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Abstract. An extension of the A-calculus is proposed, to study resource usage
analysis and verification. Resources can be dynamically created, and passed / re-
turned by functions; their usages have side effects, represented by events. Usage
policies are properties over histories of events, and have a possibly nested, local
scope. A type and effect system over-approximates the set of histories a program
can generate at run-time. A crucial point solved here concerns correctly associ-
ating fresh resources with their usages within approximations. A second issue is
that these approximations may contain an unbounded number of fresh resources.
Despite of that, we have devised a technique to model-check validity of approx-
imations. A program with a valid approximation is resource-safe: no run-time
monitor is needed to safely drive its executions.

1 Introduction

An important aspect of programming language design and implementation is how to
ensure that resources are used correctly. The typical run-time mechanisms for enforc-
ing resource usage policies are execution monitors, which abort executions whenever
about to violate the usage policy prescribed by the programmer. The events observed
by these monitors are accesses to sensible resources, e.g. opening socket connections,
reading/writing files, allocating/deallocating memory. A main issue is finding a compro-
mise between the expressivity of usage policies and the efficiency of the enforcement
mechanism. Static analysis techniques may be applied to improve efficiency, but this
often results in an unacceptable restriction of the expressive power of policies.

A common mechanism for enforcing usage policies consists in guarding with local
checks the program points where critical resources can be accessed [10/18]]. Local checks
have a main drawback: they must be explicitly inserted into code by the programmer.
Since forgetting even a single check might compromise the safety of the whole applica-
tion, programmers have to inspect very carefully their code. This may be cumbersome
even for small programs, and it may easily lead to unnecessary checking.

A safer approach is that of global policies, where the execution monitor enforces a
global invariant that must hold at any point of the execution. This may involve guarding
each resource access, and ad-hoc optimizations are then in order to recover efficiency,
e.g. compiling the global policy to local checks [7414]]. Furthermore, a large monolithic
policy may be hard to understand, and not very flexible either. Indeed, one has to imagine
all the possible resource usage scenarios in advance. If an unexpected situation occurs
at run-time (e.g. a piece of mobile code with specific resource usage requirements), the
global policy must be dynamically updated, if possible at all.
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A more flexible approach consists in attaching usage policies to resources, so to adapt
them to the context where a resource is used. For example, one may restrain the capa-
bilities before calling untrusted code. In [[12], a type system extracts from programs an
approximation of their possible run-time usage behaviour. Usage policies are arbitrary
sets of permitted histories, so statically verifying whether the permitted usages include
the extracted approximation is undecidable. Run-time monitoring is thus still needed,
unless one restricts to some decidable fragments. As for expressiveness, a limitation is
that you can only control the usage of resources you have created. In a mobile code
scenario, e.g. a browser that runs untrusted applets, it is also important that you can
impose constraints on how external programs manage the resources created in your
local environment. For example, an applet may create an unbounded number of re-
sources on the browser site, and never release them. This clearly leads to denial-of-
service attacks, that may eventually crash the whole system.

We consider here a language that aims at reconciling expressivity of resource us-
age policies with efficiency of the enforcement mechanism. This language, called A"/
(lambda-box), has primitives for creating and accessing resources, and for defining /o-
cal resource usage policies. Sequences of resource accesses in executions are called
histories; a policy is a regular property of histories. A program fragment e protected
by a policy ¢ is written ¢[e], called policy framing. Roughly, while evaluating e, the
histories must respect the policy ¢. Of course, framings can be nested.

Local policies generalise both local checks and global policies. They smoothly allow
for safe composition of programs with their own private policies, also in mobile code
scenarios. Indeed, there is no need to dynamically accommodate the local private poli-
cies into a single global one, possibly invalidating syntax-directed optimizations of the
enforcement mechanism. Local policies may offer protection also in the web-services
scenario [3]: there, one has not full control on the code to run, and thus inserting local
checks is infeasible. For example, a browser must obey a usage policy specified by the
user. Additionally, the browser can invoke a policy provider to obtain a stricter security
policy, used for dynamically sandboxing applets. This rich interplay between policies
seems difficult to express in the above-mentioned approaches.

In A1, efficiency of resource usage control is obtained through a suitable combination
of static techniques. The type and effect system over-approximates the run-time usage
behaviour of a program, by inferring a history expression that denotes all the possi-
ble histories resulting from executions. A history expression is valid when it contains
permitted usage patterns only; a program with a valid history expression will never go
wrong. Validity of history expressions is then verified through model-checking.

This approach was originally introduced in [[1] to deal with history-based access
control. The present version extends [1] with dynamic creation of resources. This ap-
parently little extension demands for addressing a more general problem, from various
viewpoints: one has to correctly bind the creation of new resources to their usages. The
solution to this problem deeply affects the techniques of [[1]], with respect to the follow-
ing points: (i) the enforcement mechanism, (ii) the semantics of history expressions,
(iii) the type and effect system, and (iv) the verification technique.

For the first point, we introduce template usage automata: they are an extension of
finite state automata (FSA) where the input alphabet is parametrized over resources. A
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policy ¢ is represented by a template usage automaton A,(y. To enforce ¢, the usage
histories of each resource r must be accepted by the FSA A, obtained by instanti-
ating A,y on r. For (ii), the semantics of a history expression is a set of histories: the
problem here is to equate those histories that only differ in the name of fresh resources.
For (iii), the problem is to correctly record the binding of fresh names in history expres-
sions. Constructing the history expression of a program is a basic step in our approach:
indeed, checking that a program obeys the usage policies requires knowing all its pos-
sible histories in their entirety — history safety is not compositional. Technically, we
explore a novel approach to quantify types over freshly created resources — a sort of
polymorphism a la ML on both types and effects. We avoid using explicit binders in
types: the definition/use of resources is determined after the type & effect has been
inferred. Living without binders made the type and effect system simpler (and required
some little ingenuities in proofs). For (iv), the creation of new resources may give rise
to an infinite number of formulae to be inspected while verifying validity. We solve
this problem by suitably grouping resources with equivalent usage constraints. This
allows us to extract from a history expression a Basic Process Algebra [15] and a regular
formula, to be used in model-checking validity [9].

A key point of our proposal is that we offer a comprehensive framework for safely
handling resources, within a linguistic setting. On the one hand, our calculus has an
expressive and flexible way to compose and enforce usage policies. On the other hand,
resource usage control is made feasible by suitably extending and integrating techniques
from type theory and model-checking.

2 Programming Model

We consider a call-by-value A-calculus enriched with primitives for creating and access-
ing resources, and with local usage policies. Resources r, 7/, . . . € Res are system objects
that can be either statically available in Resy ¢ Res or created dynamically. We assume
that resources can be accessed through a given finite set of actions @, @/, . .. € Act. This
set is partitioned to reflect the kinds of resources, i.e. Act = | J; Act; = FileUSocketU: - -,
where each element of the partition contains the actions admissible for the given kind
(e.g. File = {newrie, open, close, read, write}). The action newag, represents the creation
of a new resource of kind Act;. An event a(r) denotes accessing the resource r through
the action a. We assume a global capability environment Iy that maps each resource in
Resy to the set of actions it admits. A history i is a sequence of access events.

Usage automata. Usage policies ¢, ¢’, ... € Pol are regular properties of histories. Each
of them is modelled by a template usage automaton Ay = {0, qo, g5, E), which gives
rise to a FSA when the parameter x is instantiated to an actual resource r. As usual, Q
is a finite set of states, go € Q is the start state, while g, € Q is the final sink state, and

9
E is a finite set of template edges of the form g — ¢’, where ¥ € { a(x), (%), a(r) | @ €
Act A r € Resy }. The wildcard x stands for “any resource different from x”.

Example 1. Consider a file usage policy ¢ saying that only open files can be read or
written, and a security policy ¢’ saying that, after having read a file you have not created,
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you can no longer connect to the network (a sort of “Chinese Wall” property). These
policies are described below by the template automata Ay, (left) and Ay () (right,
where the resource associated with the action connect is irrelevant).

read(y)

Q connect

open(x) newriie ()

close(x)

write(x) read(y)

A template usage automaton is well-kinded when the resources r in its edges are
accessed according to the capability environment [, i.e. an edge labelled a(r) requires
that @ € I'o(r). Also, the parameter x must be used consistently: for example, if x is
used as a file, e.g. in read(x), then it cannot be used also as a socket, or as a printer. To
this purpose, we define the kinding function:

Act; if3di.0cC Y < Act;

_ aQ
k) =k({a|A e{x, X} 1 qg—q €Eyny} «(¥)= .
0  otherwise

and we require that k() # 0 for all ¢. We assume our automata be always well-kinded.
Given a finite set of resources R, a template usage automaton Ay is instantiated
into a FSA A,.r) by binding x to the resource r € R (we simply write A,y when

. .. a(x) . ..
unambiguous). Intuitively, a template edge ¢ — ¢’ results in a transition (g, a(r), q").
The instantiation Ay.g) is (Q,qo,2, 0, F), where 2 = {a(r') | « € Act A7 € R},
F = {q,}, and the transition relation ¢ : Q X 2" x Q is defined as follows:

- a(x) a(x)
5 =g, a(,q) | g = q'}U g, e, ) | q=a(Hq¥ | ] (g, ), q) | 4 = ¢}
r'eR\{r}
6 =0U{{g,a(r), )7 € R, Mg, a(r),q’) € 5}V {{g, (), ¢ )| : qﬁ)*q'}
In the first line we instantiate x to the given resource r, we maintain the transitions a(r")
for ' € Resy, and we instantiate a(Xx) with all 7 # r. In the second line we add self-
loops for all the events not explicitly mentioned in the template automaton. The last set
is only used in the verification phase; the meaning of the special symbol ? will be ex-
plained later. Note that finiteness of R and of Act guarantees that A, is always a finite
state automaton. The assumption that R is finite causes no loss of generality, because
each time a template usage automaton is instantiated in A' executions, the number of
resources occurring in the history is finite. We denote with L(¢(r, R)) the language not
accepted by A,y — thus going into the sink state represents a violation of the policy.
Also, {(¢) stands for the set of actions and resources labelling the template edges.

The language AU'. The syntax of All comprises variables x,y,... € Var, resources
r,r,... € Res, events a(e), abstractions A,x. e (where z within e stands for the whole
abstraction), applications e ¢’, conditional expressions if b then e else ¢’ (the definition
of guard b is irrelevant here), policy framings ¢[e], and resource creation new x : y ine,
where y C Act is the set of capabilities associated with the new resource.
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Variables, resources, abstractions, and failures are the values v,V’,... of A A fail-
ure fail, occurs when a computation is about to access a resource of the wrong kind. A
failure fail , is raised when about to violate the policy ¢(r). Let fail denote both kinds
of failures. We assume that, for any expression e, policy ¢, and action a: fail = efail =
fail e = ¢[fail | = a(fail ). We write = for a fixed, closed, access-free, non-failure value,
and A.e for Ax.e when x ¢ fv(e) (x not free in e). The following abbreviations are
standard: e; ¢’ = (d.¢') e, and let x = eine’ = (Ax.e’)e. We write « instead of a(r)
when the parameter r is immaterial. W.1.o.g. we assume that each framing has an open-
ing event, i.e. for all ¢[e], the expression e has the form a;¢’, for some @ and ¢’. The
opening event can be dummy, with no influence on usage policies.

We define the behaviour of A!! expressions through the following small-step opera-
tional semantics. A transition n,I,e — n’,I”, ¢’ means that, starting from a history n
and capability environment ', the expression e may evolve to e’ (possibly a failure), the
history 7 to i’ and the capability environment /" to /. Initial configurations have the
form &, Iy, e, where ¢ denotes the empty history.

nler -7, 17, ¢ nlea— 7,17, ¢,
.l eiex > 1,17, ¢eler nlivey—n',I"ve,
n, [, (A x.e)v = n, I, e{v/x, A,x.e/z} n,1,if b thene, else ey — 1,1, egp)
nle—n,I"¢ ael(r) a¢l'(r)

n,Lale) > ', I, ale) n, [, a(r) = na(r), T, * n,La(r) — n, 1 fail,

7 7

nle—n,I"¢ nE¢ nEe nle-n,I"¢ 0 ¢

n. 1 plel =/, 17, ¢gle'] nLelvl = n Ly n, I elel = n, I fail

n, I newx :yine — nnewyy,(r), U {y/r}, e{r/x} ifk(y) # 0, r fresh

An access a(r) can be executed if the capabilities associated with r include the action
a, otherwise it generates a failure. A new resource r is created through the primitive
new x : y in e, which binds the scope of the fresh name r in e, and extends the capability
environment /. For conditionals, we assume as given a total function 8 that evaluates
the boolean guards. An expression ¢[e] can evolve to ¢[e’], provided that the resulting
history 7" satisfies all the relevant instantiations ¢(r). A failure fail ,,, occurs when, for
some resource 7, ¢(r) is violated by the extended history 7". Formally, let 7|, be the
(longest) subsequence of 1 containing only the accessess a(r) such that @ € {(¢), and
let R be the set of resources mentioned in 77],. We say that a history 17 obeys a policy ¢,
in symbols 17 = ¢, when nl, € L(¢(r,R)) for each r € R. Similarly, we write 5 £, ¢
when 7], ¢ L(¢(r, R)) for some r € R.

Example 2. Let n = newgje(ro) open(ry) write(ro) close(ro) open(ry) read(ry) connect,
and let ¢, ¢’ be the file usage and Chinese Wall policies of Ex[Il Then, n £ ¢, because
nle = open(ro)write(ro)close(ro)open(ri)read(ry), R = {ro, r1} and so nl, € L(¢(ro, R))N
L(¢(r1, R)). Instead, 7 £, ¢’, because 17l = newrie(ro)read(ri)connect ¢ L(¢'(r1, R)).
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3 Static Semantics

We statically predict the histories generated by programs at run-time through a type
and effect system, building upon [[1/18]]. The types extend those of the implicitly-typed
A-calculus, and the effects are history expressions, which over-approximate the aspects
of the program behaviour that are relevant for resource usage. History expressions in-
clude the empty &, events a(p), where p € ResUNamuU {?} (n,n’, ... € Nam are names,
to be instantiated to fresh resources, and ? is a wildcard for all names), resource binding
vn.H, sequencing H - H’, non-deterministic choice H + H’, policy framing ¢[H], and
recursion uh.H, where u binds the occurrences of 4 in H.

Histories. The intended meaning of a history expression is a set of histories, extended
to keep track of the policy framings through the special framing events [, and ], that
stand respectively for opening and closing the scope of the policy ¢. For example, an
(extended) history a[,a’], represents a computation that (i) generates an access «, (ii)
enters the scope of a framing ¢[- - -], (iii) generates @’ within the scope of ¢, and (iv)
leaves the scope of ¢. Note that histories with no framing events were enough to give
the operational semantics of A!l, where the role of framing events is played by framed
expressions. Hereafter, a history may end with the truncation marker ! ¢ Act. The his-
tory 7! represents a prefix of a possibly non-terminating computation that generates the
sequence of events 7. We assume that histories are undistinguishable after truncation,
i.e. ! followed by 1" equals to n!. A history 7 is balanced when either 1 is empty, or
n is an access event, or 7 =!, or n = [,n’ |, with " balanced, or 7 = 1’5" with both 7’
and 1" balanced. For example, o[,/ [ya” ] ], is balanced, while o[,¢/[»a”'], is not.
In what follows, we will only consider well-formed histories that are prefixes of some
balanced history. Non well-formed histories, like e.g. ]oa, are not interesting, because
they do not correspond to any A'! computation.

The denotation of H = (vn. a(n)) - (vn. a(n)) will contain all the histories a(r)a(r’)
for r # r’. To this purpose we introduce template histories Vn.n, where 17 may possibly
contain events of the form a(n), and V acts as a binder of the names in the finite set
n. Back to our example, the semantics of H is rendered by Vn,n’. a(n)a(n’). Bound
names in template histories are a-convertible. We write n for VQ.n, and Vn. Vm. n for
Vnm.n. A template history Vn.n is balanced when 7 is such. Let H, H’ range over
sets of balanced template histories (BTH for short) and let N(77) be the set of names
occurring in 7. The set ¢[H] denotes [,H ],. Also, we denote with HH" the set:

{Vam.nm' | Va.ne H,Vm.y e H',nNN®n')=0=mnNN(®n)}
For example, since Vn. 8(n) can be a-converted to Vm. B(m), then:

(Vn.a(n)) (Vn.B(n)) = (Vn.a(n))(Vm.B(m)) = Vi, m. a(n)B(m)

Semantics of history expressions. The denotational semantics [ H]), of history expres-
sions maps H to a set H{ of BTH, in an environment y that maps variables % to sets of
BTH. We assume that a truncated history always denotes all its truncated prefixes, i.e.,
whenever Vn.nqn’! € H, then Va.n! € H.
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lely = (e} l[a®]y ={a@)} LoDy ={a(?} [vn.H], = Vo [H],
lelH]l, = ollH],] [H-H'], =[H]l, (2], [H~+H],=I[H],VILH ],
[hly =x(h)  [uh.Hly = Usso f5()  where f(X) = [H]yx/m

Example 3. Let Hy = ph.a - h, let H = uh.h - @, and let Hy = ph.vn. a(n) - h. Then,
[Hollp = a*!, i.e. Hy generates histories with an arbitrary number of @, and never ter-
minates. Instead, [H ]9y = {!}, i.e. H; loops forever, without generating events. The
semantics of H, consists of all the histories Vny,...,ni. a(ny) - --a(m)!, fork > 0. O

Equational theory. History expressions enjoy some equational properties. Intuitively,
the equation H = H’ implies that [H], = [H']}, forall y. The operation + is associative,
commutative and idempotent; - is associative, has the identity €, and distributes over +.
The binders vn and ph can be rearranged, and ph can be introduced/eliminated when £
does not occur free. The v binder can be extruded when it does not bind free names (as
usual, n is free in H if it is not in the scope of a vn, otherwise it is bound). Note that
vn cannot be always lifted to the top-level: e.g., uh.vn.H # vn.uh.H in general, because
the leftmost history expression represents a loop that creates a new resource at each
iteration, while in the rightmost one the new resource is created just before entering
the loop. The last two rules allow for introduction/elimination of name binders, and for
a-conversion. The set N(H) denotes the names in H.

H+H=H (H+H)Y+H’"=H+ (H +H") H+H =H +H
(H-H)-H'=H-(H'-H") e H=H=H-&
H-(H+H'Y=H-H +H-H" (H+H')-H'=H-H'"+H -H"”
van.vn'.H = vn’ vn.H ph.uh’ . H = uh'. uh. H ¢lvn. H] = vn. p[H]
vn.(H-H')=(vn.H)-H' ifn ¢ fn(H") vu.(H-H')=H - (vn.H') ifn ¢ fu(H)
va.(H+H') = (vn.H)+ H' ifn ¢ fn(H") ph.H = H{uh.H/h}
vn.H=H ifn¢ fn(H) vn.H = vm.H{m/n} (capture-avoiding)

Note that we could replace the two constructs vn.H and ph.H with a single construct
ph.ovn.H, so defining a standard form for history expressions. For example, ph. (¢ +
van.vn'.a(n) - h - a(n’)) can be rewritten as uh.vn. uh’.vn'. € + a(n) - h - a(n’).

Unbound history expressions. Unbound history expressions are history expressions
without v-binders. Binding names in unbound history expressions is driven by the
events new. For instance, in the unbound H = new(n) - a(n) + new(m) - S(m) the event
new(n) binds the name n, while new(m) binds m, i.e. H is “bindified” to the history
expression (vin.new(n) - a(n)) + (vin.new(m) - f(m)).

Unbound history expressions have an equational theory ~, which is a subtheory of
the relation = on history expressions. In particular, the last three equations (folding
/unfolding, introduction/elimination of v and @-conversion) are not permitted on un-
bound history expressions. Also, the right-distributivity of - over + has the side condi-
tionfu((H+H')-H") =fn(H-H" + H' - H”). The definition of bound and free names in
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unbound history expressions slightly differs from the standard one: bn(new(n)) = {n},
fu(new(n)) = 0, fu(H - H') = fn(H) U (fu(H’) \ bn(H)). We also define the set rn(H) =
{n| H~C(uh.vn.H"),h € fv(H") } of recursive names in H, where C(e) is a context.

To obtain a history expression from an unbound one, we will now introduce the
bindify transformation w. This transformation will insert the v binders at the right points,
provided that the introduced scopes of names do not interfere dangerously. For instance,
w is undefined on the unbound history expression H = new(n) - new(n) - a(n), because
it is unclear whether the action « is performed on the resource n created first or the
second new). It is then not sound choosing the above H to approximate the histories of
e.g. ¢ = new X innew y in a(y), because new(r)new(r’)a(r’) is not represented by H.

w(a(p)) = alp) if a # new w(new(n)) = vn. new(n) wh) =h
wH-H)=wH)OwH") ifbn(Hynbn(H) =0
w(H +H') = w(H) ®w(H") w(ph. H) = ph. w(H) w(p[H]) = plw(H)]

w.(HoH') ifH~vwn Hn¢rmH)

HoH’:{ .
H-H if rn(H)ynfn(H') =0

v.(HeH) ifH~vwn H H ~vn. H n¢m(H+H)

HoH = .
H+H otherwise

The event new(n) drives the introduction of the actual binder vz in history expres-
sions: the scope of n in H is entered just before the new(n), and it is left as soon as
needed no longer, e.g. new(n) - (uh. € + new(n’) - a(n) - a(n’) - h) - a(n) is bindified into
(vn.new(n) - (uh. € + (vn’.new(n’) - a(n) - a(n’) - h)) - a(n)). Instead, w is not defined on
(uh. € + new(n) - h) - a(n), because the name n accessed through @ could be any name
generated by the new inside the loop.

Type & Effect system. We define below a type and effect system for A'!. Effects H are
unbound history expressions. Types T comprise the unit 1, sets R C (Res UNam) x 24!,

and arrows 7 - 7. For instance, a resource » with capabilities y has the singleton type
{(r,7)} (we omit the capabilities when irrelevant). Type environments have the form
A; &:7 where ¢ € Var U Res is not already in dom(4). A typing judgmentA+e: 7> H
means that, in a type environment 4, the expression e evaluates to a value of type 7, and

produces a history belonging to the effect H. In the functional type T iR 7/, H describes
the latent effect associated with an abstraction, i.e. one of the histories represented by
H will be generated when such an abstraction is applied to a value.

To keep our type system as simple as possible, and still allowing to deal with the
escape of freshly created resources, we avoid to explicitly introduce binders on types.

Instead, we have raised the action new to the key role of an implicit binder. E.g., the type
new(n)-a(n) . . . .
1 ——— {n} is for a function that generates a fresh resource upon each invocation,

accesses it through the action «, and then returns it. The bindify transformation, together
with some side-conditions on the typing rules, ensure that the typing derivation do not
exploit the absence of explicit binders to identify names that should be kept distinct. As
a global invariant on typing derivations, we require that in a type & effect 7 > H, the
bound names of H are disjoint from those of 7 (i.e. the bound names in latent effects).
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The relation C is used to define subtypes and subeffects. Roughly, H T H’ means
that [w(H)] € [w(H")] — when both w(H) and w(H") are defined and closed. For
instance, C(H) C C(H + H’), in any context C(H). The relation C comprises a version
of folding/unfolding that creates fresh names upon unfolding (so not to prevent from
bindification). For example, if H = ph. new(n) - a(n) - h, then new(n’) - a(n’) - HC H.
Subtypes are defined as usual, contravariant in the argument type and covariant in the
return type (the latent effect is invariant).

To 2 T

ICIRCR ifRCR {(my}URC{LPIUR 10> C1 o7 it D=0
0="1

HCH itH~H HC H+ H H0{uh. H/h} € ph. H (6 maps bn(H) into fresh names)
CH)C CHY ifHC H', (bn(H)\ bn(H")) "NN(C) =0, fm(C(H)) C fn(C(H"))

We now introduce the type and effect system for All. An access a(e) has type 1,
provided that the type of e is a set of resources R, and each resource in R has the
capability @. The effect of a(e) can be any of the accesses a(p) for (p,y) € R. The
effects in the rule for application are concatenated according to the evaluation order
of the call-by-value semantics (function, argument, latent effect). The side condition
ensures that the free names in the effect of the argument are not captured by the effect
of the function. The actual effect of an abstraction is the empty history expression,
while its latent effect is equal to the actual effect of the function body. Note that the rule
for abstraction constrains the premise to equate the actual and latent effects. A resource
creation generates a fresh name, and binds it in the effect through the event new. The last
two rules allow for weakening of types/effects and a-conversion, respectively. The side
condition T on weakening requires that names created through subeffecting are disjoint

from the names in the type (e.g. the weakening 1 oo, I>eCE 1 oo, 1> &+ new(n)
is not permitted, because the new event would capture the free » in the type). Although

a-conversion is not permitted on unbound history expressions, we allow it on types, e.g.
new(n)-a(n) new(m)-a(m)
1 ——— {n} can be a-converted to 1 —— {m}.

Are:R>H VY(p,y)eR. acy E:1e4d A;x:T;z:TiT’I—e:T’DH

Avrale): 1> H -2, ek a(p) AréiT>e Ai—/lzx.e:rir’>s
AI—e:TH—”>T'l>H Avre > H Are:T> H
bn(HYNmH) =0
Avee 7 >H-H -H” A v gle] : > ¢[H]
Ay x A, re:t>H k(y)#0 n¢A Ave:T>H Ave 7> H
n ¢ bn(t)
A,k newx:yine: 7> newyy(n)-H ;¢ pp(H) AFifbtheneelsee’ :7>H
H ] 7
Avre:t>H -y Are:1T—>17T>H dom(6) N bn(H') = 0
Are:voH HEH A I—e:TﬂT’@DH’ 6 capture-avoiding

T (bn(H)\ bn(H)) " N(7) = 0 = (bn(H’) \ bn(H)) N N(7')
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Example 4. We have the following typing judgements (see App. ?? for details):

O+ a(newx : yinnewy:y inif b thenxelsey): 1
> Hy = newyy)(n) - newyy)(n') - (@(n) + a(n’)) ifaecyny
w(H1) = vn. vi'. newy,)(n) - new,qn(n') - (a(n) + a(n’))
O+ let f = (Ax.newn : yina(n);n)ind'(f=; f*) : 1
> Hy = newyy)(n) - a(n) - newq)(n') -a(n’) -o’(n’) ifa,a’ €y
W(H>) = (vn. newyy)(n) - a(n)) - (vr'. newyqy,)(n') - a(n’) - o’ (n'))
O+ letg = (newn : yinAx. a(n);n) ina’(g*; g*) : 1
> H3 = newyy(n) - a(n) - a(m)-o'(n) ifa,a’ €y
w(H3) = vn. newyy(n) - a(n) - a(n) - &' (n)
O+ (A, x.newn : yinifb then a(n)else @’ (n);zx) = : 1
> Hy = ph. newy)(n) - (@(n) + &'(n) - h) ife,¢ €y
w(Hy) = pth.vn. newy,y(n) - (a(n) + ' (n) - h)
O+ a((Ax.newn : yinif b thenn else a’(n);zx)*) : 1
> Hs = (uh. new,y(n) - (e + &’ (n) - h)) - a(?) ife, e €y
W(Hs) = (uh. vn. new)(n) - (€ + &' (n) - h)) - (?)

Type safety. Let n = 13, -+ be a history. We define 7;” as the history obtained from
n by erasing all the framing events, and 7? as the set of all the prefixes of 7, without !.
E.g., (ad’ [‘pa/”];’)a = (ad'a”)? = {g,a,ad’,ad’a”}. Let 4, comprise r : {(r,7y)} when-
ever (r,7y) € I'y. Our type and effect system correctly approximates the actual run-time
histories; as usual, precision is lost with conditionals and with recursive functions. Also,
you may lose the identity of names exported by recursive functions (see Hs above).

Theorem 1. LetAg v e : ™>H, w(H) closed, and e, Iy, e —>™n, I, ¢’. Then, n € [[w(H)]]b’a.

A valid history does not violate any resource usage constraint. Consider the security
policy ¢’ of Ex[T} the history n = open(r)read(r)¢’[connect] is not valid, because the
connect occurs within a framing enforcing ¢’, and open(r)read(r)connect does not obey
¢'. To formally define validity, we introduce the notion of safe-sets. The history 7 above
has one safe-set: ¢’ [{open(r)read(r), open(r)read(r)connect}], meaning that the scope
of the framing ¢’[- - -] encloses the two histories within the curly brackets. To have a
short, inductive definition of the safe-sets S (7) we first balance all the framings of 7,
e.g. [,a becomes [,a], = p[a]. Then, we define:

SE=0 Sma) =S S@oelmD =S@om) Ueln0))°]

A history 7 is valid when ¢[H] € S () implies 77 = ¢ for all 77 € H. Note that past
events cannot be hidden, because policy framings can always inspect the whole past
history. For example, a history a;¢[a;]as is valid when a; E ¢ and a1, E ¢ (even
if @; is outside of the safety framing), while aja,@3 is not required to satisfy ¢ any
longer. A history expression H is valid when all the histories in [H] are such. Our type
and effect system guarantees the following type safety property.
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Theorem 2 (Type Safety). Let Ay + e : 7> H. Then:

(i) &, T, e »* 1,1, fail, (e respects capabilities)
(ii) if w(H) is valid, then g,y e +* 1, F,failw(,) (e respects the prescribed usages).

4 Static Verification

We verify the validity of history expressions by model-checking Basic Process Algebras
(BPAs) with finite state automata. The standard decision procedure for verifying that a
BPA process p satisfies a regular property ¢ amounts to constructing the pushdown
automaton for p and the automaton for —¢. Then, the property holds if the (context-
free) language accepted by the conjunction of the above, which is still a pushdown
automaton, is empty. This problem is known to be decidable, and several algorithms
and tools show this approach feasible [9].

A first problem, solved in [L]], is that the arbitrary nesting of framings makes va-
lidity of histories a non-regular, property. For example, [uh. @ + h - h + ¢[h]] denotes
histories with unbounded pairs of balanced [, and ], so it is a context-free, non-regular
language. In [1]] we defined a regularization | of history expressions such that H is
valid if and only if each 7 € [H |] satisfies ¢[j. The formula ¢y is defined through the
automaton Ay (x), a smooth transformation of A ) taking into account entering/leaving
the frame ¢[- - - ]. Hereafter, we assume that history expressions have been regularized
(a simple extension of [1]] suffices).

Example 5. The framed version of the file usage policy ¢(r) of Ex[Ilis described by
the automaton A, (- below. The top (resp. bottom) layer models being outside (resp.
inside) the scope of ¢. All states have self-loops (not displayed in the figure) for the
irrelevant events. For instance, the history [,open(r) close(r) read(r) is not accepted.

read() read(r)
write(r) e
g
read(r) read(r)
- Q write(r)
write(r) close(r)

A second problem, solved here, is that now history expressions may create new names,
while BPAs cannot handle fresh names. Verifying validity would thus need to check an
unbounded set of policies ¢(r), e.g. the histories denoted by H = ¢[uh. & + vn.a(n) - h]
must satisfy all the policies ¢(rg), ¢(r1), ... for each fresh resource created within the
loop. Thus, we would have to intersect an infinite number of finite state automata to
verify H valid, which is unfeasible. As a first contribution, we extract from a history
expression H a BPA and a finite set of usage policies, that suffice for verifying H valid.
The intuition is that a new resource r created under a uh lives for a single iteration of
the loop, and in the other iterations we do not care of the actual resources generated
(therefore we denote with these “dummy” resources). Formally, the function M(H)e
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takes as input a history expression H and a function @ from history variables /4 to BPA
variables X. Its output is a guarded BPA process p, a finite set of definitions 4 for BPA
variables, and a finite set of usage policies /7. Without loss of generality, we assume
that H is regularized, and that its variables are all distinct.

Mo = (£,0,0)  M(h)e = (O(h),0,0)
M@)o = (a(£), 0, 1) | a € Up) A k(la)) = k(@)}) (€ ResU{?)
M(Hq - Hi)e = (po - p1,40 U 41,11y U ITy), where M(H;)o = (pi, 4, 1T;)
M(Ho + Hy)o = (po + p1,40 U4y, ITy U ITy), where M(H;)o = {pi, 4, IT;)
MglHDe = (ly- p-1¢.4,11), where M(H)o = (p,4,1T)

Access events, variables, concatenation and choice are mapped into the correspond-
ing BPA counterparts. An expression ¢[H] is mapped to the BPA for H, surrounded by
the opening and closing events of the ¢-framing. The tricky case is that of recursion and
new name generation, not shown above (the items 4 and © will indeed be populated and
exploited in the recursive case). We shall outline, with the help of the following exam-
ples, the stages that lead to the correct definition of M(H) in such cases.

The component /7 in M(H) contains the set of all the usage policies that are needed
in verifying the validity of H. Let R be the (finite) set of resources in the BPA of M(H).
For each event a(r) contained in M(H) (for r # ), the set /1 comprises all the policies
@(7, R) such that the kind of ¢ is consistent with that of « (i.e. k(¢) = k({a}), and Ay
has some edge labelled with « (i.e. @ € £(¢)).

Example 6. Consider the history expression H = vn.vn'.a(n) - a(n’) - a(?). Then, a
sound BPA for M(H) is a(r) - a(r’) - @(?) where r and r’ are two distinct resources. For
instance, consider a policy (x) saying that the action @ cannot be performed twice on
the same resource (left-hand side of the figure below).

s Cwy ;(r)” A
P a®) a(x) : ;e a(?) a(r')
: C; >‘Q a® | C; >‘© a®
‘ ax) alr)

| ‘ B

Clearly, the above-mentioned BPA violates /(r) (right-hand side of the figure above),
consistently with the fact that the wildcard ? represents any resource, including r (e.g.
a(r)a(r)a(r) € [H] violates ). Instead, the BPA above correctly respects a policy ¢’
requiring that « is not executed three times on the same resource. So, M(H) correctly
reflects violations and obeyance to the relevant policies. In this sense we can say that
M(H) is sound and complete (see Theorem ] below).
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Example 7. Let H = ph. (¢ + vn. a(n) - h). A first, naive solution to obtain M(H) would
be that of picking out a resource r, and then modelling the BPA as a recursive process,
where at each step the event a(r) is executed (left-hand side of the picture below).

W ey "a('r') e

() o) ) o

-~ 0 & a o)
(o e pL

: % D 2 :
x D arx @ (o fou 0 (e o

: alx) a®)

However, this solution is not sound. To see why, consider a policy ¢(x) (modelled by the
template usage automaton A,y central in the picture above), saying that, for each re-
source x, the first event a(x) is necessarily followed by another a(x). Clearly, H violates
the policy (e.g. n = a(r)a(r’) € [H], and n I~ (r, {r,’}), see the instantiated automa-
ton on the right-hand side of the picture above). Instead, the BPA does not violate the
policy, and so it is unsound.

As a second try, consider a slight variation of the BPA above (left-hand side of the
picture below), where, at each step, one among the events a(r) or @(r") can be executed.
This BPA correctly violates ¢(r, {r, ’'}) above.

W)

: G(X) a(x) : a(r’) a(fr) :
: ﬂ :> ﬂ :>
/

X ax ag‘

Although this solution is sound, it is not complete. Consider for instance the policy
¥(x) saying that the action @ cannot be performed twice on the same resource x (see the
template automaton in the center of the figure above). Although H obeys ¢, the BPA
does not: indeed, the BPA trace a(r)a(r) violates y/(r, {r}) (the instantiated automaton
Ayrirp 1s depicted in the right-hand side of the picture above).

To recover completeness, we must ensure that the BPA does not execute the same
event a(r) twice. To do that, the BPA is composed of two loops: the first loop executes
a( ) on a dummy resouce , then, the BPA executes a(r) once, and finally the second
loop executes a( ) (see the left part in the figure below). Template automata are only
instantiated with the resource r (and not with ).

&

(e O\ -

X —a()X i
a(r)- X’

a( ) X'

This solution is both sound and complete. For soundness, the BPA correctly violates
o(r,{r, }), e.g. with the trace a(r)a( ). For completeness, the BPA respects y(r, {r, })
(note that here it is important that ¢( ) is not considered).
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More generally, when H is a loop, then M(H) is a BPA which (i) runs the loop an
arbitrary number of times, substituting for the actual freshly generated resources, (ii)
runs a single iteration of the loop, using a unique instantiation of names, and (iii), runs
the same loop as (i). Special care is needed to avoid replication of the same names, e.g.
in case of nested recursion.

Example 8. Let ¢ require that no more than k files can be created, i.e. A, (v has states
newrie({) newrie({)

q0, ... qr, qs and edges ¢; —— ¢q;41 fori € 0.k—1 and gy —— ¢, for £ € {x, x}.
Let H = ¢lei[ph. € + vn. newgje(n) - open(n) - read(n) - close(n) - h]], where ¢ is the
file usage pOhCy of Exm Then’ M(H)0 = <[ga'[gak 'X']tpk']tpa A, {QD(V), QDk(V)}>, where 4
comprises the following definitions (we abbreviate newgje with a,,, read with «,, etc.):

X2 et (@0 a0 ()l ) X) + (@0) - () - () - ae(r) - X')
X’és“'an()'ao()'ar()'ac()'x’

Note that each computation of the BPA (p, 4) obeys the file usage policy ¢(r, {r, }),
while there exist computations that violate ¢ (r, {r, }).

We now state the correspondence between history expressions and BPAs. The prefixes
of the histories generated by a history expression H (i.e. [H]?) are all and only the
strings that label the computations of the extracted BPA, after a renaming of resources.
A special case is that of ?, which may stand for any resource. To deal with it, we define
the “up-to-?” relation =, between histories: =, is the least reflexive relation such that,
for any r, noa(r)n =» (N, whenever o =2 17 and iy =» 77;.

Theorem 3. Let M(H)y = {p,4,II). For eachn € [H1?, there exist € lp,4] and a
substitution & from Res to ResU{ } such that £&(n) =2 i’ ([Lp, 4] is the trace semantics).
Conversely, for eachn € [[p, All, there exists some & and ' € [H1° such that (o) =5 1.

Example 9. Let H = ph. vn. e+a(n)-h. Then, the BPA extracted from H is (X, 4), where
A={Xz2e+a() X+ar) -X,X 2e+a() X'} Letn = a(ro)a(r))a(r) € [H1°,
and let 7" = a( )a(r)a( ) be astring in [ X, A]. If ¢ = { [ro,7/r1, [}, then &(np) =17’

The theorem above enables us to verify the validity of a (regularized) history expression
H by extracting M(H)y = {p, 4, IT) and then model-checking the BPA (p, A) against the
finite set of policies /7. Indeed, a valid computation of the BPA is recognized by the in-
tersection of the finite state automata A, (), for all ¢(r) in I1. Together with Theorem[2],
a All expression never goes wrong if its effect is checked valid.

Theorem 4. Let M(H)y = (p, A, IT). Then, H is valid iff [ p, AT = N ¢ (r) | @(r) € T},

5 Related Work and Conclusions

We proposed a novel approach to the resource usage problem, within an extension of the
A-calculus that features creation/access to resources, and regular usage policies with a
local scope. To efficiently enforce policies, we have exploited a two-step static analysis.
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We defined a type and effect system that over-approximates the run-time behaviour of
a program as a history expression. In spite of the augmented flexibility given by the
nesting of policy scopes and by resource creation, we transformed history expressions
so that model checking their validity is decidable. Our technique manages to represent
the generation of an unbounded number of resources in a finitary manner. Yet, we do not
lose the possibility of verifying interesting properties of programs (see Ex.[9). When a
history expression is valid, we can safely dispose the execution monitor. Otherwise, the
soft-typing approach in [2] allows for substituting local checks for local policies, thus
making the dynamic control of accesses efficient. Although our policies can always
inspect the whole past history, one can easily limit the scope from the side of the past: it
suffices to mark in the history the point in time 3, from which checking a policy ¢ has to
start; the corresponding automaton discards then all the events before 5. Type inference
has not been considered here, but we do not see major obstacles in extending [18] to
our case. Another research direction consists in extending A!! in a distributed setting, to
study secure discovery and composition of services [3].

Many authors [7U8I14/21] mixed static and dynamic techniques to transform pro-
grams and make them obey a given global policy. Colcombet and Fradet [7]] abstracted a
program into an instrumented control flow graph, then minimized and converted back to
a program that is guaranteed to abort just before violating the property. Marriot, Stuckey
and Sulzmann [[14] over-approximated the run-time behaviour of a program through a
context-free grammar. A finite-state automaton models the permitted resource usages.
If the language generated by the grammar is not included in the language accepted by
automaton, the program is instrumented with the local checks and the tracking opera-
tions needed to make it obey the policy, similarly to [2]. Our programming model allows
for local policies and access events parametrized over dynamically created resources,
while [7U8IT4121]] only consider global policies and no parametrized events.

Igarashi and Kobayashi [12] extended the A-calculus with primitives for creating and
accessing resources, and for defining their permitted usage patterns. An execution is
resource-safe when the possible patterns are within the permitted ones. A type system
guarantees well-typed expressions to be resource-safe. However, they do not present
any algorithm to effectively check whether the inferred usages conform to the permitted
ones. Instead, here we provided A!! with a static verification technique; clearly, also [12]]
might be amenable to static verification, if one restricts the language of permitted usages
to a decidable subset. Furthermore, the policies of [[12] can only speak about the usage
of single resources, while ours can span over many resources, of different kinds, e.g.
the Chinese Wall of Ex.[Il

Skalka and Smith [18] proposed a A-calculus with local checks that enforce linear
p-calculus properties [6/13]] on the past history. A type and effect system approximates
the possible run-time histories, whose validity can be statically verified by model check-
ing u-calculus formulae over Basic Process Algebras [S19]. Compared to [18], we fea-
ture dynamic resource creation, and local policies instead of local checks. On a more
concrete level, the same ideas are applied in [19] to define a type and effect system for
an extension of Featherweight Java, featuring histories and security checks.

Walker [22] mixed static and dynamic techniques with proof-carrying code [15].
Properties are specified by security automata [4417]. When a security-unaware program
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is compiled, a centralized policy tells where to insert local checks, in order to obtain
provably-secure compiled code. An optimization phase follows: whenever a check is
removed, it is replaced by a proof that the optimized code is still safe. Before executing
a piece of code, a certified verifier ensures that it respects the centralized security policy.
Thus, compilers are no longer required to belong to the trusted computing base.

Acknowledgments. We thank Luis Caires and the anonymous referees for their com-
ments. Research partially supported by EU-FETPI Global Computing Project IST-2005-
16004 Sensoria (Software Engineering for Service-Oriented Overlay Computers).
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