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Abstract. In a seminal paper from 1985, Sistla and Clarke showed that
satisfiability for Linear Temporal Logic (LTL) is either NP-complete or
PSPACE-complete, depending on the set of temporal operators used. If,
in contrast, the set of propositional operators is restricted, the complexity
may decrease. This paper undertakes a systematic study of satisfiabil-
ity for LTL formulae over restricted sets of propositional and temporal
operators. Since every propositional operator corresponds to a Boolean
function, there exist infinitely many propositional operators. In order to
systematically cover all possible sets of them, we use Post’s lattice. With
its help, we determine the computational complexity of LTL satisfiabil-
ity for all combinations of temporal operators and all but two classes of
propositional functions. Each of these infinitely many problems is shown
to be either PSPACE-complete, NP-complete, or in P.

Keywords: computational complexity, linear temporal logic.

1 Introduction

Linear Temporal Logic (LTL) was introduced by Pnueli in [Pnu77] as a formalism
for reasoning about the properties and the behavior of parallel programs and
concurrent systems, and has widely been used for these purposes. Because of
the need to perform reasoning tasks— such as deciding satisfiability, validity, or
truth in a structure generated by binary relations— in an automated manner,
their decidability and computational complexity is an important issue.

It is known that in the case of full LTL with the operators F (eventually),
G (invariantly), X (next-time), U (until), and S (since), satisfiability and deter-
mination of truth are PSPACE-complete [SC85]. Restricting the set of temporal
operators leads to NP-completeness in some cases [SC85]. These results imply
that reasoning with LTL is difficult in terms of computational complexity.

This raises the question under which restrictions the complexity of these prob-
lems decreases. Since the semantics of LTL is rather fixed, such restrictions can
only be of syntactic nature. However, there are several possible constraints that
can be posed on the syntax. One possibility is to restrict the set of temporal
operators, which has been done almost exhaustively in [SC85].
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Another constraint is to allow only a certain “degree of propositionality” in
the language, i. e., to restrict the set of allowed propositional operators. Every
propositional operator represents a Boolean function — e. g., the operator ∧
(and) corresponds to the binary function whose value is 1 if and only if both
arguments have value 1. There are infinitely many Boolean functions and hence
an infinite number of propositional operators.

If these propositional restrictions are considered in a systematic way, this will
lead to a complete classification of the complexity of the reasoning problems for
LTL. Not only will this reveal all cases in which, say, satisfiability is tractable.
It will also provide a better insight into the sources of hardness by explicitly
stating the combinations of temporal and propositional operators that lead to
NP- or PSPACE-hard fragments. In addition, the “sources of hardness” will be
identified whenever a proof technique is not transferable from an easy to a hard
fragment.

The effect of propositional restrictions on the complexity of the satisfiabil-
ity problem was first considered by Lewis for the case of classical propositional
logic in [Lew79]. He established a dichotomy— depending on the set of proposi-
tional operators, satisfiability is either NP-complete or decidable in polynomial
time. In the case of modal propositional logic, a trichotomy has been achieved
in [BHSS06]: modal satisfiability is PSPACE-complete, coNP-complete, or in P.
That complete classification in terms of restriction on the propositional operators
follows the structure of Post’s lattice of closed sets of Boolean functions [Pos41].

This paper analyzes the same restrictions for LTL and combines them with
restrictions on the temporal operators. Using Post’s lattice, we examine the
satisfiability problem for every combination of temporal and propositional op-
erators. We determine the computational complexity of these problems, except
for one case— the one in which only propositional operators based on the binary
xor function (and, perhaps, constants) are allowed. We show that all remaining
cases are either PSPACE-complete, NP-complete, or in P.

It is not the aim of this paper to focus on particular propositional restrictions
that are motivated by certain applications. We prefer to give a classification as
complete as possible which allows to choose a fragment that is appropriate, in
terms of expressivity and tractability, for any given application.

Among our results, we exhibit cases with non-trivial tractability as well as
the smallest possible sets of propositional and temporal operators that already
lead to NP-completeness or PSPACE-completeness, respectively. Examples for
the first group are cases in which only the unary not function, or only monotone
functions are allowed, but there is no restriction on the temporal operators. As
for the second group, if only the binary function f with f(x, y) = (x ∧ y) is
permitted, then satisfiability is NP-complete already in the case of propositional
logic [Lew79]. Our results show that the presence of the same function f sepa-
rates the tractable languages from the NP-complete and PSPACE-complete ones,
depending on the set of temporal operators used. According to this, minimal sets
of temporal operators leading to PSPACE-completeness together with f are, for
example, {U} and {F,X}.



50 M. Bauland et al.

The technically most involved proof is that of PSPACE-hardness for the lan-
guage with only the temporal operator S and the boolean operator f (Theo-
rem 3.3). The difficulty lies in simulating the quantifier tree of a Quantified
Boolean Formula (QBF) in a linear structure.

Our results are summarized in Table 1. The first column contains the propo-
sitional restrictions in terms of closed sets of Boolean functions (clones) whose
terminology is introduced in the following section. The second column shows the
classification of classical propositional logic as known from [Lew79] and [Coo71].
The last line in column 3 and 4 is largely due to [SC85]. All other entries are the
main results of this paper. The only open case appears in the third line and is
discussed in the Conclusion. Note that the case distinction also covers all clones
which are not mentioned in the present paper.

Table 1. Complexity results for satisfiability. The entries “trivial” denote cases in
which a given formula is always satisfiable. The abbreviation “c.” stands for “complete.”
Question marks stand for open questions.

temporal operators ∅ {F}, {G}, any other

function class (propositional operators) {F, G}, {X} combination

below R1 or below D trivial trivial trivial

below M or below N in P in P in P

L0, L in P ? ?

above S1
NP-c. NP-c. PSPACE-c.

BF (all Boolean functions) NP-c. NP-c. PSPACE-c.

2 Preliminaries

A Boolean function or Boolean operator is a function f : {0, 1}n → {0, 1}. We
can identify an n-ary propositional connector c with the n-ary Boolean operator
f defined by: f(a1, . . . , an) = 1 if and only if the formula c(x1, . . . , xn) becomes
true when assigning ai to xi for all 1 ≤ i ≤ n. Additionally to propositional
connectors we use the unary temporal operators X (next-time), F (eventually),
G (invariantly) and the binary temporal operators U (until), and S (since).

Let B be a finite set of Boolean functions and M be a set of temporal opera-
tors. A temporal B-formula over M is a formula ϕ that is built from variables,
propositional connectors from B, and temporal operators from M . More for-
mally, a temporal B-formula over M is either a propositional variable or of the
form f(ϕ1, . . . , ϕn) or g(ϕ1, . . . , ϕm), where ϕi are temporal B-formulae over
M , f is an n-ary propositional operator from B and g is an m-ary temporal
operator from M . In [SC85], complexity results for formulae using the temporal
operators F, G, X (unary), and U, S (binary) were presented. We extend these
results to temporal B-formulae over subsets of those temporal operators. The
set of variables appearing in ϕ is denoted with Vϕ. If M = {X,F,G,U, S} we call



The Complexity of Generalized Satisfiability for Linear Temporal Logic 51

ϕ a temporal B-formula, and if M = ∅ we call ϕ a propositional B-formula or
simply a B-formula. The set of all temporal B-formulae over M is denoted with
L(M,B).

A model in linear temporal logic is a linear structure of states, which intu-
itively can be seen as different points of time, with propositional assignments.
Formally a structure S = (s, V, ξ) consists of an infinite sequence s = (si)i∈N

of distinct states, a set of variables V , and a function ξ : {si | i ∈ N} → 2V

which induces a propositional assignment of V for each state. For a temporal
{∧,¬}-formula over {X,U, S} with variables from V we define what it means
that S satisfies ϕ in si (S, si � ϕ): let ϕ1 and ϕ2 be temporal {∧,¬}-formulae
over {X,U, S} and x ∈ V a variable.

S, si � x if and only if x ∈ ξ(si),
S, si � ϕ1 ∧ ϕ2 if and only if S, si � ϕ1 and S, si � ϕ2,
S, si � ¬ϕ1 if and only if S, si � ϕ1,
S, si � Xϕ1 if and only if S, si+1 � ϕ1,
S, si � ϕ1Uϕ2 if and only if there is a k ≥ i such that S, sk � ϕ2,

and for every i ≤ j < k, S, sj � ϕ1,
S, si � ϕ1Sϕ2 if and only if there is a k ≤ i such that S, sk � ϕ2,

and for every k < j ≤ i, S, sj � ϕ1.

The remaining temporal operators are interpreted as abbreviations: Fϕ =
trueUϕ and Gϕ = ¬F¬ϕ. Therefore and since every Boolean operator can be
composed from ∧ and ¬, the above definition generalizes to temporal B-formulae
for arbitrary sets B of Boolean operators.

A temporal B-formula ϕ over M is satisfiable if there exists a structure S such
that S, si � ϕ for some state si from S. That allows us to define the problems we
want to look at in this paper: Let B be a finite set of Boolean functions and M a
set of temporal operators. Then SAT(M,B) is the problem to decide whether a
given temporal B-formula over M is satisfiable. In the literature, another notion
of satisfiability is sometimes considered, where we ask if a formula can be satisfied
at the first state in a structure. It is easy to see that, in terms of computational
complexity, this does not make a difference for our problems as long as we do
not have the temporal operator S in our language. For this paper, we only study
the satisfiability problem as defined above.

Sistla and Clarke analyzed the satisfiability problem for temporal {∧,∨,¬}-
formulae over some sets of temporal operators.

Theorem 2.1 ([SC85])

(1) SAT({F}, {∧,∨,¬}) is NP-complete.
(2) SAT({F,X}, {∧,∨,¬}), SAT({U}, {∧,∨,¬}), and SAT({U, S,X}, {∧,∨,¬})

are PSPACE-complete.

Since there are infinitely many finite sets of Boolean functions, we introduce
some algebraic tools to classify the complexity of the infinitely many arising
satisfiability problems. We denote with idn

k the n-ary projection to the k-th
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variable, i.e., idn
k (x1, . . . , xn) = xk, and with cna the n-ary constant function

defined by cna(x1, . . . , xn) = a. For c11(x) and c10(x) we simply write 1 and 0. A set
C of Boolean functions is called a clone if it is closed under superposition, which
means C contains all projections and C is closed under arbitrary composition
[Pip97]. For a set B of Boolean functions we denote with [B] the smallest clone
containing B and call B a base for [B]. In [Pos41] Post classified the lattice of
all clones and found a finite base for each clone.

With ⊕ we denote the binary exclusive or. Let f be an n-ary Boolean function.
We define some properties for f :

– f is 1-reproducing if f(1, . . . , 1) = 1.
– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is 1-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = 1

implies ai = 1.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables
x1, . . . , xn.

In Table 2 we define those clones that are essential for this paper plus four
basic ones, and give Post’s bases [Pos41] for them. The inclusions between them
are given in Figure 1. The definitions of all clones as well as the full inclusion
graph can be found, for example, in [BCRV03].

Table 2. List of some closed classes of Boolean functions with bases

Name Definition Base

BF All Boolean functions {∨,∧,¬}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
M {f ∈ BF | f is monotone } {∨,∧, 0, 1}
S1 {f ∈ BF | f is 1-separating } {x ∧ y}
D {f | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
L {f | f is linear} {⊕, 1}
L0 [{⊕}] {⊕}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
N {f | f depends on at most one variable} {¬, 1, 0}
I {f | f is a projection or constant} {0, 1}
I2 {f | f is a projection} ∅

There is a strong connection between propositional formulae and Post’s lattice.
If we interpret propositional formulae as Boolean functions, it is obvious
that [B] includes exactly those functions that can be represented by B-formulae.
This connection has been used various times to classify the complexity of problems
related to propositional formulae: For example, Lewis presented a dichotomy for
the satisfiability problem for propositionalB-formulae: SAT(∅, B) is NP-complete
if S1 ⊆ [B], and solvable in P otherwise [Lew79].
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Fig. 1. Graph of some closed classes
of Boolean functions

Post’s lattice was applied for the equiv-
alence problem [Rei01], counting [RW05]
and finding minimal [RV03] solutions, and
learnability [Dal00] for Boolean formulae.
The technique has been used in non-classical
logic as well: Bauland et al. achieved a
trichotomy in the context of modal logic,
which says that the satisfiability problem
for modal formulae is, depending on the
allowed propositional connectives, PSPACE-
complete, coNP-complete, or solvable in P
[BHSS06]. For the inference problem for
propositional circumscription, Nordh pre-
sented another trichotomy theorem [Nor05].

An important tool in restricting the length
of the resulting formula in many of our reduc-
tions is the following lemma. It shows that
for certain sets B, there are always short for-
mulae representing the functions and , or , or not, respectively. Point (2) and (3)
follow directly from the proofs in [Lew79], point (1) is Lemma 3.3 from [Sch05].

Lemma 2.2

(1) Let B be a finite set of Boolean functions such that V ⊆ [B] ⊆ M (E ⊆ [B] ⊆
M, resp.). Then there exists a B-formula f(x, y) such that f represents x∨y
(x∧y, resp.) and each of the variables x and y occurs exactly once in f(x, y).

(2) Let B be a finite set of Boolean functions such that [B] = BF. Then there
are B-formulae f(x, y) and g(x, y) such that f represents x∨ y, g represents
x ∧ y, and both variables occur in each of these formulae exactly once.

(3) Let B be a finite set of Boolean functions such that N ⊆ [B]. Then there is
a B-formula f(x) such that f represents ¬x and the variable x occurs in f
only once.

3 Results

3.1 Hard Cases

The following lemma gives our general upper bounds for various combinations of
temporal operators. The proof of part (1) and (2) is a variation of the proof for
Theorem 3.4 in [BHSS06], where, using a similar reduction, an analogous result
for circuits was proved.

Lemma 3.1. Let B be a finite set of Boolean functions. Then the following holds:

(1) If M ⊆ {F,G,U, S,X}, then SAT(M,B) is in PSPACE,
(2) if M ⊆ {F,G}, then SAT(M,B) is in NP, and
(3) if M ⊆ {X}, then SAT(M,B) is also in NP.
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Proof. For (1), we will show that SAT(M,B) ≤log
m SAT({U, S,X} , {∧,∨,¬}), and

for (2), we will show that SAT(M,B) ≤log
m SAT({F} , {∧,∨,¬}). The complexity

result for these cases then follows from Theorem 2.1. The proof for case (3) is
omitted and given in [BSS+06].

The construction for (1) and (2) is nearly identical: Let ϕ be a formula with ar-
bitrary temporal operators and Boolean functions from B. We recursively trans-
form the formula to a new formula using only the Boolean operators ∧, ∨, and
¬, and the temporal operators U, S, and X for the first case and the temporal
operator F for the second case. For this we construct several formulae, which
will be connected via conjunction. Let k be the number of subformulae of ϕ.
Accordingly let ϕ1, . . . , ϕk be those subformulae with ϕ = ϕ1. Let x1, . . . , xk be
new variables, i.e., distinct from the input variables of ϕ. For all i from 1 to k
we make the following case distinction:

– If ϕi = y for a variable y, then let fi(ϕ) = xi ↔ y.
– If ϕi = Xϕj , then let fi(ϕ) = xi ↔ Xxj .
– If ϕi = Fϕj , then let fi(ϕ) = xi ↔ Fxj .
– If ϕi = Gϕj , then let fi(ϕ) = xi ↔ Gxj .
– If ϕi = ϕjUϕ�, then let fi(ϕ) = xi ↔ xjUx�.
– If ϕi = ϕjSϕ�, then let fi(ϕ) = xi ↔ xjSx�.
– If ϕi = g(ϕi1 , . . . , ϕin) for some g ∈ B, then let fi(ϕ) = xi ↔ h(xi1 , . . . , xin),

where h is a formula using only ∧, ∨, and ¬, representing the function g.

Such a formula h always exists with constant length, because the set B is
fixed and does not depend on the input. Now let f(ϕ) = x1 ∧ ∧k

i=1(Gfi(ϕ) ∧
¬(true S¬fi(ϕ))) for case (1) and f(ϕ) = x1∧

∧k
i=1 Gfi(ϕ) for case (2). The part

Gfi(ϕ) makes sure that fi(ϕ) holds in every future state of the structure and
¬(true S¬fi(ϕ))) does the same for the past states of the structure. Additionally
we consider x ↔ y as a shorthand for (x ∧ y) ∨ (¬x ∧ ¬y). For case (1) we
consider Fx as a shorthand for trueUx and Gx as a shorthand for ¬(trueU¬x),
and for case (2) we consider Gx as a shorthand for ¬F¬x. Thus we have that
f(ϕ) is from L({U, S,X}, {∧,∨,¬}) in case (1) and from L({F}, {∧,∨,¬}) in
case (2). Furthermore f is computable in logarithmic space, because the length
of fi is polynomial and neither ↔ nor the formulae h occur nested. In order to
show that f is the reduction we are looking for, we still need to prove that ϕ
is satisfiable if and only if f(ϕ) is satisfiable. Assume an arbitrary structure S,
such that S, si � f(ϕ) for some si. We first prove by induction on the structure
of the formula that xi holds if and only if ϕi holds in every state s of S (for
(1)) respectively in every state which lies in the future of si (for (2)). Therefore
for (1) let s be an arbitrary state and for (2) let s be an arbitrary state in the
future of si. Thus by construction of f(ϕ) the formulae fp(ϕ) hold at s for all
1 ≤ p ≤ k. Then the following holds:

– If ϕp = y for a variable y, then fp(ϕ) = xp ↔ y and trivially S, s � xp iff
S, s � y.

– If ϕp = Xϕj , then fp(ϕ) = xp ↔ Xxj . Thus S, s � xp iff for the successor
state s′ of s, we have S, s′ � xj . By induction this is equivalent to S, s′ � ϕj

and therefore S, s � ϕp iff S, s � xp.
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– The cases for the temporal operator F or G work analogously.
– If ϕp = ϕjUϕ�, then fp(ϕ) = xp ↔ xjUx�. Thus S, s � xp iff there exists a

state s′ in the future of s, such that S, s′ � x� and in all states sm in between
(including s) S, sm � xj . By induction this is equivalent to S, s′ � ϕ� and for
all states in between S, sm � ϕj and therefore S, s � ϕp iff S, s � xp.

– The case for the temporal operator S works analogously to U.
– If ϕp = g(ϕi1 , . . . , ϕin), then fp(ϕ) = xp ↔ h(xi1 , . . . , xin), where h is a

formula using only ∧, ∨, and ¬, representing the function g. Thus S, s � xp

iff S, s � h(xi1 , . . . , xin). Let I be the subset of In = {i1, . . . , in}, such that
S, s � xm for all m ∈ I and S, s � ¬xm for all m ∈ In \ I. By induction
S, s � ϕm for all m ∈ I and S, s � ¬ϕm for all m ∈ In \I and therefore S, s �
h(ϕi1 , . . . , ϕin). Since h represents the function g, we have that S, s � ϕp iff
S, s � xp.

Now, assume that f(ϕ) is satisfiable. Then there exists a structure S, si � f(ϕ)
and thus S, si � x1. Since in every state xj holds if and only if ϕj holds, we have
that S, si � ϕ = ϕ1. For the other direction, assume that ϕ is satisfiable. Then
there exists a structure S, si � ϕ = ϕ1. Now we can extend S by adding new
variables x1, . . . , xk in such a way, that xj holds in a state s from S if and only if
ϕj holds in that state. Call this new structure S′. Then by construction of f(ϕ),
we have S′, si � f(ϕ), since in every state xj holds if and only if ϕj holds. �

The following two theorems show that the case in which our Boolean operators
are able to express the function x ∧ y, leads to PSPACE-complete problems in
the same cases as for the full set of Boolean operators. This function already
played an important role in the classification result from [Lew79], where it also
marked the “jump” in complexity from polynomial time to NP-complete.

Theorem 3.2. Let B be a finite set of Boolean functions such that S1 ⊆ [B].
Then SAT({G,X}, B) and SAT({F,X}, B) are PSPACE-complete.

Proof. Since we can express F using G and negation, Theorem 2.1 implies that
SAT({G,X}, {∧,∨,¬}) and SAT({F,X}, {∧,∨,¬}) are PSPACE-hard. Now, let
ϕ be a formula in which only temporal operators G and X, or F and X, and
the Boolean connectives ∧,∨, and ¬ appear. Let B′ = B ∪ {1}. The complete
structure of Post’s lattice [BCRV03] shows that [B′] = BF. Now we can rewrite ϕ
as a B′-formula with the same temporal operators appearing. Due to Lemma 2.2,
we can express the crucial operators ∧,∨,¬ with shortB′-formulae, i.e., formulae
in which every relevant variable occurs only once. Therefore, this transformation
can be performed in polynomial time. Now, in the B′-representation of ϕ, we
exchange every occurrence of 1 with a new variable t, and call the result ϕ′, which
is a B-formula. It is obvious that ϕ is satisfiable if and only if the B-formula
ϕ′ ∧ t ∧ Gt is. Since B ⊇ S1, we can express the occurring conjunctions using
operators from B (since these are a constant number of conjunctions, we do
not need to worry about needing long B-formulae to express conjunction). This
finishes the proof for SAT({G,X}, B). For the problem SAT({F,X}, B), observe
that the function g(x, y) = x ∧ y generates the clone S1, and therefore there is
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some B-formula equivalent to g. Now observe that the formula t ∧ F(t ∧ Xt) =
g(t,F(g(t,Xt))) is equivalent to Gt. Since this formula is independent of the
input formula ϕ, this can be computed in polynomial time, and therefore this
formula can be used to express ϕ′ ∧ t ∧ Gt in the same way as in the first
case. Additionally, observe that if the operator F appears in the original formula
ϕ, then a subformula Fψ can be expressed as (1Uψ). Hence we conclude from
Theorem (2) that SAT({U,X},BF) is PSPACE-complete. �

The construction in the proof of Theorem 3.2 does not seem to be applicable to
the languages with U and/or S, as it requires a way to express Gt using these
operators. Hence, proving the desired completeness result requires significantly
more work.

Theorem 3.3

(1) Let B be a finite set of Boolean functions with [B] = BF. Then SAT({S}, B)
is PSPACE-complete.

(2) Let B be a finite set of Boolean functions with S1 ⊆ [B]. Then SAT({S}, B)
and SAT({U}, B) are PSPACE-complete.

Proof. Since the membership for PSPACE is shown in Lemma 3.1 we only need
to show hardness.

(1) We first prove an auxiliary proposition.

Claim. Let ϕ1, . . . , ϕn be satisfiable propositional formulae such that ϕi → ¬ϕj

is true for all i, j ∈ {1, . . . , n} with i �= j. Then the formula

ϕ = ϕ1 ∧ (ϕ1S(ϕ2S(. . . S(ϕn−1Sϕn) . . . ))) ∧ ((. . . ((ϕ1Sϕ2)Sϕ3)S . . . )Sϕn)

is satisfiable and every structure S that satisfies ϕ in a state sm fulfills the
following property: there exist natural numbers 0 = a0 < a1 < · · · < an ≤ m+1
such that m− ai < j ≤ m− ai−1 implies S, sj � ϕi for every i ∈ {1 . . . , n}.
Proof. Clearly ϕ is satisfiable: since all formulae ϕi are satisfiable we can find a
structure S such that S, s0 � ϕn, S, s1 � ϕn−1, . . . , S, sn−1 � ϕ1. One can verify
that S satisfies ϕ in sn−1.

Let S be a structure that satisfies ϕ in a state sm. Since ϕi → ¬ϕj is true
for all i, j ∈ {1, . . . , n} with i �= j, in every state only one of the formulae ϕi

can be satisfied by S. Therefore and since S, sm � ϕ1S(ϕ2S(. . . S(ϕn−1Sϕn) . . . ))
holds, there are natural numbers 0 = a0 ≤ a1 ≤ · · · ≤ an−1 < an ≤ m+ 1 such
that m − ai < l ≤ m − ai−1 implies S, sl � ϕi for every i ∈ {1 . . . , n}. Since
S, sm � ϕ1, it holds that a1 > 0. Because S, sm � (. . . ((ϕ1Sϕ2)Sϕ3)S . . . )Sϕn we
conclude that a1 < · · · < an−1, which proves the claim. �

To show hardness for PSPACE, we reduce QBF, which is PSPACE-complete due
to [Sto77], to SAT({S}, B). Let ψ = Q1x1 . . . Qnxnϕ for some propositional
{∧,∨,¬}-formula ϕ with variables x1, . . . , xn and for quantifiers Q1, . . . , Qn ∈
{∀, ∃}.
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Let I∀ = {p1, . . . , pk} = {i ∈ {1, . . . , n} | Qi = ∀} and I∃ = {q1, . . . , ql} = {i ∈
{1, . . . , n} | Qi = ∃} such that p1 < · · · < pk and q1 < · · · < ql.

We construct a temporal formula ψ′ ∈ L({S}, B) such that ψ is valid if and
only if ψ′ is satisfiable. Let t0, . . . , tn, u0, . . . , un be new variables. We construct
subformulae of ψ′ which we will combine afterwards.

α = u0 ∧ t0 ∧ (u0 ∧ t0)S((u0 ∧ t0)S(u0 ∧ t0))) ∧ (((u0 ∧ t0)S(u0 ∧ t0))S(u0 ∧ t0))

β1[i] =

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))))

β2[i] =

(((((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

γ1[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

γ2[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

Since [B] = BF and due to Lemma 2.2, there exist short B-representations for
∧,∨ and ¬. Let ϕ′ be a copy of ϕ that uses these representations instead of
∧,∨ and ¬. Due to the short representations, ϕ′ can be computed in polynomial
time. We now define the formula ψ′, which constitutes the reduction.

ψ′ = α ∧
∧

i∈I∀

((β1[i] ∧ β2[i])S t0) ∧
∧

i=∈I∃

((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

Since the operators ∧,∨, and ¬ are nested only in constant depth we can use
their B-representations without increasing the size of ψ′ significantly.

Assume that S is a structure that satisfies ψ′ in a state sm. We prove by
induction over n that there are natural numbers 0 = a0 < · · · < a3(2k) ≤ m+ 1
and for every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S satisfies the
following property: if m− ai < j ≤ m− ai−1, then

1. S, sj � xph
iff � i

3(2k−h)� is even
2. S, sj � xqh

iff σqh
(a1 . . . , aqh−1) = 1 where -ad = 1 if xd ∈ ξ(sj) and ad = 0

otherwise
3. S, sj � t0 iff i = 3(2k)
4. S, sj � tph

iff i = c · 3(2k−h) for some c ∈ N

5. S, sj � tqh
iff S, sj � tph−1

6. S, sj � u0 iff i = 1
7. S, sj � uph

iff i = c · 3(2k−h) + 1 for some c ∈ N

8. S, sj � uqh
iff S, sj � uph−1
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Note that due to point 1 for every possible assignment π to {xp1 , . . . , xpk
} there

is a j ∈ {m−a3(2k)+1, . . . ,m} such that S, sj � xpi if and only if π(xpi ) = 1.
This is the main feature of the construction. The other variables ti and ui are
necessary to ensure this condition.

For n = 0 it holds that ψ′ = α∧ (ϕ′S t0). Since α satisfies the prerequisites of
the auxiliary proposition, there exist natural numbers 0 = a0 < a1 < a2 < a3 ≤
m+ 1 such that
• m− a1 < j ≤ m− a0 implies S, sj � u0 ∧ t0
• m− a2 < j ≤ m− a1 implies S, sj � u0 ∧ t0
• m− a3 < j ≤ m− a2 implies S, sj � u0 ∧ t0

The only occurring variables are u0 and t0 and it is easy to see that the above
property holds for both.

For the induction step assume that n > 1 and the claim holds for n − 1.
There are two cases to consider:
Case 1: Qn = ∀. That means

ψ′ = α ∧
∧

i∈I∀\{n}
((β1[i] ∧ β2[i])S t0) ∧

∧
i∈I∃

((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

∧ ((β1[n] ∧ β2[n])S t0)

It follows that there are natural numbers 0 = a0 < · · · < a3(2k−1) ≤ m + 1
and for every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S fulfills the
properties of the claim (note that the subformula (ψ′S t0) is not necessary for
our argument). Since S, sm � (β1[n]∧β2[n])S t0 and for m− a3(2k−1) < j ≤ m it
holds that S, sj � t0 if and only if j ≤ m−a3(2k−1)−1, we have S, sj � β1[n]∧β2[n]
for every m−a3(2k−1)−1 < j ≤ m. Let i = c ·3 for some c ∈ N, then it holds that
m − ai+1 < j ≤ m − ai implies S, sj � un−1 which means that for these states
sj it holds that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn. Due to our proposition there
are natural numbers 0 = bi0 < bi1 < · · · < bi6 ≤ ai + 1 such that

• ai − bi1 < j ≤ ai − bi0 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi2 < j ≤ ai − bi1 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi3 < j ≤ ai − bi2 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi4 < j ≤ ai − bi3 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi5 < j ≤ ai − bi4 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi6 < j ≤ ai − bi5 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

The nearest state before sm−ai that satisfies un−1 is sm−ai+1 and the nearest
state before sm−ai that satisfies tn−1 is sm−ai+2 , therefore it holds that bi1 =
ai+1 − ai and bi5 = ai+2 − ai. By denoting bij + ai with c2i+j we define natural
numbers c0, . . . , c3(2k) for which it can be verified that they fulfill the claim.
Case 2: Qn = ∃. In this case we have

ψ′ = α ∧
∧

i∈I∀

((β1[i] ∧ β2[i])S t0) ∧
∧

i∈I∃\{n}
((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′S t0)

∧ ((γ1[n] ∨ γ2[n])S t0).
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sm−a3·(2k)

sm−a3·(2k−1)+2

sm−a3·(2k−1)+1

sm−a3·(2k−1)

sm−a3·(2k−2)+2

sm−a3·(2k−2)+1

sm−a3·(2k−2)

sm−a3·(2k−3)+2

sm−a3·(2k−3)+1

sm−a3·(2k−3)

sm−a3·(2k−4)+2

sm−a3·(2k−4)+1

sm−a3·(2k−4)

sm−a6

sm−a5

sm−a4

sm−a3

sm−a2

sm−a1

sm

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

xp1 . . . xpk−2 xpk−1 xpk

tp0 . . . tn

upk
. . . un

tpk
. . . tn

upk−1 . . . un

tpk−1 . . . tn

upk
. . . un

tpk
. . . tn

upk−2 . . . un

tpk−1 . . . tn

upk
. . . un

tpk
. . . tn

u0 . . . un

Fig. 2. Structure for the proof of Theorem 3.3
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Because of the induction hypothesis there are natural numbers 0 = a0 < a1 <
· · · < a3(2k) ≤ m+1 such that the required properties are satisfied. Analogously
to the first case S, sj � γ1[i] ∨ γ2[i] is true for every m − a3(2k) < j ≤ m. Let
i = c · 3, then for m − ai+1 < j ≤ m − ai it holds that S, sj � un−1 ∧ tn−1 ∧
un ∧ tn ∧ xn or S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn, because S, sj � un−1. For
m − ai+2 < j ≤ m − ai+1 we have that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn or
S, sj � ui−n ∧ ti−n ∧ un ∧ tn ∧ xn and for m− ai+3 < j ≤ m− ai+2 it must hold
S, sj � un−1∧tn−1∧un∧tn∧xn or S, sj � un−1∧tn−1∧un∧tn∧xn. If S, sai � γ1[n],
then in all these states xn is satisfied; if S, sai � γ2[n], then xn is. Therefore
with σn defined by σn(d1, . . . , dn−1) = 1 if and only if S, s3(d12n−2+···+dn−120) �
γ2[n], the induction is complete, because the binary numbers correspond to the
assignments to the ∀-quantified variables.

Note that for a structure that satisfies ψ′ with the above notation, S, sj � ϕ
holds for every m− a3(2k) < j ≤ m, since ϕ′S t0 is a conjunct of ψ′.

Now assume that ψ′ is satisfiable in a state sm of a structure S. This is if and
only if for every q ∈ I∃ there is a function σq : {0, 1}q−1 → {0, 1} such that S
fulfills the above property. Hence each possible assignment J to the ∀-quantified
variables {xp1 , . . . , xpk

} can be extended to an assignment to {x1, . . . , xn} by
J(xqi ) = σqi (J(x1), . . . , J(xqi−1)) which is equivalent to the validity of ψ.

(2) The above reduction can be modified using ideas from the proof of Theo-
rem 3.2. The details are omitted and given in [BSS+06]. We can prove PSPACE-
hardness for SAT({U}, B) with an analogous construction. �

The following proposition follows immediately from a result of Lewis’s [Lew79]
and the previously established upper bounds.

Proposition 3.4. Let B be a finite set of Boolean functions with S1 ⊆ [B]. Then
SAT({F}, B), SAT({G}, B), SAT({F,G}, B), and SAT({X}, B) are NP-complete.

3.2 Polynomial Time Results

This subsection lists all cases for which LTL satisfiability can be decided in
polynomial time. Due to the limitations of space, the proofs are omitted and can
be found in the report [BSS+06].

As Theorem 3.5 shows, for some sets B of Boolean functions, there is a sat-
isfying model for every temporal B-formula over any set of temporal operators.

Theorem 3.5. Let B be a finite subset of R1 or D. Then every formula ϕ from
L({F,G,X,U,S}, B) is satisfiable.

Due to Theorem 3.6, satisfiability for formulae with any combination of modal
operators, but only very restricted Boolean operators is always easy to decide.

Theorem 3.6. Let B be a finite subset of N or M. Then SAT({F,G,X,U, S}, B)
can be decided in polynomial time.
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Finally, satisfiability for formulae that have X as a modal operator and the xor
function ⊕ as a propositional operator is in P. This is true because functions
described by these formulae have a high degree of symmetry.

Theorem 3.7. Let B be a finite subset of L. Then SAT({X}, B) can be decided
in polynomial time.

4 Conclusion

We have almost completely classified the computational complexity of satisfiabil-
ity for LTL with respect to the sets of propositional and temporal operators per-
mitted. The only case left open is the one in which only propositional operators
constructed from the binary xor function (and, perhaps, constants) are allowed.
This case has already turned out to be difficult to handle — and hence was left
open — in [BHSS06] for modal satisfiability under restricted frames classes. The
difficulty here and in [BHSS06] is reflexivity, i. e., the property that the formula
Fϕ is satisfied at some state if ϕ is satisfied at the same state. This does not allow
for a separate treatment of the propositional part (without temporal operators)
and the remainder of a given formula.

Our results bear an interesting resemblance to the classifications obtained in
[Lew79] and in [BHSS06]. In all of these cases (except for one of the several
classifications obtained in the latter), it turns out that sets of Boolean functions
B which generate a clone above S1 give rise to computationally hard problems,
while other cases seem to be solvable in polynomial time. Therefore, in a precise
sense, it is the function represented by the formula x∧y which turns problems in
this context computationally intractable. These hardness results seem to indicate
that x ∧ y and other functions which generate clones above S1 have properties
that make computational problems hard, and this notion of hardness is to a large
extent independent of the actual problem considered.

It is worth knowing whether our results are transferable to what is called
“determination of truth” in [SC85] — the model checking problem. In the case
of LTL with no restrictions on the propositional operators, model checking has
the same complexity as satisfiability [SC85]. We have done first steps towards a
similar classification of this problem. The first partial results suggest that the
behavior of model checking is not quite the same as that of satisfiability.

The results from this paper leave two open questions. Besides the unsolved
xor case, it would be interesting to further classify the polynomial-time solvable
cases. Further work could also examine related specification languages, such as
CTL, CTL∗, or hybrid temporal languages.
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