
Full-Domain Subgroup Hiding and
Constant-Size Group Signatures

Xavier Boyen1 and Brent Waters2,�

1 Voltage Inc., Palo Alto
xb@boyen.org

2 SRI International
bwaters@csl.sri.com

Abstract. We give a short constant-size group signature scheme, which
we prove fully secure under reasonable assumptions in bilinear groups, in
the standard model. We achieve this result by using a new NIZK proof
technique, related to the BGN cryptosystem and the GOS proof system,
but that allows us to hide integers from the full domain rather than
individual bits.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [19], allow any mem-
ber of a certain group to sign a message on behalf of the group, but the signer
remains anonymous within the group. However, in certain extenuating circum-
stances an authority will have the ability to revoke the anonymity of a signer
and trace the signature. One of the primary motivating use scenarios of group
signatures is in anonymous attestation, which has practical applications such
as in building Trusted Platform Modules (TPMs). Group signatures have also
attracted much attention in the research community where several constructions
have been proposed [1,2,3,5,6,9,12,13,14,15,16,25,27,29].

The most efficient group signature constructions given only have a proof of
security in the random oracles model and either are based on the Strong-RSA
assumption in Zn [2,3,16] or use bilinear groups [9,11,17]. Solutions in the stan-
dard model can be derived from general assumptions as first shown by Bellare
et. al. [5].

Recently, two efficient group signature schemes were respectively proposed
both by Boyen and Waters [13] and Ateniese et al. [1] that did not use random
oracles. The two solutions took different approaches and have different features.

The Boyen-Waters construction used a two-level hierarchical signature, where
the first level corresponds to the signer’s identity and the second level is the
message to be signed. The scheme hides the actual identity in the first level by
using bilinear groups of composite order and applying a mechanism from the
recent Non-Interactive Zero-Knowledge (NIZK) result of Groth, Ostrovsky, and
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Sahai [23]. The two drawbacks of the Boyen-Waters result are that the number
of group elements in the signature are logarithmic in the number of signers in the
group and that the anonymity property is only secure against chosen-plaintext
attacks, as opposed to chosen-ciphertext attacks. The need for a logarithmic
number of group elements results from the fact that a signer must prove that
the blinded first level identity was computed correctly. The authors needed to
use the model for CPA attacks because the tracing authority used the knowledge
of the factorization of the order to trace members.

The Ateniese et. al. scheme works in asymmetric bilinear groups. Their scheme
has signatures with a constant number of group elements and has chosen-
ciphertext security. However, its proofs of security rely on interactive assump-
tions where the adversary has access to an oracle; therefore, these assumptions
are inherently non-falsifiable [28]. In addition, the scheme has the drawback
that if a user’s private key is compromised then it can be used to revoke the
anonymity of that user’s past signatures. Although, it should be pointed out
that some schemes have used this property as an advantage in Verifier-Local
Group signatures [11].

Groth [21] also gave a recent group signature scheme that was proven CCA-
secure in the standard model under the decisional Linear assumption [9]. Signa-
tures in his scheme technically consist of a constant number of group elements,
however, as noted by the author the constant is too large for real systems and in
practice his constant will be much more than lg(n) for any reasonable number
of n signers. The result does though, give a feasibility result under a relatively
mild assumption.

In this paper we give a new construction of a group signature scheme that ad-
dresses some of the drawbacks of the Boyen-Waters [13] solution. Following their
scheme we use a two-level hierarchical signature as the basis for our signatures,
where the first level specifies the identity. However, we use a new signature on
the first level based off an assumption related to Strong Diffie-Hellman (SDH) [8]
that we call the Hidden Strong Diffie-Hellman, which like SDH and Strong-RSA
has the property that the adversary has flexibility in what he is allowed to return
to the challenger. The signature has the property that if the signer gives a signa-
ture on an arbitrary group element this can be used to break our assumption. We
provide efficient proofs of well-formmess that use techniques beyond those given
in [23], including proofs of encrypted Diffie-Hellman tuples. One disadvantage of
this approach is that it uses a stronger assumption for unforgeability than CDH,
which was used in the Boyen-Waters [13] scheme. However, we emphasize that
this assumption is falsifiable.

2 Preliminaries

We review a number of useful notions from the recent literature on pairing-based
cryptography, which we shall need in later sections. First, we briefly review the
properties that constitute a group signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the
word “group” by default assumes its algebraic meaning, except in contexts such
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as “group signature” and “group manager” where it designates a collection of
users. There should be no ambiguity from context.

2.1 Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

– A group setup algorithm, Setup, that takes as input a security parameter 1λ

(in unary) and the size of the group, 2k, and outputs a public key PK for
verifying signatures, a master key MK for enrolling group members, and a
tracing key TK for identifying signers.

– An enrollment algorithm, Enroll, that takes the master key MK and an
identity ID, and outputs a unique identifier sID and a private signing key KID

which is to be given to the user.
– A signing algorithm, Sign, that takes a group member’s private signing key

KID and a message M , and outputs a signature σ.
– A (usually deterministic) verification algorithm, Verify, that takes a message

M , a signature σ, and a group verification key PK, and outputs either valid
or invalid.

– A (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature σ and a tracing key TK, and outputs an identifier sID or the failure
symbol ⊥.

There are four types of entities one must consider:

– The group master, which sets up the group and issues private keys to the
users. Often, the group master is an ephemeral entity, and the master key
MK is destroyed once the group is set up. Alternatively, techniques from dis-
tributed cryptography can be used to realize the group master functionality
without any real party becoming in possession of the master key.

– The group manager, which is given the ability to identify signers using the
tracing key TK, but not to enroll users or create new signing keys.

– Regular member users, or signers, which are each given a distinct private
signing key KID.

– Outsiders, or verifiers, who can only verify signatures using the public key
PK.

We require the following correctness and security properties.
Consistency. The consistency requirements are such that, whenever, (for a group
of 2k users)

(PK, MK, TK) ← Setup(1λ, 2k),

(sID, KID) ← Enroll(MK, ID), σ ← Sign(KID, M),

we have, (except with negligible probability over the random bits used in Verify
and Trace)

Verify(M, σ, PK) = valid, and Trace(σ, TK) = sID.

The unique identifier sID can be used to assist in determining the user ID from
the transcript of the Enroll algorithm; sID may but need not be disclosed to the
user; it may be the same as ID.
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Security. Bellare, Micciancio, and Warinschi [5] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are:

Full Anonymity which requires that no PPT adversary be able to decide (with
non-negligible probability over one half) whether a challenge signature σ on
a message M emanates from user ID1 or ID2, where ID1, ID2, and M are
chosen by the adversary. In the original definition of [5], the adversary is given
access to a tracing oracle, which it may query before and after being given
the challenge σ, much in the fashion of IND-CCA2 security for encryption.

Boneh, Boyen, and Shacham [9] relax this definition by withholding access
to the tracing oracle, thus mirroring the notion of IND-CPA security for
encryption. We follow [9] and speak of CCA2-full anonymity and CPA-full
anonymity for the respective notions.

Full Traceability which requires that no coalition of users be able to generate,
in polynomial time, a signature that passes the Verify algorithm but fails to
trace to a member of the coalition under the Trace algorithm. According to
this notion, the adversary is allowed to ask for the private keys of any user
of its choice, adaptively, and is also given the secret key TK to be used for
tracing—but of course not the enrollment master key MK.

It is noted in [5] that this property implies that of exculpability [4], which
is the requirement that no party should be able to frame a honest group
member as the signer of a signature he did not make, not even the group
manager. However, the model of [5] does not consider the possibility of a
(long-lived) group master, which leaves it as a potential framer. To address
this problem and achieve the notion of strong exculpability, introduced in [2]
and formalized in [26,6], one would need an interactive enrollment protocol,
call Join, at the end of which only the user himself knows his full private
key; the same mechanism may also enable concurrent dynamic group enroll-
ment [6,27].

We refer the reader mainly to [5] for more precise definitions of these and related
notions.

2.2 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an empha-
sis on groups of composite order which will be used in most of our constructions.
We follow [10] in which composite order bilinear groups were first introduced in
cryptography.

Consider two finite cyclic groups G and GT having the same order n, in
which the respective group operation is efficiently computable and denoted
multiplicatively. Assume that there exists an efficiently computable function
e : G × G → GT , called a bilinear map or pairing, with the following properties:

– (Bilinearity) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product
in the exponent is defined modulo n;
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– (Non-degeneracy) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

If such a bilinear map can be computed efficiently, the group G is called a
bilinear group. We remark that the vast majority of cryptosystems based on
pairings assume for simplicity that bilinear groups have prime order. In our
case, it is important that the pairing be defined over a group G containing
|G| = n elements, where n = pq has a (ostensibly hidden) factorization in two
large primes, p �= q.

2.3 Complexity Assumptions

We make use of a few complexity assumptions: computational Diffie-Hellman
(CDH) in the prime-order bilinear subgroup Gp, Subgroup Decision in the group
G of composite order n = pq, and a new assumption in Gp related to Strong
Diffie-Hellman (SDH) that we call HSDH.

CDH in Bilinear Groups. The CDH assumption states that there is no proba-
bilistic polynomial time (PPT) algorithm that, given a triple (g, ga, gb) ∈ G3

p for
random exponents a, b ∈ Zp, computes gab ∈ Gp with non-negligible probability.
Because of the pairing, CDH in Gp implies a “Gap DH” assumption [24] and
should not be confused with the vanilla CDH assumption in usual non-pairing
groups. It is also subsumed by the HSDH assumption we describe later.

The Subgroup Decision Assumption. Our second tool is the Subgroup Decision
assumption introduced in [10]. It combines features of bilinear pairings with the
hardness of factoring, which is the reason for working with bilinear groups of
composite order.

Informally, the Subgroup Decision assumption posits that for a bilinear group
G of composite order n = pq, the uniform distribution on G is computationally
indistinguishable from the uniform distribution on a subgroup of G (say, Gq, the
subgroup of order q). The precise definition is based on the subgroup decision
problem, which we now define.

Consider an “instance generator” algorithm GG that, on input a security pa-
rameter 1λ, outputs a tuple (p, q, G, GT , e), in which p and q are independent
uniform random λ-bit primes, G and GT are cyclic groups of order n = pq with
efficiently computable group operations (over their respective elements, which
must have a polynomial size representation in λ), and e : G × G → GT is a
bilinear map. Let Gq ⊂ G denote the subgroup of G of order q. The subgroup
decision problem is:

On input a tuple (n = pq, G, GT , e) derived from a random execution of
GG(1λ), and an element w selected at random either from G or from Gq,
decide whether w ∈ Gq.

The advantage of an algorithm A solving the subgroup decision problem is de-
fined as A’s excess probability, beyond 1

2 , of outputting the correct solution. The
probability is defined over the random choice of instance and the random bits
used by A.



6 X. Boyen and B. Waters

The HSDH Assumption. Last, we need to introduce a new assumption we call
Hidden SDH by analogy to the SDH assumption [8] from which it descends. We
present it in the next section.

3 The Hidden Strong Diffie-Hellman Assumption

We introduce a new assumption in the prime-order bilinear group Gp. It is a
variant of the Strong Diffie-Hellman (SDH) assumption proposed in [8]. It is
slightly stronger, but retains the attributes of the original assumption of being
non-interactive, falsifiable, and provably true in the generic bilinear group model.

The Strong Diffie-Hellman assumption in bilinear groups states that there is
no probabilistic polynomial time (PPT) adversary that, given a (� + 1)-tuple
(g, gω, gω2

, . . . , gω�

) ∈ G�+1
p for a random exponent ω ∈ Z

∗
p, outputs a pair

(c, g1/(ω+c)) ∈ Z
∗
p × Gp with non-negligible probability. (The parameter � is

defined externally.) What makes the SDH assumption useful is that it implies
the hardness of the following problem:

On input two generators g, gω ∈ Gp, and �−1 distinct pairs (ci, g
1/(ω+ci))

∈ Z
∗
p × Gp, output an additional pair (c, g1/(ω+c)) ∈ Z

∗
p × Gp such that

c �= ci for all i = 1, . . . , � − 1.

This argument was used by Boneh and Boyen [8] as the basis of their secure signa-
ture constructions. In particular, Boneh and Boyen’s primordial “weakly secure
signature” on a message c is nothing more than the group element g1/(ω+c).
Much of their paper is concerned with securing these signatures against adaptive
chosen message attacks, but for our purposes this is unnecessary.

However, an inherent trait of the general notion of signature is that verification
requires knowledge of the message. Since in our group signature the first-level
“message” is the identity of the user, we would like to keep it as hidden as
possible, since at the end of the day we need to blind it. To facilitate this task,
we build a modified version of the Boneh-Boyen “weak signature” above that
does not require knowledge of c in order to verify. It is based on the Hidden
SDH assumption, a straightforward extension to the SDH assumption where the
“message” c is not given in the clear.

The Hidden Strong Diffie-Hellman Problem. We first define the �-HSDH problem
as follows:

On input three generators g, h, gω ∈ Gp, and � − 1 distinct triples
(g1/(ω+ci), gci, hci) ∈ G3

p where ci ∈ Zp, output another such triple
(g1/(ω+c), gc, hc) ∈ G3

p distinct of all the others.

Observe that the well-formedness of a triple (A, B, C) = (g1/(ω+c), gc, hc)
can be ascertained without knowing c by verifying that e(A, gωB) = e(g, g)
and that e(B, h) = e(C, g). In these verifications, the Diffie-Hellman relationship



Full-Domain Subgroup Hiding and Constant-Size Group Signatures 7

(g, h, gc, hc) serves as a discrete-log NIZK proof of knowledge of c. Notice that
contrary to the SDH problem statement [8], here we allow c or some ci to be
zero.

We define the advantage of an HSDH adversary A as its probability of out-
putting a valid triple. The probability is taken over the random choice of instance
and the random bits used by A.

Definition 1. We say that the �-HSDH assumption holds in a family of prime
order bilinear groups generated by GG, if there is no PPT algorithm that,
for sufficiently large λ ∈ N, solves the HSDH problem in the bilinear group
(p, Gp, e) ← GG(1λ) with non-negligible probability. Here, � may be either an
explicit parameter to the assumption, or some polynomially bounded function of
the security parameter λ.

It is easy to see that for any � ≥ 1, hardness of the �-HSDH problem implies
hardness of the �-SDH problem in the same group, which itself requires the CDH
problem to be hard in that group. To bolster our confidence in the new com-
plexity assumption, we can prove an Ω(

√
p/�) lower bound on the complexity

of solving the HSDH problem in generic bilinear groups, provided that � < 3
√

p.
Notice that HSDH does not rely on the composite order n, so the generic group
model can apply. The proof will appear in the full paper.

4 Anonymous Hierarchical Signatures

As our first step toward short group signatures, we build a hierarchical signature
with the signer identity at the first level and the message being signed at the
second level, such that the whole signature can be verified without revealing the
identity.

In a hierarchical signature, a message is a tuple comprising several atomic
message components. The crucial property is that a signature on a message
(m1, . . . , mi), also acts as a restricted private key that enables the signing of any
message extension (m1, . . . , mi, . . . , mj) of which the original message is a prefix.
In some schemes, the hierarchy has a maximum depth d, in which case we must
have i ≤ j ≤ d. Here, we shall only consider 2-level hierarchical signatures, in
which the first level is concerned with user identities, and the second level with
messages proper. Notice that 2-level hierarchical signatures and identity-based
signatures are equivalent notions: the identity-based key is just a fancy name for
a signature on a first-level atomic component.

We use the HSDH assumption to construct a short two-level hierarchical sig-
nature that can be verified without knowing the user identity at the first level.
Our construction makes a hybrid of two schemes, one at each level.

First Level. At the first level, we devise a variant of the “primary” determinis-
tic Boneh-Boyen signatures from [8, §3.2]. Recall that Boneh-Boyen signatures
are constructed in two stages, beginning with a primary “weak” deterministic
signature, which is subsequently hardened with a sprinkle of randomness. The
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primary signature is weaker for the reason that in the forgery game, the oppo-
nent must submit all the signing queries up front, rather than adaptively as in
the full Boneh-Boyen signature.

In the context of group signatures, this up-front attack model is perfectly ad-
equate for signatures on user identities, since, in group signatures, user identities
are not subject to adaptive attacks. Indeed, since there are only polynomially
users in a group, their identities can be assigned from a polynomially sized set
of integers. Furthermore, these unique identifiers can all be selected in advance
by the group manager, and assigned to the users as they enroll in the system.

We shall make one modification to the primary Boneh-Boyen signatures. The
modification will allow them to be verifiable without knowledge of the user iden-
tity. This is where our new HSDH assumption will come into play.

Second Level. At the second level, where the actual messages are signed, we can
work with any secure signature scheme that can be meshed into an upward hi-
erarchy. Hierarchical identity-based encryption schemes with “adaptive-identity
security” make good candidates, since we can turn them into signatures schemes
that are existentially unforgeable against adaptive chosen message attacks. We
shall use a signature based on Waters’ IBE scheme [30] for this purpose.

4.1 Hybrid Scheme

Let thus λ be the security parameter. User identities will be modeled as integers
taken from a (non-public) polynomially sized random set {s1, . . . , s2k} ⊂ Zp

where k = O(log(λ)). For convenience, we use sequential identifiers ID =
1, . . . , 2k to index the hidden identities sID, which are kept secret. Messages
will be taken as binary strings of fixed length m = O(λ). In the description that
follows, g is a generator of the prime order subgroup Gp; therefore all group
elements in the basic hierarchical signature scheme will have prime order p in G
and GT .

Setup(1λ): To setup the system, first, secret integers α, ω ∈ Zp are chosen
at random, from which the values Ω = gω and A = e(g, g)α are calculated.
Next, two integers y, z′ ∈ Zp and a vector z = (z1, . . . , zm) ∈ Z

m
p are selected

at random. The public parameters and master key are

PP =
(

g, Ω = gω, u = gy, v′ = gz′
, v1 = gz1 , . . . , vm = gzm , A = e(g, g)α

)

∈ Gm+5 × GT

MK =
(

ω, gα, s1 , . . . , s2k

)
∈ Zp × G × Z

2k

p

The public parameters, PP, also implicitly include k, m, and a description
of (p, G, GT , e). The master key, MK, is assumed to contain the secret list of
user identities, {s1, . . . , s2k} ⊂ Zp.

Extract(PP, MK, ID): To create a private key for the identity sID associated with
the user of index 1 ≤ ID ≤ 2k, return

KID =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3
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Sign(PP, KID, M): To sign a message represented as a bit string M = (μ1 . . . μm)
∈ {0, 1}m, using a private key KID = (K1, K2, K3) ∈ G3, select a random
s ∈ Zp, and output

S =
(

K1, K2, K3 ·
(
v′

m∏

j=1

v
μj

j

)s
, g−s

)
∈ G4

Verify(PP, M, σ): To verify that a signature S = (S1, S2, S3, S4) ∈ G4 is valid
for a message M = (μ1 . . . μm) ∈ {0, 1}m, check whether

e
(

S1 , S2 Ω
) ?= A and e

(
S2 , u

) ?= e
(

S3 , g
)

· e
(

S4 , v′
m∏

j=1

v
μj

j

)

It the equality holds, output valid; otherwise, output invalid.
Notice that in this case we did not verify the signer’s identity, ID, only

the message, M . However, signatures remain linkable because S2 and S3 are
invariant for the same user.

4.2 Existential Unforgeability

The hybrid scheme is existentially unforgeable against adaptive chosen message
attacks, and is anonymous at the first level. We shall now state and prove the
unforgeability property, which will be needed later on when building group sig-
natures.

Theorem 1. Consider an adversary A that existentially forges the hybrid two-
level signature scheme in an adaptive chosen message attack. Assume that A
makes no more that �−1  p signature queries and produces a successful forgery
with probability ε in time t. Then there exists an algorithm B that solves the �-
HSDH problem with probability ε̃ ≈ ε/(4m�2) in time t̃ ≈ t.

The proof of this theorem uses a two-prong strategy, one for each level. At the
first level, we give a reduction based on the �-HSDH assumption, where � = 2k

is the number of secret user identities in the master key list (or the number that
we have actually used). At the second level, we construct a reduction from the
CDH assumption in the bilinear group Gp, but since CDH is implied by HSDH,
we get a single reduction from HSDH for both levels at once. All reductions are
in the standard model.

Proof. The proof may be found in the full paper.

5 Constant-Size Group Signatures

We now describe the actual group signature scheme, based on the hierarchical
signature scheme above. It is obtained from by obfuscating the user identity, and
replacing it by a NIZK proof of it being well formed. We also need to incorporate
a tracing mechanism, which is achieved by using a trapdoor into the NIZK proof.
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5.1 Related Schemes

The group signature we describe invites comparison with two earlier schemes that
also feature compact signatures and provable security without random oracles.
One of the earlier schemes is due to Boyen and Waters [12,13], the other to
Ateniese et al. [1].

The key difference with the earlier Boyen-Waters group signature scheme
[12,13], is that the earlier scheme relied on an all-purpose bit hiding technique due
to Groth, Ostrovsky, and Sahai [23] to conceal the user identity. Unfortunately,
each bit had to supply its own NIZK proof in the final signature, which resulted
in a logarithmic-size group signature. The present scheme manages to give a sin-
gle short proof for the entire identity at once. This makes the resulting signature
much shorter, comprising only a small, constant number of group elements.

One of the main differences with the Ateniese et al. [1] scheme, is that the
latter relied on very strong, interactive complexity assumptions in order to im-
plement the corresponding NIZK proofs. The present scheme is simpler, and
arguably rests on firmer ground.

5.2 Core Construction

The group signature scheme is described by the following algorithms.

Setup(1λ): The input is a security parameter in unary, 1λ. Suppose we wish to
support up to 2k signers in the group, and sign messages in {0, 1}m, where
k = O(λ) and m = O(λ).

The setup algorithm first chooses n = pq where p and q are random
primes of bit size �log2 p�, �log2 q� = Θ(λ) > k. From this, it builds a cyclic
bilinear group G of order n. Denote by Gp and Gq the cyclic subgroups of
G of respective order p and q. The algorithm also selects a generator g of G
and a generator h of Gq. Next, the algorithm picks two random exponents
α, ω ∈ Zn, and defines A = e(g, g)α ∈ GT and Ω = gω ∈ G. Finally, it draws
m + 2 random generators, u, v′, v1, . . . , vm ∈ G.

The public information consists of the bilinear group, (n, G, GT , e), and
the public values,

PP =
(

g, h, u, v′, v1, . . . , vm, Ω = gω, A = e(g, g)α
)

∈ G × Gq × Gm+3 × GT

The master enrollment key, MK, and the group manager’s tracing key, TK,
are, respectively,

MK =
(

gα, ω
)

∈ G × Zn TK = q ∈ Z

Enroll(PP, MK, ID): Suppose we wish to create a signing key for user ID, where
0 ≤ ID < 2k < p. Upon enrollment in the group, the user is assigned a secret
unique value sID ∈ Zn, to be later used for tracing purposes. This value
must be chosen so that ω + sID lies in Z

×
n , the multiplicative group modulo
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n. Based on the hidden identity sID, the signing key to be given to the user
is constructed as,

KID = (K1, K2, K3) =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3

Here, K1 is essentially a deterministic Boneh-Boyen signature on sID, which
is not disclosed. Rather, K2 and K3 provide a NIZK proof of knowledge of
sID by the issuing authority. There is also a supplemental constant exponent
α that will matter at the second level. The newly enrolled user may verify
that the key is well formed by checking that (cfr. Section 4),

e(K1, K2 Ω) ?= A and e(K2, u) ?= e(K3, g).

Sign(PP, ID, KID, M): To sign a message M = (μ1 . . . μm) ∈ {0, 1}m, a user with
a signing key KID proceeds as follows.

First, KID is used to create a two-level hybrid signature with the message
M at the second level. To do so, the user chooses a random s ∈ Zn and
computes the (randomized but unblinded) hybrid signature,

θ = (θ1, θ2, θ3, θ4) =

(

K1, K2, K3 ·
(
v′

m∏

i=1

vμi

i

)s

, g−s

)

Notice that this initial signature satisfies the regular verification equations:
e(θ1, θ2 Ω) = A, and e(θ2, u) = e(θ3, g) · e(θ4, v

′ ∏m
i=1 vμi

i ).
Next, θ must be turned into a blinded signature that is both verifiable and

traceable, but remains unlinkable and anonymous to anyone who lacks the
tracing key. To proceed, the signer picks four random exponents t1, t2, t3, t4 ∈
Zn and sets,

σ1 = θ1 · ht1 , σ2 = θ2 · ht2 , σ3 = θ3 · ht3 , σ4 = θ4 · ht4 .

Additionally, it computes the two group elements,

π1 = ht1t2 · (θ1)t2 ·
(
θ2 Ω

)t1
, π2 = ut2 · g−t3 ·

(
v′

m∏

i=1

vμi

i

)t4
.

The final signature is output as:

σ =
(
σ1, σ2, σ3, σ4, π1, π2

)
∈ G6.

Verify(PP, M, σ): To validate a group signature σ on a message M , the verifier
first calculates,

T1 = A−1 · e(σ1, σ2 Ω), T2 = e(σ2, u) · e(σ3, g)−1 · e(σ4, v
′

m∏

i=1

vμi

i )−1.

Then it checks whether,

T1
?= e(h, π1), T2

?= e(h, π2).
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If both equalities hold, the verifier outputs valid; otherwise, it outputs
invalid.

These tests show that (σ1, σ2, σ3, σ4) is a valid 2-level hybrid signature
once the random blinding factors are removed; the extra elements (π1, π2)
serve to convince the verifier that the blinding factors were affixed correctly.

Trace(PP, TK, σ): Let σ = (. . . , σ2, . . .) be a signature assumed to pass the
verification test for some message M , which will not be needed here. To
recover the identity of the signer, the tracing authority first calculates (σ2)q

using the tracing key TK. Then, for each auspicious identity IDi, it tests
whether,

(σ2)q ?= (gsIDi )q.

The tracer outputs the recovered identity, ID = IDi, upon satisfaction of the
above equation.

Remark that tracing can be done in constant time — the time to compute
(σ2)q — with the help of a lookup table of associations (gsIDi )q �→ IDi for all
users in the group. Since the value (gsIDi )q can be calculated once and for all
for each user IDi, for instance upon a user’s initial enrollment, the amortized
cost of tracing is indeed essentially constant.

Next we state the security properties of our constant-size group signature scheme.

5.3 Full Anonymity (Under CPA Attack)

We prove the security of our group signature scheme in the anonymity game
against chosen plaintext attacks. First, we show that an adversary cannot tell
whether h is a random generator of Gq or G. Next, we show that if h is chosen
from G then the identity of a signer is perfectly hidden, in the information
theoretic sense.

Theorem 2. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least εsd. Then for every t′-time adversary A where t′ ≈ t
we have that AdvA < 2 εsd.

Proof. We use a game switching argument where Γ0 is the real group signature
anonymity game, and Γ1 is a game in which the public parameters are the same
as in the original game except that h is chosen randomly from G instead of Gq.
We denote the adversary’s advantage in the original game by AdvA, and in the
modified game by AdvA,Γ1 .

First, in Lemma 1, we show that the two games are essentially indistinguish-
able, unless the Decision Subgroup assumption is easy. Second, in lemma 2, we
use an information-theoretic argument to prove that in the game Γ1 the adver-
sary’s advantage must be zero. The theorem follows from these results.

Lemma 1. For all t′-time adversaries as above, AdvA − AdvA,Γ1 < 2 εsd.



Full-Domain Subgroup Hiding and Constant-Size Group Signatures 13

Lemma 2. For any algorithm A, we have that AdvA,Γ1 = 0.

Proof. The proofs of these two lemmas are given in the full paper.

5.4 Full Traceability

We reduce the full traceability of the group signature scheme to the existential
unforgeability of the underlying hybrid signature construction of Section 4.

Theorem 3. If there is a (t, ε) adversary for the full traceability game against
the group signature scheme, then there exists a (t̃, ε) adaptive chosen message
existential unforgeability adversary against the two-level hybrid signature scheme,
where t ≈ t̃.

Proof. We prove this theorem in the full paper.

6 CCA-Security

In the introduction we stated that the two primary drawbacks of the scheme
of Boyen and Waters [12,13] are that the signature grew logarithmically with
the number of signers and that the scheme was not CCA secure. In this work
we addressed the first limitation (furthermore in a practical way), but left the
second one open. Here we explain some of the challenges in achieving CCA
security while using the subgroup paradigm for proofs.

In both this paper and the Boneh-Waters scheme the authority uses knowl-
edge of the factorization of the group order in order to trace. In order to
achieve CCA security we will clearly need to take a different approach since
all known CCA proof techniques depend upon a simulation knowing partial de-
cryption information (e.g. consider the two key paradigm of Dolev, Dwork and
Naor [20]).

One tempting direction is to provably encrypt (in a simulation sound man-
ner) the identity of the signer in a CCA-secure cryptosystems derived from one
of the recent bilinear map-based IBE systems of Boneh and Boyen [7] com-
bined with the techniques of Canetti, Halevi, and Katz [18]. Then we could
allow the tracer to have the decryption key for this system, but not know the
group’s factorization. However, there is one large problem with this technique.
The subgroup-based NIZK techniques only prove soundness in one subgroup. It
is easy to see that a corrupt signer can provably encrypt his identity and then
randomize the encryption in the other subgroup. Since the decryption authority
will not know the factorization, his view of the identity will be indistinguish-
able from random. Therefore, it seems more complex techniques are necessary
to achieve CCA-security will using subgroup based proofs. This might also be
an argument for basing future group signature schemes on proof systems [22]
derived from the decisional Linear assumption [9].



14 X. Boyen and B. Waters

References

1. Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Proceedings of
Crypto 2000, volume 1880 of Lecture Notes in Computer Science, pages 255–70.
Springer-Verlag, 2000.

3. Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient revocation of
group signatures. In Proceedings of Financial Cryptography 2002, 2002.

4. Giuseppe Ateniese and Gene Tsudik. Some open issues and directions in group
signatures. In Proceedings of Financial Cryptography 1999, volume 1648 of Lecture
Notes in Computer Science, pages 196–211. Springer-Verlag, 1999.

5. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Advances in Cryptology—EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 614–29. Springer-Verlag, 2003.

6. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures:
The case of dynamic groups. In Proceedings of CT-RSA 2005, Lecture Notes in
Computer Science, pages 136–153. Springer-Verlag, 2005.

7. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Advances in Cryptology—EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 223–38. Springer-Verlag,
2004.

8. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology—EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-
puter Science, pages 56–73. Springer-Verlag, 2004.

9. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Ad-
vances in Cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 41–55. Springer-Verlag, 2004.

10. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on cipher-
texts. In Proceedings of TCC 2005, Lecture Notes in Computer Science. Springer-
Verlag, 2005.

11. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Proceedings of ACM CCS 2004, pages 168–77. ACM Press, 2004.

12. Xavier Boyen and Brent Waters. Compact group signatures without random ora-
cles. Cryptology ePrint Archive, Report 2005/381, 2005.
http://eprint.iacr.org/.

13. Xavier Boyen and Brent Waters. Compact group signatures without random or-
acles. In Advances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture
Notes in Computer Science, pages 427–444. Springer-Verlag, 2006.

14. Jan Camenisch. Efficient and generalized group signatures. In Advances in
Cryptology—EUROCRYPT 1997, Lecture Notes in Computer Science, pages 465–
479. Springer-Verlag, 1997.

15. Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new the-
oretical aspects. In Proceedings of SCN 2004, pages 120–133, 2004.

16. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In Advances in Cryptology—
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 61–76.
Springer-Verlag, 2002.

http://eprint.iacr.org/
http://eprint.iacr.org/


Full-Domain Subgroup Hiding and Constant-Size Group Signatures 15

17. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology—CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

18. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Advances in Cryptology—EUROCRYPT 2004.
Springer-Verlag, 2004.

19. David Chaum and Eugène van Heyst. Group signatures. In Advances in
Cryptology—EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Sci-
ence, pages 257–65. Springer-Verlag, 1991.

20. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In Proceedings of STOC 1991, pages 542–552, 1991.

21. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In Proceedings of ASIACRYPT 2006, Lecture Notes in
Computer Science, pages 444–459. Springer-Verlag, 2006.

22. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new
techniques for NIZK. In Advances in Cryptology—CRYPTO 2006, Lecture Notes
in Computer Science. Springer-Verlag, 2006.

23. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in
Computer Science. Springer-Verlag, 2006.

24. Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from com-
putational Diffie-Hellman in cryptographic groups. Journal of Cryptology, 16(4),
2003.

25. Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor trac-
ing schemes. In Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in
Computer Science, pages 630–48. Springer-Verlag, 2003.

26. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, efficient
constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/.

27. Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In
Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science,
pages 198–214. Springer-Verlag, 2005.

28. Moni Naor. On cryptographic assumptions and challenges. In Advances in
Cryptology—CRYPTO 2003, Lecture Notes in Computer Science, pages 96–109.
Springer-Verlag, 2003.

29. Dawn Xiaodong Song. Practical forward secure group signature schemes. In ACM
Conference on Computer and Communications Security—CCS 2001, pages 225–
234, 2001.

30. Brent Waters. Efficient identity-based encryption without random oracles. In
Advances in Cryptology—EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

http://eprint.iacr.org/

	Introduction
	Preliminaries
	Group Signatures
	Bilinear Groups of Composite Order
	Complexity Assumptions

	The Hidden Strong Diffie-Hellman Assumption
	Anonymous Hierarchical Signatures
	Hybrid Scheme
	Existential Unforgeability

	Constant-Size Group Signatures
	Related Schemes
	Core Construction
	Full Anonymity (Under CPA Attack)
	Full Traceability

	CCA-Security

