
Efficient Ring Signatures
Without Random Oracles

Hovav Shacham1,� and Brent Waters2,��

1 Weizmann Institute of Science
hovav.shacham@weizmann.ac.il

2 SRI International
bwaters@csl.sri.com

Abstract. We describe the first efficient ring signature scheme secure,
without random oracles, based on standard assumptions. Our ring signa-
tures are based in bilinear groups. For l members of a ring our signatures
consist of 2l + 2 group elements and require 2l + 3 pairings to verify. We
prove our scheme secure in the strongest security model proposed by
Bender, Katz, and Morselli: namely, we show our scheme to be anony-
mous against full key exposure and unforgeable with respect to insider
corruption. A shortcoming of our approach is that all the users’ keys
must be defined in the same group.

1 Introduction

Ring signatures were introduced by Rivest, Shamir, and Tauman [18, 19]. Each
user in the system generates and publishes a public key. (This key can be, for
example, the description of an RSA permutation.) In generating a ring signature,
a user can choose, arbitrarily, some other users to implicate in the signature. The
public keys of these implicated users, along with the signer’s public key, are said
to form the ring for that signature. A verifier is convinced that someone in the
ring is responsible for the signature, but cannot tell who.

In this paper we present the first efficient ring signature scheme secure, with-
out random oracles, based on standard assumptions. Our scheme gives O(l)
signatures, with no a priori bound on ring size. Our ring signatures are based in
bilinear groups. In particular, for l members of a ring our signatures consist of
2l + 2 group elements and require 2l + 3 pairings to verify. We now outline our
approach.

In our ring signature scheme each user generates her own public-private key-
pair from the Waters [21] signature scheme defined over a group G of a composite
order n, where the group is set up by a trusted authority. When a user wants to
sign a message M on a ring R she first creates a ciphertext C, which is a BGN [9]
encryption of her public signing key. Next, she proves that C is an encryption
� Supported by a Koshland Scholars Program fellowship.

�� Supported by NSF CNS-0524252 and the US Army Research Office under the Cy-
berTA Grant No. W911NF-06-1-0316.

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 166–180, 2007.
c© International Association for Cryptologic Research 2007

Efficient Ring Signatures Without Random Oracles 167

of exactly one of the public keys in the the ring R. We use proofs similar to that
of Groth, Ostrovsky, and Sahai [16] to do this efficiently. Finally, she gives an
encrypted signature of the message M using her private signing key and proves
that the signature verifies under the encrypted key.

A shortcoming of our approach is that all the users’ keys must be defined
in the group G. This is unlike the generic construction of Bender, Katz, and
Morselli [4], which does not place restrictions on the user keys, and also un-
like some of the random-oracle–based schemes (discussed below) that allow for
independently generated RSA user keys. In compensation, however, we obtain
an efficient scheme provably secure, without random oracles, in the strongest
security model proposed by Bender, Katz, and Morselli [4]: namely, we show our
scheme to be anonymous against full key exposure and unforgeable with respect
to insider corruption.

Related Work. The construction of Rivest, Shamir, and Tauman, requires that
the users’ public keys be for trapdoor-permutation–based schemes, i.e., include
descriptions of a trapdoor permutation. Subsequently, ring signature construc-
tions were presented where the underlying keys are discrete-log–based [17], dis-
crete-log–based in the bilinear map setting [8], factoring-based [15], or a mix of
trapdoor-permutation–type and discrete-log–type [1].

Ring signatures are also related to group signatures, which were introduced by
Chaum and Van Heyst [13] and are themselves the subject of much subsequent
research. The two concepts differ in two main ways. First, the ring is determined
by the signer and can be different for each signatures; in a group signature, group
membership is controlled by a group manager and, at any given time, is fixed.1

Second, no one can determine which member of a ring generated a signature; in
a group signature, a tracing party possesses a special trapdoor that allows it to
determine which group member is responsible for a signature.

Applications. The canonical application for ring signatures is secret leaking: A
signature by the ring of all cabinet ministers on a leaked memo is credible, but
doesn’t incriminate any particular minister for the leak. Other applications have
been proposed [4, 19].

Ring Signatures in the Standard Model. The security of the ring signatures pro-
posed by Rivest, Shamir, and Tauman and in most subsequent papers holds
in the random oracle model [2].2 Some recent papers have considered how to
construct ring signatures that are provably secure in the standard model.

Xu, Zhang, and Feng [22] describe a ring signature secure in the standard
model, but the proof presented is not rigorous and is apparently flawed [4, n. 1].
Chow et al. [14] give a ring signature scheme with proof in the standard model,
1 Dodis et al. [15, Sect. 6.3] describe ad-hoc group signatures, a primitive for which

this difference is less pronounced.
2 More precisely, Rivest, Shamir, and Tauman analyzed their construction in the ideal-

cipher model; Bresson, Stern, and Szydlo [11] later showed that random oracles
suffice for proving its security.

168 H. Shacham and B. Waters

but based on a strong new assumption. Bender, Katz, and Morselli present a
ring signature secure in the standard model assuming trapdoor permutations
exist, but the scheme uses generic ZAPs for NP as a building block, and is
thus impractical. In addition, they give two ring signature schemes secure in the
standard model but which allow only two-signer rings: one based on the Waters
signature [21], a second based on the Camenisch-Lysyanskaya signature [12].

Our ring signature scheme is related to a recent group signature secure without
random oracles due to Boyen and Waters [10]. One important difference is that
in their group signature paper the master public key, which belongs to the group
manager, is in the clear and the first level message, which corresponds to the user’s
identity, is encrypted and then proved to be well formed. In our scheme, on the
other hand, the message to be signed is public, but the verification key – which
belongs to the user who generated the signature – is encrypted and then a proof is
given that it is well formed. (In our case, “well-formed” means “in the ring.”) The
Boyen-Waters group signature is itself based on two lines of research: the identity-
based encryption scheme in the standard model due to Waters [21], which follows
up on earlier schemes by Boneh and Boyen [5, 6]; and the perfect non-interactive
zero knowledge proofs of Groth, Ostrovsky, and Sahai [16], which are based on the
homomorphic encryption scheme proposed by Boneh, Goh, and Nissim [9].

2 Mathematical Setting

Like Boyen and Waters, we make use of bilinear groups of composite order.
These were introduced by Boneh, Goh, and Nissim [9]. Let n be a composite
with factorization n = pq. We have:

– G is a multiplicative cyclic group of order n;
– Gp is its cyclic order-p subgroup, and Gq is its cyclic order-q subgroup;
– g is a generator of G, while h is a generator of Gq;
– GT is a multiplicative group of order n;
– e : G × G → GT is an efficiently computable map with the following proper-

ties:
• Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
• Non-degenerate: 〈e(g, g)〉 = GT whenever 〈g〉 = G;

– GT,p and GT,q are the GT -subgroups of order p and q, respectively;
– the group operations on G and GT can be performed efficiently; and
– bitstrings corresponding to elements of G (and of GT) can be recognized

efficiently.

In our ring signature scheme, the description of such a group G, including the
generators g and h, is given in the common reference string generated by the
setup authority.

2.1 Complexity Assumptions

For our ring signature, we assume that two problems are difficult to solve in the
setting described above: computational Diffie-Hellman in Gp and the Subgroup
Decision Problem.

Efficient Ring Signatures Without Random Oracles 169

Computational Diffie-Hellman in Gp. Given the tuple (η, ηa, ηb), with η
R←

Gp and a, b
R← Zp, compute and output ηab. In the composite setting one

is additionally given the description of the larger group G, including the
factorization (p, q) of its order n.

Subgroup Decision. Given w selected at random either from G (with proba-
bility 1/2) or from Gq (with probability 1/2), decide whether w is in Gq. For
this problem one is given the description of G, but not given the factorization
of n.

The assumptions are formalized by measuring an adversary’s success probability
for computational Diffie-Hellman and an adversary’s guessing advantage for the
subgroup decision problem. Note that if CDH in Gp as we have formulated it is
hard then so is CDH in G. The assumption that the subgroup decision problem
is hard is called the Subgroup Hiding (SGH) assumption, and was introduced
by Boneh, Goh, and Nissim [9].

3 Underlying Signature

The underlying signature scheme is the Waters signature [21]. This signature
was adapted for composite order groups by Boyen and Waters [10]. The variant
we describe differs from theirs in retaining the original Waters formulation for
the public key: g1, g2 ∈ G rather than e(g1, g2) ∈ GT .

Suppose that messages to be signed are encoded as elements of {0, 1}k for
some k. (For example, as the output of a k-bit collision-resistant hash function.)
In addition to the system parameters of Sect. 2 above, the Waters scheme makes
use of random generators u′, u1, u2, . . . , uk in G.

The scheme is as follows.

WC.Kg. Pick random α, β
R← Zn and set g1 ← gα and g2 ← gβ . The public

key pk is (g1, g2) ∈ G2. The private key sk is (α, β).
WC.Sig(sk, M). Parse the user’s private key sk as (α, β) ∈ Z

∗
n and the mes-

sage M as a bitstring (m1, . . . , mk) ∈ {0, 1}k. Pick a random r
R← Zn and

compute

S1 ← gαβ ·
(
u′

k∏

i=1

umi

i

)r and S2 ← gr .

The signature is σ = (S1, S2) ∈ G2.
WC.Vf(pk, M, σ). Parse the user’s public key pk as (g1, g2) ∈ G2, the message M

as a bitstring (m1, . . . , mk) ∈ {0, 1}k, and the signature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e
(
S−1

2 , u′
k∏

i=1

umi

i

)
?= e(g1, g2) (1)

holds; if so, output valid; if not, output invalid.

This signature is existentially unforgeable if computational Diffie-Hellman
holds on G.

170 H. Shacham and B. Waters

The Waters Signature in Gp. One can also restrict the Waters signature to the
subgroup Gp, obtaining a signature scheme to which we refer as WP . In this
case, the generator g is replaced by a generator η of Gp, and exponents are drawn
from Zp rather than Zn. In particular, the verification equation is

e(Ŝ1, η) · e
(
Ŝ−1

2 , û′
k∏

i=1

ûmi

i

)
?= e(η1, η2) . (2)

This variant is secure assuming CDH is hard in Gp, and is used in our reductions.

4 Ring Signature Definitions

Informally, a ring signature scheme should satisfy two security properties. First,
it should be anonymous: an adversary should not be able to determine which
member of a ring generated a signature. Second, it should be unforgeable: an
adversary should be able to construct a valid signature on a ring of public keys
only if he knows the secret key corresponding to one of them. Formalizing this
intuition is tricky. Rivest, Shamir, and Tauman [18] gave a formalization which
has been used in much subsequent work. Recently, Bender, Katz, and Morselli [4]
described several possible stronger formulations of each notion.

Below, we show our scheme to be anonymous against full key exposure and
unforgeable with respect to insider corruption. For both anonymity and un-
forgeability these are the strongest formulations considered by Bender, Katz,
and Morselli. We now recall these formulations; see [4] for additional details and
motivation.

RS.Kg. This randomized algorithm outputs a public verification key pk and a
private signing key sk.

RS.Sig(pk, sk, R, M). This algorithm takes as input a keypair (pk, sk) and a set
of public keys R that constitutes the ring, along with a message M in some
message space to be signed. It is required that pk ∈ R hold. The algorithm
returns a signature σ on M for the ring R.

RS.Vf(R, M, σ). The verification algorithm takes as input a set of public keys R
that constitutes the ring and a purported signature σ on a message M . It
returns either valid or invalid.

Anonymity. Anonymity against full key exposure for a ring signature scheme RS
is defined using the following game between a challenger and an adversary A:

Setup. The challenger runs algorithm Kg l times to obtain public-private
keypairs (pk1, sk1), . . . , (pkl, skl). In addition, the challenger records the
random coins {ωi} used in generating each keypair. Here l is a game
parameter. The adversary A is given the public keys {pki}.

Signing Queries. Algorithm A is allowed to make ring signing queries of
the form (s, R, M). Here M is the message to be signed, R is a set of
public keys, and s is an index such that pks ∈ R holds. (The other keys

Efficient Ring Signatures Without Random Oracles 171

in R need not be keys in the set {pki}.) The challenger responds with
σ = Sig(pks, sks, R, M).

Challenge. Algorithm A requests a challenge by sending to the challenger
the values (i0, i1, R, M). Here M is to be signed with respect to the
ring R, and i0 and i1 are indices such that pki0 , pki1 ∈ R. (The other
keys in R need not be keys in the set {pki}.) The challenger chooses a bit
b

R← {0, 1}, computes the challenge signature σ ← Sig(pkib
, skib

, R, M),
and provides A with σ. In addition, the challenger provides A with the
coins {ωi} used to generate the keys; from these, A can recompute {ski}.

Output. Algorithm A finally outputs its guess b′ for b, and wins if b = b′.

We define Advrsig-anon-ke
RS,A to be the advantage over 1/2 of A in the above game.

Unforgeability. Unforgeability with respect to insider corruption for a ring sig-
nature scheme RS is defined using the following game between a challenger and
an adversary A:

Setup. The challenger runs algorithm Kg l times to obtain public-private
keypairs (pk1, sk1), . . . , (pkl, skl). Here l is a game parameter. The ad-
versary A is given the public keys {pki}. The challenger also initializes
the set C of corrupted users as C ← ∅.

Queries. Algorithm A is allowed to make ring signing queries and corrup-
tion queries. A ring signing query is of the form (s, R, M). Here M is
the message to be signed, R is a set of public keys, and s is an index
such that pks ∈ R holds. (The other keys in R need not be keys in the
set {pki}.) The challenger responds with σ = Sig(pks, sks, R, M). A cor-
ruption query is of the form s, where s is again an index. The challenger
provides sks to A and adds pks to C.

Output. Eventually, A outputs a tuple (R∗, M∗, σ∗) and wins the game if
(1) it never made a ring signing query (s, R∗, M∗) for any s; (2) R∗ ⊆
{pki} \ C; and (3) Vf(R∗, M∗, σ∗) = valid.

We define Advrsig-uf-ic
RS,A to be the probability that A wins in the above game.

Trusted Setup. In our model we allow for a trusted global setup by an authority.
This is a stronger setup assumption than what was used in previous results.
However, this setup allows us to realize the benefits of an efficient scheme prov-
ably secure in the standard model. In practice the authority role can be split
amongst several parties. For example, using techniques like those of Boneh and
Franklin [7] several parties could generate a shared modulus n and group de-
scription efficiently for our scheme.

5 On Bender, Katz, and Morselli’s Two-User Ring
Signatures

Bender, Katz, and Morselli propose a ring signature secure without random or-
acles based on the Waters signature. This ring signature allows only two-signer

172 H. Shacham and B. Waters

rings, but this suffices for some applications of ring signatures, in particular
designated-verifier signatures. Unlike the scheme we present, the BKM ring sig-
nature is proven unforgeable only against chosen-subring attacks. In this section,
we recall the BKM ring signature and show that it is, in fact, insecure with re-
spect to insider corruption.

We stress that Bender, Katz, and Morselli do not claim that their scheme is
secure with respect to insider corruption. They prove security against chosen-
subring attacks, a weaker notion, and this proof is correct. Our contribution in
this section is to demonstrate a practical attack against the scheme in the more
general model.

Consider a group G of prime order p, together with a bilinear map e : G×G →
GT , where GT is also of size p. (This is unlike the composite-order setup of our
paper.) Each user has a private key α ∈ Zp and a public key that includes
g1 = gα and her own Waters hash generators u′, u1, . . . , uk ∈ G. Now, if Alice
wishes to sign a message M = (m1, . . . , mk) in a ring that comprises her and
Bob, whose public key is (ḡ1, ū′, ū1, . . . , ūk), she picks r

R← Zp and computes

S1 ← (ḡ1)α ·
(
u′ ∏k

i=1
umi

i

)r ·
(
ū′ ∏k

i=1
ūmi

i

)r and S2 ← gr .

For any two users, the values (g1, ḡ1) act like the Waters public key (g1, g2); the
value gαᾱ acts as a shared signing key. Since either user is capable of computing
this value, anonymity is unconditional. Unforgeability against chosen-subring
attacks follows from the security of the underlying Waters signature.

This scheme has the advantage that it requires no shared setup beyond the
group description. This justifies making each signer generate and publish her
own Waters hash generators, since a third party trusted with generating them
for all users could use its knowledge of their discrete logs to recover the shared
signing key gαᾱ from any signature.

The unforgeability condition under which Bender, Katz, and Morselli prove
their scheme secure does not allow for adversarially generated keys. We show
that the scheme is in fact insecure against such attacks, which, for a two-user
ring signature, have the following form: Alice and Bob publish their public keys.
Then Veronica publishes her key and tricks Alice into signing a message for the
Alice-Veronica ring; what she learns from this signature allows her to forge an
Alice-Bob ring signature.

Suppose Alice’s public key is (g1, u′, u1, . . . , uk) and Bob’s public key is (ḡ1,

ū′, ū1, . . . , ūk). In our attack, Veronica picks s, t′, t1, . . . , tk
R← Zp and sets

ĝ1 ← ḡ1 · gs and û′ ← gt′
/u′ and ûi ← gti/ui 1 ≤ i ≤ k .

Now when Alice generates an Alice-Veronica ring signature on a message M =
(m1, . . . , mk) we will have

S1 = (ĝ1)α ·
(
u′û′ ∏k

i=1
(uiûi)mi

)r = (ḡ1)α(gs)α(gt)r

where t = t′ +
∑k

i=1 miti, and Veronica recovers the shared Alice-Bob signing
key gαᾱ as S1/(gs

1S
t
2).

Efficient Ring Signatures Without Random Oracles 173

Note that Veronica need not know the discrete logarithms of all her Waters
generators. It suffices for her to pick û′ specially while letting the rest be glob-
ally specified. In this variant, Veronica picks ahead of time a message M∗ =
(m∗

1, . . . , m
∗
k) that she thinks she can trick Alice into signing. She then chooses

s, t′ R← Zp, and computes

ĝ1 ← ḡ1 · gs · and û′ ← gt′ / (
u′ ∏k

i=1
(uiûi)m∗

i
)

.

Now, when Alice generates an Alice-Veronica ring signature on M∗, we have
S1 = (ḡ1)α(gs)α(gt′

)r, from which Veronica can recover gαᾱ.
The attack described above is prevented if all users share the same Waters

generators (u′, u1, . . . , uk); but even in this case Veronica can still obtain from
Alice an Alice-Bob ring signature when Alice thinks she is generating an Alice-
Veronica ring signature. To achieve this, Veronica chooses s

R← Zp and sets
ĝ1 ← (ḡ1)s. Now an Alice-Veronica ring signature on M = (m1, . . . , mk) will
have the form

S2 = gr and S1 = (ĝ1)α ·
(
u′ ∏k

i=1
umi

i

)r = (ḡα
1)s ·

(
u′ ∏k

i=1
umi

i

)r
,

and therefore (S1/s
1 , S

1/s
2) is an Alice-Bob ring signature on M with randomness

r/s.

Attack on the Camenisch-Lysyanskaya–Based Scheme. In the full version of their
paper [3], Bender, Katz, and Morselli also give a two-user ring signature based
on Camenisch-Lysyanskaya signatures [12]. As with their Waters-based scheme,
they claim and prove security against chosen-subring attacks. Here, we show an
attack on this ring signature similar to the attack above, again with respect to
insider corruption. We stress once more that Bender, Katz, and Morselli do not
claim security in this stronger model.

Suppose that Alice and Bob have respective secret keys x and y, and pub-
lic keys X = gx and Y = gy. Their ring signature on a message m ∈ Zp is
(a, ay, ax+mxy), where a is random in G. If a = gr with r ∈ Zp then Alice com-
putes the ring signature as (a, Y r, axY mxr) and Bob as (a, ay, Xr+mry). If Veron-
ica plays the part of Alice, she publishes as her key X̂ = Xs for s

R← Zp. Bob
then generates the Veronica-Bob signature (S1, S2, S3) = (a, ay, asx+msxy), from
which Veronica can produce an Alice-Bob ring signature on m as (S1, S2, S

1/s
3). If

Veronica plays the part of Bob, she publishes as her key Ŷ = Y s for s
R← Zp. Al-

ice then generates the Alice-Veronica signature (S1, S2, S3) = (a, asy, ax+mxsy),
from which Veronica can produce an Alice-Bob ring signature on m′ = ms as
(S1, S

1/s
2 , S3).

Implications for Designated-Verifier Signatures. The attack described above
demonstrates a trade-off between our Waters-based ring signature and the BKM
one. Our scheme requires a trusted setup, but achieves security even in the pres-
ence of adversarially generated keys. This is important for designated-verifier

174 H. Shacham and B. Waters

signatures, the main proposed application for two-user ring signatures, since
there is no reason that Alice will only wish to designate as verifiers users whose
keys she trusts to have been properly generated.

6 Our Ring Signature Construction

In this section, we describe our ring signature scheme. As noted in the introduc-
tion, in our ring signature all the users’ keys must be defined in a group G of
composite order. That group must be set up by a trusted authority, since the
factorization of its order n must be kept secret. In addition to setting up the
group G, the setup authority must also set up some additional parameters, using
a global setup algorithm we now describe.

Global Setup. The trusted ring signing setup algorithm first constructs a group G
of composite order n = pq as described in Sect. 2 above. It then chooses expo-
nents a, b0

R← Zn and sets

A ← ga and B0 ← gb0 and Â ← ha .

Let H : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. The setup
algorithm picks Waters hash generators

u′, u1, u2, . . . , uk
R← G .

The published common reference string includes a description of the group G
and of the collision-resistant hash H , along with (A, B0, Â) and (u′, u1, . . . , uk).
The factorization of n is not revealed. Note that anyone can use the pairing to
verify that the pair (A, Â) is properly formed.

The Scheme. Individual users now use the public parameters published by the
setup algorithm in generating their keys, signing, and verifying. The algorithms
they use are as follows.

LRS.Kg. Choose a random exponent b
R← Zn; set pk ← gb ∈ G and sk ← Ab ∈

G.
Recall that in the variant of the Water’s signature scheme that we use

a public key is a pair of group elements in G. Here, one of the two group
elements for a user’s key is always the global setup value A. In effect the
user’s public key is like the Water’s public key A, gb. However, all users
share the element A.

LRS.Sig(pk, sk, R, M). The signing algorithm takes as input a message M ∈
{0, 1}∗, a ring R of public keys, and a keypair (pk, sk) ∈ G2. No key may
appear twice in R, and R must include pk.

Compute (m1, . . . , mk) ← H(M, R). Let l = |R|; parse the elements of R
as vi ∈ G, 1 ≤ i ≤ l. Let i∗ be the index such that vi∗ = pk. Define {fi}l

i=1
as

fi =

{
1 if i = i∗,
0 otherwise.

Efficient Ring Signatures Without Random Oracles 175

Now for each i, 1 ≤ i ≤ l, choose a random exponent ti
R← Zn and set

Ci ← (vi/B0)fihti and πi ←
(
(vi/B0)2fi−1hti

)ti
.

As in the papers of Groth, Ostrovsky, and Sahai [16] and Boyen and Wa-
ters [10], the value πi acts as a proof that Ci is well-formed – here, specif-
ically, that fi ∈ {0, 1}. Let C ←

∏l
i=1 Ci and t ←

∑l
i=1 ti. Observe that,

when there is exactly one non-zero value amongst {fi}, viz., fi∗ , we have
B0C = (vi∗)(ht), so C serves as an encryption of the user’s public key. (The
role of B0 is discussed below.) Finally, choose r

R← Zn and compute

S1 ← sk ·
(
u′ ∏k

j=1
u

mj

j

)r · Ât and S2 ← gr

The signature is output as σ =
(
(S1, S2), {(Ci, πi)}l

i=1

)
∈ G2l+2.

LRS.Vf(R, M, σ). Compute (m1, . . . , mk) ← H(M, R). Let l = |R|; parse the
elements of R as vi ∈ G, 1 ≤ i ≤ l. Verify that no element is repeated in R
and reject otherwise. Parse the signature σ as

(
(S1, S2), {(Ci, πi)}l

i=1

)
∈

G2l+2. (If this parse fails, reject.) Check first that the proofs {πi} are valid:
for each i, 1 ≤ i ≤ l, that

e
(
Ci, Ci/(vi/B0)

) ?= e(h, πi) (3)

holds. If any of the proofs is invalid, reject. Otherwise, set C ←
∏l

i=1 Ci.
Accept if the following equation is satisfied:

e(A, B0C) ?= e(S1, g) · e
(
S−1

2 , u′ ∏k

j=1
u

mj

j

)
. (4)

Discussion. As outlined in the introduction, in our ring signature scheme we
wish to prove that the value C which is computed by multiplying all Ci values
together contains an encryption of exactly one key from the ring. This can be
done by both using GOS proofs to show that each Ci is either an encryption of
the proper public key or the identity element and that exactly one of these is
not the identity element. (If every Ci were an encryption of the identity element
everywhere, the public key encrypted in C would be the identity element and
trivial for the adversary to forge under.)

Instead of directly proving this, which would require larger – though still
O(l)-sized3 – proofs, we have the user prove that each Ci is an encryption of
the identity element or the i-th public key in the ring times some group element
B0 given by the setup algorithm. Thus, C will be an encryption of a public key
times B0. Now a signer will instead prove that the signature verifies under the
encrypted key divided by B0, which is the signers original public key.. In this
way if a forger attempts to forge by letting all Ci be encryptions of the identity
element, he will need to forge under the public key B0.
3 A possible circuit is as follows. Let {fi} be the indicator variables. Let c1

0 = c2
0 = 0,

and for i ≥ 1 compute c1
i and c2

i as c1
i ← c1

i−1 ∨fi and c2
i ← c2

i−1 ∨(fi ∧c1
i−1). Finally,

prove that c1
l = 1 and c2

l = 0.

176 H. Shacham and B. Waters

7 Security

We now prove that our ring signature scheme is anonymous against full key
exposure and unforgeable with respect to insider corruption.

7.1 Anonymity

The anonymity proof closely follows that given by Boyen and Waters for their
group signature [10].

Theorem 1. Our ring signature scheme is anonymous against full key exposure
if SGH is hard.

Proof. The proof proceeds in games. We define Games 0 and 1 as follows. In
Game 0, h is chosen uniformly from Gq; in Game 1, h is chosen uniformly
from G.

Games 0 and 1. Algorithm B is given: the group order n (but not its factor-
ization); the description of the group G, together with generators g of G and
h; in Game 0, h is chosen from Gq; in Game 1, h is chosen from all of G. Al-
gorithm B chooses a collision resistant hash function H : {0, 1}∗ → {0, 1}k. It
follows the setup algorithm above to obtain system parameters (A, B0, Â) and
(u′, u1, . . . , uk). Algorithm B then runs Kg l times to obtain public-private key-
pairs {(pki, ski)}l

i=1, recording in addition the randomnesses {bi} used in each
run.

Algorithm B runs A, providing to it the following: the description of the
group G, including its order n and the generators g and h; the common pa-
rameters (A, B0, Â) and (u′, u1, . . . , uk), along with the description of the hash
function H ; and the challenge public keys {pki}l

i=1. When A makes a signing
query of the form (s, R, M), A responds with σ = Sig(pks, sks, R, M). Finally,
A requests a challenge with the values (i0, i1, R, M). Algorithm B chooses a bit
b

R← {0, 1}, computes the challenge signature σ ← Sig(pkib
, skib

, R, M), and pro-
vides A with σ. In addition, the challenger provides A with the random coins {bi}
used to generate the private keys. Algorithm A finally outputs its guess b′ for b;
B outputs 1 if b = b′, 0 otherwise.

Discussion. Denote by Advgame-0
B the advantage B has over 1/2 in Game 0, and

by Advgame-1
B the advantage over 1/2 it has in Game 1. Clearly, we have

Advgame-0
B = Advrsig-anon-ke

LRS,A , (5)

since in Game 0 A’s environment is exactly as specified in the anonymity game.
Moreover, suppose that Bś output were different in the two games. Then we
could use B, with A as a subroutine, to solve SGH: given generators (g, h) to
test, we provide them to B and output 1 if B does. This gives a new algorithm C
for which we have

Efficient Ring Signatures Without Random Oracles 177

Advsgh
C =

∣∣
∣Pr

[
B = 1 | h

R← Gp

]
− Pr

[
B = 1 | h

R← G
]∣∣
∣

=
1
2

∣
∣
∣
(
2 Pr

[
B = 1 | h

R← Gp

]
− 1

)
−

(
2 Pr

[
B = 1 | h

R← G
]
− 1

)∣∣
∣

=
1
2

∣
∣Advgame-0

B − Advgame-1
B

∣
∣ . (6)

But now, we argue that Advgame-1
B = 0, even if A is computationally unbounded.

Consider the distinguishing challenge
(
(S1, S2), {(Ci, πi)}l′

i=1
)

∈ G2l′+2. For
each i, we have Ci = (vi/B0)fihti with fi ∈ {0, 1} and ti ∈ Zn. But when
h is a generator of G there exist τi0, τi1 ∈ Zn such that Ci = (vi/B0)hτi1 = hτi0

and, moreover, denoting by (πi | fi = b) the value which πi is assigned if fi is
set to b ∈ {0, 1}, we have

(πi | fi = 1) = ((vi/B0)1hτi1)τi1 = (hτi0)τi1 = (hτi1)τi0

= ((vi/B0)−1hτi0)τi0 = (πi | fi = 0) ,

so for each i the pair (Ci, πi) is consistent with either fi = 0 or fi = 1, and A
can gain no information from this part of the signature. The value S2 = gr is
unrelated to the choice of signer. Thus if A can gain information, it is only from
S1. But, having fixed S2 and {(Ci, πi)}, S1 is the unique value satisfying (4).
Specifically, letting A = ga, S2 = gr, and C/B0 = gc (all of which a computa-
tionally unbounded adversary can calculate), we have S1 = gac ·

(
u′ ∏k

j=1 u
mj

j

)r.
Thus this value gives no information about whether ski0 or ski1 was used to
generate the challenge signature, and A can do no better than guess b. This
establishes

Advgame-1
B = 0 (7)

Putting equations (5), (6), and (7) together, we see that

Advrsig-anon-ke
LRS,A ≤ 2Advsgh

C .

To interpret this result concretely, we note that the algorithm B used in the re-
duction took O(1) operations to set up and obtain the result, and O(1) time to
answer each of A’s queries. To interpret it asymptotically, we introduce the secu-
rity parameter that we have suppressed, note that the reduction is polynomial-
time in that parameter, and observe that if Advrsig-anon-ke

LRS,A is non-negligible, then
so is Advsgh

C . Either interpretation implies the result stated informally in the
theorem.

7.2 Unforgeability

We show that our ring signature scheme is unforgeable. We present a proof sketch
here, with the proof relegated to the full version of the paper [20].

Theorem 2. Our ring signature scheme is unforgeable with respect to insider
corruption if H is collision resistant and CDH is hard in Gp.

178 H. Shacham and B. Waters

Proof (sketch). The algorithm that makes the reduction is given the factoriza-
tion of n. Using this and standard Chinese Remaindering techniques, it can
decompose an element of G into its Gp and Gq constituents. This allows it to
undo BGN blinding with ht terms, and to recover from a signature the values
fi used in generating it. Each of these must be in the set {0, 1} by the perfect
soundness of GOS proofs.

First, we ensure that any forgery (M∗, R∗) is such that H(M∗, R∗) is not
equal to H(M, R) for any previous signing query (M, R) made by the adversary.
This is easy: an adversary for which this is not true would break the collision
resistance of H .

Having disposed of this possibility, we distinguish between two types of ad-
versaries. Consider the values {fi} that we recover from the forgery. For the first
type of adversary, the number of i’s such that fi = 0 is either 0 or more than 1.
For the second type, exactly one fi equals 1.

For the first type of adversary, we note that each Ci such that fi = 1 con-
tributes a (vi/B0) term to the encrypted Waters key C =

∏
Ci. Thus the Waters

key under which the encrypted signature (S1, S2) is verified, B0C, will include
a B1−f

0 term, where f =
∑

fi
= 1 for this type of adversary. Thus if we em-
bed a CDH challenge in A and B0, but construct the Waters hash generators
(u′, u1, . . . , uk) and user keys {vi} so that we know their discrete logarithms,
we will obtain from the forgery values (S1, S2) such that e(A, B1−f

0 · ηr) =
e(S1, η) · e

(
S−1

2 , ηx), where r and x are numbers we compute. From this we eas-
ily obtain the CDH solution. (Because we must project into Gp to recover the
fi’s, we obtain a CDH solution in Gp rather than G, which is why the generator
η of Gp has replaced g in the verification equation above.)

For the second type of adversary, we obtain a Waters signature forgery. Given
the challenge Waters public key (η1, η2), which again is in Gp, and the Waters
hash generators (û′, û1, . . . , ûk), we place η1 in A, adding a random Gq com-
ponent so that A spans G, and pick B0 arbitrarily. We similarly extend the
challenge waters hash generators to G. We pick all the user keys arbitrarily ex-
cept one, which we instantiate using η2, properly extended to G. Now we can
handle corruption queries for every user except the special one. Signing queries
we can answer directly for the normal users, and can answer for the special user
using our Waters signing oracle. This oracle returns a signature (Ŝ1, Ŝ2) ∈ G2

p;
extending this to a properly-blinded signature in G takes a bit of work, but isn’t
terribly difficult. The index of the special user is kept hidden from the adversary,
so with probability 1/l he doesn’t make a corruption query for that user but then
does make his forgery for that user. (Recall that this type of adversary always
has exactly one user for which fi = 1.) We convert the adversary’s forgery to a
Waters signature forgery in Gp. Because H(M∗, R∗) is different for this forgery
than for previous signing queries, the forgery is nontrivial.

Thus we obtain from a ring signature forging adversary a break of either
the collision resistance of H or the CDH hardness of Gp or (with a 1/l loss of
advantage) to the unforgeability of the Waters signature in Gp. However, the

Efficient Ring Signatures Without Random Oracles 179

Waters signature in Gp is unforgeable if CDH is hard in Gp, and the theorem
statement follows.

8 Conclusions and Open Problems

We presented the first efficient ring signatures that are provably secure without
random oracles under standard assumptions. Signatures in our scheme are of
size 2l + 2 group elements for l members in a ring. We showed our signatures to
be secure for the strongest definitions of security. Two interesting open problems
remain: to obtain a ring signature secure without random oracles where (1) user
keys need not be generated in a particular shared group; or (2) signature length
is independent of the number of signers implicated in the ring.

References

[1] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Y. Zheng, editor, Proceedings of Asiacrypt 2002, volume 2501 of LNCS, pages
415–32. Springer-Verlag, Dec. 2002.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and
V. Ashby, editors, Proceedings of CCS 1993, pages 62–73. ACM Press, Nov. 1993.

[3] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions,
and constructions without random oracles. Cryptology ePrint Archive, Report
2005/304, 2005. http://eprint.iacr.org/.

[4] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In S. Halevi and T. Rabin, editors, Pro-
ceedings of TCC 2006, volume 3876 of LNCS, pages 60–79. Springer-Verlag, Mar.
2006.

[5] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption
without random oracles. In C. Cachin and J. Camenisch, editors, Proceedings of
Eurocrypt 2004, volume 3027 of LNCS, pages 223–38. Springer-Verlag, May 2004.

[6] D. Boneh and X. Boyen. Secure identity based encryption without random oracles.
In M. Franklin, editor, Proceedings of Crypto 2004, volume 3152 of LNCS, pages
443–59. Springer-Verlag, Aug. 2004.

[7] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. J. ACM,
48(4):702–22, July 2001.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, Proceedings of Euro-
crypt 2003, volume 2656 of LNCS, pages 416–32. Springer-Verlag, May 2003.

[9] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In J. Kilian, editor, Proceedings of TCC 2005, number 3378 in LNCS, pages 325–
41. Springer-Verlag, Feb. 2005.

[10] X. Boyen and B. Waters. Compact group signatures without random oracles. In
S. Vaudenay, editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS, pages
427–44. Springer-Verlag, May 2006.

[11] E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications
to ad-hoc groups. In M. Yung, editor, Proceedings of Crypto 2002, volume 2442
of LNCS, pages 465–80. Springer-Verlag, Aug. 2002.

http://eprint.iacr.org/

180 H. Shacham and B. Waters

[12] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, Proceedings of Crypto 2004, volume
3152 of LNCS, pages 56–72. Springer-Verlag, Aug. 2004.

[13] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Pro-
ceedings of Eurocrypt 1991, volume 547 of LNCS, pages 257–65. Springer-Verlag,
Apr. 1991.

[14] S. Chow, J. Liu, V. Wei, and T. H. Yuen. Ring signatures without random oracles.
In S. Shieh and S. Jajodia, editors, Proceedings of ASIACCS 2006, pages 297–302.
ACM Press, Mar. 2006.

[15] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad hoc groups. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt
2004, volume 3027 of LNCS, pages 609–26. Springer-Verlag, May 2004.

[16] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for
NP. In S. Vaudenay, editor, Proceedings of Eurocrypt 2006, volume 4004 of LNCS,
pages 339–58. Springer-Verlag, May 2006.

[17] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In T. Jo-
hansson and S. Maitra, editors, Proceedings of Indocrypt 2003, volume 2904 of
LNCS, pages 266–79. Springer-Verlag, Dec. 2003.

[18] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor,
Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 552–65. Springer-
Verlag, Dec. 2001.

[19] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret: Theory and applica-
tions of ring signatures. In O. Goldreich, A. Rosenberg, and A. Selman, editors,
Essays in Theoretical Computer Science: in Memory of Shimon Even, volume
3895 of LNCS Festschrift, pages 164–86. Springer-Verlag, 2006.

[20] H. Shacham and B. Waters. Efficient ring signatures without random oracles.
Cryptology ePrint Archive, Report 2006/289, 2006. http://eprint.iacr.org/.

[21] B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
114–27. Springer-Verlag, May 2005.

[22] J. Xu, Z. Zhang, and D. Feng. A ring signature scheme using bilinear pairings.
In C. H. Lim and M. Yung, editors, Proceedings of WISA 2004, volume 3325 of
LNCS, pages 160–9. Springer-Verlag, Aug. 2004.

http://eprint.iacr.org/

	Introduction
	Mathematical Setting
	Complexity Assumptions

	Underlying Signature
	Ring Signature Definitions
	On Bender, Katz, and Morselli's Two-User Ring Signatures
	Our Ring Signature Construction
	Security
	Anonymity
	Unforgeability

	Conclusions and Open Problems

