ρ(si, sj) = lnL =
d∑

k=1

M(sik, sjk) (1)

Here M(sik, sjk) can be found from various mutation matrices [43], [44], [45].
The bio-basis function is designed as follows

φ(si, sj) = exp
(

ρ(si, sj) − ρ(sj , sj)
ρ(sj , sj)

)

(2)

It can be seen that φ(si, sj) ∈ (0, 1]. When si = sj, φ(si, sj) = 1. When si is
very different from sj, φ(si, sj) → 0. By using the log-odds-ratio, a model using
the bio-basis function for peptide classification is defined as

yn =
1

1 + exp (−wT φn)
(3)

Here w = (w0, w1, · · · , w�)
T and φn = (1, φn1, φn2, · · · , φn�)

T . The objective
function with an added regularisation term (neg log pdf + regularisation) is then
defined as

O = −
�∑

n=1

(tn log yn + (1 − tn) log(1 − yn)) +
1
2
λwT w (4)

Here λ is a regularisation constant. The update rule of the parameters is defined
as

Δw = −H−1∇O =
(
ΦT ΛΦ + λI

)−1
(ΦT e − λw) (5)

Here I is an identity matrix, Λ = diag{yn(1 − yn)} is called an entropy matrix,
∇O is the first derivative of O with respect to w,

H = ∇∇O (6)

is the Hessian matrix, e = (e1, e2, · · · , e�)
T , en = tn − yn, and

Φ =

⎛

⎜
⎜
⎜
⎝

1 φ11 φ12 · · · φ1�

1 φ21 φ22 · · · φ2�

1
...

...
...

...
1 φ�1 φ�2 · · · φ��

⎞

⎟
⎟
⎟
⎠

(7)

The learning procedure is designed as below

[1 ]: c = 0, wc = 0
[2 ]: Calculate yc = (yc

1, y
c
2, · · · , yc

�)
T , ec and Λc



410 Z.R. Yang

[3 ]: wc+1 = wc +
(
ΦT ΛcΦ + λI

)−1 (ΦT ec − λwc)
[4 ]: If ‖wc+1 − wc‖ < ε, stop, otherwise c = c + 1, goto [2].

Here wc is w at cth learning cycle, yc is y at cth learning cycle, ec is e at
cth learning cycle, Λc is Λ at cth learning cycle and ε > 0 is a small number
functioning as a termination rule. The other termination rule is the maximum
training cycle (being set 100 in this paper). In most cases, the first termination
rule is satisfied.

3 Result

3.1 Data

A data set of 55 protein sequences with 90 experimentally confirmed palmitoy-
lation sites was downloaded from NCBI. It has been found that palmitoylation
activity won’t happen if cysteine is not present. We can then scan these 55 pro-
tein sequences to generate peptides with cysteine in the middle (P0). In total,
there are 490 cysteine residues in these 55 protein sequences. There are on aver-
age 8.9 cysteine residues in each protein sequence and less than two of them are
possible palmitoylation sites. The peptide chain with 2n+1 residues is expressed
as Pn − · · · − P1 − P0 − P1′ − · · · − Pn′ .

3.2 Cross-Validation

The next question is then how to use the data for constructing models for pre-
diction. We don’t want a model to overfit the training data in any circumstances.
Cross-validation or jackknife is certainly a way for achieving this goal. However,
the fundamental principle of cross-validation has been very often abused in data
mining protein peptides. In using cross-validation, one important principle is
that we cannot use a data set which has any information exposed to training for
evaluation. If this happens, the model can be very likely over-evaluated. However,
in many applications, this important issue has not been seriously addressed. Sub-
sequences or peptides are normally generated through scanning all the available
protein sequences at first. These generated peptides are then pooled together and
then randomly divided for cross-validation. With this strategy, we may almost
over-evaluate a model or an algorithm. The reason is very simple. Each protein
sequence can be treated as a small world in which mutation (although the under-
line mechanism of it has not yet been completely known) happens in a specific
way which may differ from other protein sequences. If we have generated peptides
before cross-validation, some peptides generated from a protein sequence can be
randomly picked up for training and some peptides generated from the same
protein sequence can be randomly picked up for testing. This means that the
pattern in testing peptides have already partially known in training! To handle
this problem, we have proposed a new strategy called protein-oriented cross-
validation [49], [50]. The core principle of the protein-oriented cross-validation is
to divide protein sequences into k folds at first. For each sequence in each fold,
a sliding window is applied to generate peptides. Cross-validation simulation is
then run based on peptides in these folds.
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3.3 Sequence Logos

Fig 1 and 2 show the sequence logos for palmitated and non-palmitated peptides.
The logos were produced using the WebLogo1 [47]. Note that the middle cysteine
residue is removed. This means that we are working for the peptides in the
following format Pn −· · ·−P1 −P1′ −· · ·−Pn′ . From Fig 1 and 2, it can be seen
that two classes of peptides show some difference in amino acid distributions.

Palmitated Peptides
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Fig. 1. Sequence logos generated for palmitated peptides
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Fig. 2. Sequence logos generated for non-palmitated peptides
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3.4 Model Evaluation

Two criteria are used for model evaluation. They are the Matthews’ correla-
tion coefficient [46] and the receiver operating characteristic (ROC) curve [48].
Let TN, TP, FN, FP denote true negative (correctly identified non-palmitated
peptides), true positive (correctly identified palmitated peptides), false negative
(palmitated peptides identified as non-palmitated ones) and false positive (non-
palmitated peptides identified as palmitated ones), respectively. The Matthews’
correlation coefficient (MCC) is

MCC =
TN × TP − FN × FP

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(8)

The Matthews’ correlation coefficient measures how the predictions correlate
with the real target values. If the coefficient is positive, the predictions are posi-
tively correlated with the target values. If the Matthews’ correlation coefficient is
zero, the prediction is completely random. For the ROC analysis, we use the area
under a ROC curve (AUR) for the testing set as it is a quantitative measurement
of the robustness of a built model.

3.5 Result

For simulation, we have changed the λ (see Eq. 4) value from the range (0.001,
0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 0.08). The simulation result
using 10 λ values for 6 window sizes (5, 7, 9, 11, 13, and 15) are shown in Fig 3
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Fig. 5. (a) Learning performance using the regularised bio-basis function neural net-
work. (b) MCC comparison between Naive Bayes and Bio-Basis Function Neural Net.

and Fig 4, where the dashed lines are for MCC and the solid lines are for AUR.
It can be seen for almost all cases, small λ values produce better models.

Fig 5 (a) shows the learning performance using the regularised bio-basis func-
tion neural network. It can be seen that the likelihood

∏�
n=1 ytn

n (1 − yn)1−tn is
consistently increasing and the change of weights ‖Δw‖ is decreasing.

3.6 Comparison

Table 1 shows a comparison between different algorithms. It can be seen that
the regularised bio-basis function neural net significantly outperforms the Naive
Bayes, the support vector machine and the radial-basis function neural net. The
best bio-basis function neural network uses 7-mer (in fact 6-mer after removing
P0) peptides and λ = 0.006. The best bio-basis function neural net and the
Naive Bayes show a difference 0.12 in MCC. The best bio-basis function neural
net and the Naive Bayes show a difference 0.09% in specificity. However, the
best bio-basis function neural net and the Naive Bayes show a difference 16.04%
in sensitivity accounting for 27.5% increase! Fig 5 (b) shows a MCC comparison
between the Naive Bayes and the bio-basis function neural network, where the
dash line represents the bio-basis function neural network using various window
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sizes while the straight solid line represents the performance using the Naive
Bayes method. It can be seen that the latter much outperforms the former.

It has been mentioned above that the best window sizes are six using the
Naive Bayes method, seven using the support vector machine, eight using the
radial-basis function neural network. The regularised bio-basis function neural
network selects the best window size as seven as the support vector machine
which produced the best sensitivity compared with the rest conventional meth-
ods. It should be noted that both the support vector machine and the regularised
bio-basis function neural network use the regularisation theory to improve gen-
eralisation capability. This may be the reason that these two are close in the
prediction sensitivity and the window size.

Table 1. The comparison between different algorithms. Naive Bayes, Support vector
machine and Radial-basis function neural net have no report of AUR measures. The
number within brackets mean the window size used for modelling.

Algorithms λ Specificity Sensitivity MCC AUR
Naive Bayes 93.86% 58.37% 0.562 n.a.
Support vector machine 94.47% 64.44% 0.623 n.a.
Radial-basis function neural net 95.09% 55.51% 0.537 n.a.
Bio-basis function neural net (5) 0.01 89.78% 70.10% 0.581 0.845
Bio-basis function neural net (7) 0.006 95.95% 74.41% 0.682 0.899
Bio-basis function neural net (9) 0.01 93.70% 72.53% 0.660 0.920
Bio-basis function neural net (11) 0.02 95.41% 63.39% 0.652 0.894
Bio-basis function neural net (13) 0.02 93.66% 68.67% 0.644 0.882
Bio-basis function neural net (15) 0.01 89.88% 77.24% 0.636 0.889

It should be noted that the models presented by Zhou et al [24] and Xue et
al [25] used 245 palmitated peptides and 977 non-palmitated peptides compared
with 90 palmitated peptides and 400 non-palmitated peptides. The author is
contacting Zhou et al and Xue et al at the moment for requesting their data.
It is expected that the regularised bio-basis function neural network will even
perform better after their data arrive.

4 Conclusion

This paper has implemented a regularised bio-basis function neural network for
predicting palmitoylation sites in proteins. Through comparison, it has been
found that the new method presented in this paper significantly outperforms
the traditional methods, namely the Naive Bayes method, the support vector
machine and the radial-basis function neural network. We are currently investi-
gating how to use the regularised bio-basis function neural network to produce
sparse models for better interpretation to the trained models. In using the in-
formation provided by the Hessian matrix, we can evaluate the importance of
each bio-basis using the statistic as Zn = wn√

H−1
nn

(∀n ∈ [0, �]). If Zn < ϑ (ϑ > 0
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is a small number functioning as a threshold), wn can be zeroed or the nth bio-
basis can be removed. A detailed research is undergoing for investigating how to
determine ϑ and how to interpret the left bio-bases in biology.
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