An Effective Algorithm for the Membership
Problem for Extended Regular Expressions

Grigore Rosu

Department of Computer Science,
University of Illinois at Urbana-Champaign, USA
grosu@cs.uiuc.edu

Abstract. By adding the complement operator (—), extended regular
expressions (ERE) can encode regular languages non-elementarily more
succinctly than regular expressions. The FRFE membership problem asks
whether a word w of size n belongs to the language of an ERE R of
size m. Unfortunately, the best known membership algorithms are either
non-elementary in m or otherwise require space £2(n?) and time £2(n®);
since in many practical applications n can be very large, these space and
time requirements could be prohibitive. In this paper we present an ERE
membership algorithm that runs in space O(n- (logn+m)-2™) and time
O(n? - (logn +m) - 2™). The presented algorithm outperforms the best
known algorithms when n is exponentially larger than m.

1 Introduction

Regular expressions can compactly specify patterns in strings. Extended regu-
lar expressions (ERESs), which add complementation (—R) to the usual union
(R1 + Ra), concatenation (R; - Rz), and repetition (R*) operators, make the
description of regular languages more convenient and more succinct. The mem-
bership problem for an ERE R and a word w is to decide whether w is in the
regular language generated by R.

Due to their simplicity and popularity, regular expressions, and implicitly the
membership problem, have many applications. There are programming and/or
scripting languages, such as Perl, which are mostly based on efficient implemen-
tations of pattern matching via regular expressions. Many languages either have
builtin efficient regular expression membership algorithms or provide libraries
for them. Testing is another application area; events produced by the execution
of physical processes or computer programs can be logged and then searched for
property violations. Also, [5] suggests applications in molecular biology. Since
many properties are more naturally expressed as what should not happen or
as intersection of several policies, FREs are particularly desirable. Moreover,
since the input words can be quite large (e.g., a chromosome can have hun-
dreds of millions of nucleobases, or a log file can have billions of events), FRE
membership algorithms that are efficient in the length of the word are highly
preferred.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 332}345,|2007.
© Springer-Verlag Berlin Heidelberg 2007

An Effective Algorithm for the Membership Problem for ERE 333

The simplest-minded solution would be generate a DFA or an NFA from R,
and then to check the membership of w in linear time with n by simply traversing
w letter-by-letter once. Unfortunately, this may not always be practical. This is
because the size of the NFA or DFA can be non-elementarily larger than R [10].
Even if one succeeded to store such an immense automaton, running it would still
be non-elementary on each letter in the input, because one needs non-elementarily
long labels for each state. There could admittedly be practical situations in which
one can quickly generate a DFA or an NFA from R; if this is the case, then one
should definitely use this simple algorithm. From a practical perspective, the work
in this paper can be seen as an alternative to the simple-minded algorithm, when
generating a standard automaton from R is not plausible.

There are many other FRE membership algorithms in precisely the same
category. The first such algorithm was introduced in [3] in 1979; it runs in space
O(n?-m) and time O(n®-m). A technique for speeding up membership algorithms
by a factor of logn is presented in [7]. Several ERE membership algorithms
have been published since 1979, such as [2IT2[T3IT4I6/4], improving slightl the
complexity of the now classic algorithm in [3]. More precisely, they reduced
the space requirements to O(n? - k + n - m) and the time to O(n3 - k + n? -
m) or worse, where k is the number of complement operators in R. An ERE
membership algorithm was presented in [9], which “rewrites” or “derives” the
ERE by each letter in the input word; the lower-bound result in [I0] tells that
this algorithm is also worst-case non-elementary in the FRE, but, unlike in the
simplistic NFA/DFA generation algorithm, the worst-case penalty is not paid
upfront. At our knowledge, there are no ERF algorithms that are asymptotically
better than the non-elementary-in-m one based on generation of NFA/DFA or
than the dynamic-programming 27-year-old algorithm in [3].

In this paper we present an FRE membership algorithm that is not polyno-
mial, but which avoids the non-elementary explosion in the size of the FRE. More
precisely, it runs in space O(n-(logn+m)-2™) and in time O(n?-(logn+m)-2™).
When n is exponentially larger than m, in which case the “polynomial” algo-
rithms would be exponential in the ERE anyway, our algorithm asymptotically
outperforms all the known algorithms.

The basic idea of our algorithm is to repeatedly cut the EREs at complement
operators to obtain a data-structure of nested NFAs. Formally, this is performed
by introducing novel notions of contextual regular erpressions and automata.
To achieve the effect of complementation at each cut point, special novel data-
structures, called jumping machines and implemented using priority queues, are
introduced; these encode information needed to “jump” to the next subword
which is not in the corresponding language. The advantage of jumping machines
is that one does not need to store (via indexes) all the subwords which are not
in the language, but only the next one; so we drop a factor of n in storage. The
price to pay is that we need to store additional information to be able to jump
to the next subword.

1 Some of these algorithms originally claimed better improvements, but they turned
out to be misanalysed — see [8] for a detailed discussion of this issue.

334 G. Rosu

2 Preliminaries, Notations and Assumptions

Numbers and memory. To simplify the analysis and explanation of our al-
gorithms, we adopt standard conventions about numbers and memory: numbers
take constant time to store to and retrieve from memory, either independently or
as elements of arrays or matrices. The companion report [§] gives an analysis of
the algorithms presented in this paper considering that number storage/retrieval
and operations on them (comparison, additions, etc.) and on memory require log-
arithmic time etc.; such pessimistic assumptions increase the time complexity
of our algorithm by a logarithmic factor [8] (in the size of the input word and
ERE). However, we still assume that logarithmic space is required to store a
“large” number when it appears in more complex data-structures. For example,
we build tables in our algorithm whose cells store pairs consisting of an index
between 1 and n (n is the length of the input word) and a subset of states in an
automaton having O(m) states (m is the size of the input ERE); in this case, we
will assume that it takes O(logn+m) space to store each cell in the table — this
is what actually gives the “logn + m” factor in the analysis of our algorithm. If
one thinks that we are over-conservative here since n and m are small enough
in practice that the number n - 2™ fits in a constant number of memory units
(say, e.g., in two 64-bit words), then one can consider that our algorithm takes
O(n - 2™) space and O(n? - 2™) time.

Languages. In this paper, X' is a finite set called alphabet whose elements are
called letters, and X is a set of variables. The elements of X*, i.e., finite sequences
of letters in X, are called X -words or simply words. We let € denote the empty
word. If w € X* then we let |w| denote the length of w and w; the ith letter of w.
If w has n letters then we can also write w as wiws -+ - wy,. If 1 <4 < j < n then
WiWi41 - - - wj is the subword of w between ¢ and j. If 4 > j then w;w;41 - - wj is
€ by convention. A language over X' is a subset of X*. We let Ly denote the set
of languages over X, i.e., the powerset P(X*). Let () denote the empty language.
If Li,Ly € Ly then Ly - Ly is the language {ajas | @1 € Ly and ay € Lo}.
If L € Ly then L* is {ajag---ay | n > 0 and ay,a9,...,a, € L} and —L is
X — L.

Extended regular expressions. (ERESs) define languages by inductively ap-
plying union (+), concatenation (-), Kleene Closure (x), intersection (N), and
complementation (—). The language of an ERFE R, denoted by L(R), is de-
fined inductively as follows, where a is any letter in X: L(0) = 0, L(e) = {e},
L(a) = {a}, L(R1 + RQ) = L(R1) @] L(RQ), L(Rl . RQ) = L(R1) . L(RQ)7
L(R*) = (L(R))*, L(R1 N Ry) = L(Ry) N L(R2), L(—-R) = —L(R). One can
define a procedure to check € € L(R) by just traversing R once. If R does not
contain — and N then it is a regular expression (RE). By applying De Morgan’s
law Ry N Ry = —(=R1 + —R2), EREs can be linearly (in both time and size)
translated into equivalent ERFEs without intersection. Hence, in the sequel we
consider expressions without intersection. If X is not understood from context,
then we let EREs denote the set of ERFEs over letters in X and let REsx denote

An Effective Algorithm for the Membership Problem for ERE 335

SO0 Ay OO A, OO \o@

A

r1+r2 Ar1-r2 r

Fig. 1. Thompson’s translation

the set of REs over X. We use R, Ri, Ry, R, etc., for EREs, and r, r1, 79, 7',
etc., for RFs.

The size of an ERE is the total number of occurrences of letters and com-
position operators (+, -, %, and =) that it contains. We will frequently need to
check if € € L(R) for various subexpressions R of the original ERFE; we can
calculate all these e-memberships in linear time in the original FRFE, by a sim-
ple DFS traversal, updating the e-membership of each subexpression from the
corresponding e-memberships of its subexpressions.

For any map ¢ : X — ERFEx, we let ¢ : ERExyx — FEREx also denote
its unique extension to a morphism, that is, the map with ¢(0) = 0, p(e) = ¢,
p(a) = aforanya € X, p(Ri+Rs2) = @(R1)+¢(R2), p(R1-R2) = o(R1) ¢(R2),
P(R*) = (¢(R))*, and ¢(—R) = —p(R); also, we let ¢ : X — EREx denote
the map defined by ¢-(x) = —p(z).

Automata. Non-deterministic finite automata (NFA) with e-transitions are used
in this paper, i.e., tuples (S, X, d, so, F'), where S is a finite set of states, X is an
alphabet, § : S x (Y U{e}) — 27 is a transition function, sy is an initial state, and
F is a set of final states. We let NFAx denote the set of such automata. It is well-
known that one can associate an NFA A, to any regular expression r. Moreover,
the number of nodes and edges of A, is linear with the size of . A common RFE-
to-NFA translation, due to Thompson [I1], is shown in Figure[Il The resulting
NFA is linear with the size of the original RE. An important observation for this
paper is that a letter x occurs exactly once in r iff z occurs on exactly one edge
in A,.

We assume a linear-time linear-space procedure GEN-NFA taking RES to
NFAs, using Thompson’s construction. There are two important NFA operations
that can be performed in linear space/time, namely e-closure and the global step.
Given @ C S and a letter a, the e-closure of @ is the set §(Q, €) of states that can
be reached starting with a state in Q and applying only e-transitions, and the
global step 0(Q,a) is the set of states Useqd(s,a). We can encode sets of states

336 G. Rosu

in an NFA of m states as vectors of m bits: 1 means that the corresponding
state is in the set. The implementation of these operations is simple. The first,
e.g., maintains a queue T of states, originally equal to @, that still need to be
processed; then it picks and removes a state from T and considers each of its
e-transitions. If a new state is found, add it to both T and the result set (the
latter is initially empty). Repeat until 7" is empty. Also, intersection, union and
emptiness test on sets of states represented as vectors of size m take O(m).

Priority queues. [I] are structures useful to maintain sets, supporting insertion
and extraction of elements, as well as access to a “highest priority” element. They
are routinely implemented in linear space using heaps flattened in vectors, which
can be initialized in linear time; we assume an O(|€|) procedure INITIALIZE(Q, &)
that initializes queue Q to hold the elements £ (also called “heapify”). The
appealing aspect of priority queues is that insertion and extraction take log time,
while accessing the highest priority element takes constant time. These numbers,
however, assume that elements take constant space/time to store, access and
compare. We will accordingly tune these numbers (conservatively) when the
elements in & require more than constant space to be stored.

3 Contextual Regular Expressions and Automata

Definition 1. A contextual regular expression over letters X and vari-
ables X is a reqular expression in REx x containing exactly one occurrence of
each variable in X. We let REx[X]| denote the set of contextual regular expres-
sions over X and X.

The restriction to one variable does not apply to the language of a contextual
RE. Indeed, if r € REx[X] then o € L(r) can have zero, one or more occurrences
of any € X. The motivation for contextual REs comes from the fact that any
ERFE can be decomposed in a “root” contextual regular expression, together with
an FRFE with fewer complement operators associated to each variable. This well-
founded decomposition of ERFEs is a crucial step in our membership algorithm.

Proposition 1. For any R € ERFEy, there is a set of variables X, an r €
REx[X], and a map ¢ : X — EREx, such that R = p_(r). Moreover, for any
x € X, the ERE ¢(x) contains strictly fewer complement operators than R. We
call v the root of R.

In what follows we assume a procedure DECOMPOSE that takes ERFs R to triples
(X, r,¢) as above. If one uses pointers to refer to regular (sub)expressions, then
one can decompose an ERFE R into (X, r,) in O(m,) space and time, where m,.
is the size of r.

Definition 2. Automata in NFAx,x containing for each x € X exactly one
edge labeled with x are called contextual automata over letters Y and vari-
ables X. Let NFAx[X] denote the set of such automata. To emphasize their

An Effective Algorithm for the Membership Problem for ERE 337

contextual nature, we write such automata as tuples (S, X, X, 0, s0, F) rather
then (S, XU X, 4, so, F). In any contextual automaton, let in,, out, € S denote,
respectively, the source and the target states of the edge labeled x, for each x € X.

Note that Thompson’s construction takes contextual REs in REx[X] to contex-
tual NFAs in NFAx[X]. One can associate any R € EREy, a contextual automa-
ton by first decomposing it into some (X,r,) and then taking GEN-NFA(r).
Continuing this automata generation process for each ¢(x), one eventually gets
a structure of “nested” NFAs, one for each complement operator in the original
ERFE. To ease the task of calculating e-closures in such automata, we prefer to
shortcut a nested NFA by an e-transition whenever it contains € in its language:

Definition 3. Given R € EREx, decomposing to (X,r,), the root NFA of R
is the NFA returned by GEN-NFA(r) in which a new edge 0(ing,€) = out, is
added for each x € X with € € L(—p(x)).

With this, note that € € L(R) iff 6({so}, €)NF # 0. Let us next give an automata-
based characterization for the membership of any w to L(R).

Definition 4. Let w = wiws - --w, € X*, let R € EREx, decompose to (X, r,),
and let (S, X, X, 6, s, F) be the root NFA of R. Then we define Zy, Z1, Za, ..., Zn
as the smallest sets of states closed under the following:

— S0 € Zy;

8(Ziye) C Z; for each i € {0,1,...,n};

8(Ziywiv1) C Zigq for each i € {0,1,...,n — 1};

if ing € Z; for some i € {0,1,...,n} and v € X then out, € Z; for all
je{i+1,...,n} withwit - w; € L(—p(z)).

Note that the “smallest sets” in the definition above makes sense, because se-
quences of sets closed under the operations above are also closed under
component-wise intersection.

Proposition 2. With the notation above, w € L(R) iff Z, N F # 0.

The proposition above immediately implies that w ¢ L(R) iff Z, N F = 0.
Since the definition of Zy, Z1, ..., Z, is based on memberships of the subwords
wiy1 -+ - wj to the languages L(¢(x)), which can be iteratively reduced to gener-
ating the root NFA of ¢(x) and then checking for emptiness the intersection of its
final states with some corresponding Z set obtained like Z,,, one can now derive
a membership algorithm based on root automata. In what follows we present an
algorithm which, considering the information “w;y1---w; € L(—¢(z))” encoded
in some convenient way, calculates all the sets Zy, Z1, ..., Z, and then checks
for membership.

Definition 5. Given w = wywy - -w, € X* and L C X*, amapt:{0,1,...,n—
1} x {1,2,...,n} — {0,1} is a table for w and L if and only if for any
0<i<g<n, t[l][]] =1 iﬁwi+1~-~wj eL.

338 G. Rosu

MEMB-WITH-TABLES(w, R) macro % GEN-TABLE-STRUCTURES
Input: w = wiwz---w, € ¥*, R€ ERE 1. (X,r,¢) — DECOMPOSE(R)
Output: true / false 2. forallz € X do
Globals: Zo, Z1, ..., Zn 3. ¢ty < GEN-TABLE(w, ¢(z))
1. %GEN-TABLE-STRUCTURES 4. endfor
2. Zp — {So} 5. (S, XX, 5, S0, F) — GEN-NFA(T)
3. fori«1,2,...,n do Z; « () endfor 6. for all z € X do
4. fori«—0,1,...,n do 7. if e € L(p(x)) then
5. ¢ %STEP-WITH-TABLES 8.+t (ing, €) — ouly
6. endfor 9. : endif
7. return Z, NEF # 10 10. endfor
GEN-TABLE(w, R) macro %STEP-WITH-TABLES
Input: w = wiws -+ wn € X%, R€ ERE 1. Z; «— §(Zi,¢)
Output: table ¢ 2. if i < n then
1. %GEN-TABLE-STRUCTURES 3. forallz e X do
2. forl=0,1,....,n—1do 4. ¢ if ing € Z; then
3. " Z —{so} 5. i iiforj—i+1,..,ndo
4. tfori—1+1,..,ndo 6. 11 tif ¢5[i][y] then
501720 7.0 Zy — Z U {out}
6. -t —0 8. i endif
7. + endfor 9. ::: endfor
8. :fori«—1,..,ndo 10. : : endif
9. : - %STEP-WITH-TABLES 11. * endfor
10. if ZzNF =0 and (’L > l) then 12. Zit1 — Zit1 U 5(Z¢,wi+1)
11 0[] — 1 13. endif
12. : ¢ endif
13. : endfor
14. endfor
15. return ¢

Fig. 2. Membership algorithm using tables

The simplest way to represent a table is as (half) an n x n matrix of boolean val-
ues. As far as the calculation of Zy, Z1, ..., Z,, and the membership of w to R are
concerned, a set of tables {¢, table for w and —p(x) | z € X} would contain all
the necessary information regarding the map ¢ : X — ERE5x. Figure[2 shows an
ERFE membership algorithm that generates the table of each FRF-subexpression
occurring under a complement from the tables of its subexpressions.

Proposition 3. The algorithm MEMB-WITH-TABLES(w, R) in Figure[2 returns
true if and only if w € L(R). If lw| = n, |R| = m, and R contains k complement
operators, then this algorithm runs in space O(n? -k +mn-m) and time O(n? -
k+mn?-m).

Proof. To simplify its presentation and analysis, the algorithm in Figure] is
split into two procedures and 2 macros. The macros should be regarded “ad lit-
eram”, that is, one should simply replace their “invocation” by their pseudocode,

An Effective Algorithm for the Membership Problem for ERE 339

character-by-character. % GEN-TABLE-STRUCTURES assumes some FRE R and
some word w, and first decomposes R into (X,r,¢), then generates the cor-
responding tables for each —p(z) (in fact, for (non-asymptotic) efficiency, the
procedure GEN-TABLE is passed ¢(z), but note that at its Steps 10-11 it ac-
tually sets the table bits to 1 when the subword is not in the language), and
finally generates the root automaton of R. The macro %STEP-WITH-TABLES
performs a “global step” in a root automaton. It assumes some step number
1, corresponding to the latest processed letter in w, for which all sets Z,, 21,
.oy Zi—1 are already completely calculated and for which the sets Z;, Z;14, ...,
Z, are only partially calculated, and finishes the calculation of Z;, which only
needs an e-closure, and then updates the remaining Z; 1, ..., Z, as follows: if Z;
contains any special state in, then the table ¢, is consulted on its level ¢,[i] and
all the sets Z; with w;41---w; € L(—p(x)) are updated with the special state
outy; finally, the set Z,;1 is also updated by processing the next letter, w;41,
in the current global state, Z;. The procedure GEN-TABLE(w, R) will always be
called on a sub-ERE R occurring under a complement in the original ERFE, for
which a table therefore needs to be generated. For each 0 <[< n — 1, it needs
to set to 1 all the entries ¢[l][¢] for which wii1 - -w; € L(=R) (note that R is
always some ¢(z) in its “parent” ERE). This can be done by first setting Z; to
{so} and then simply traversing all the i’s, completing Z; and updating Z; 11, ...,
Z,, and also checking whether Z; contains any final state. The main procedure,
MEMB-WITH-TABLES, is now self-explanatory. This algorithm follows more or
less blindly Definition [, so its correctness follows by Proposition 2

Let us next calculate the complexity of this algorithm. Note that the sets Zj,
Z1, ..., Zyn can be reused at each invocation of MEMB-WITH-TABLES and/or
GEN-TABLE, so we define them as global; these sets of states are represented as
vectors of bits of size m, so they take total space O(n - m).

Let us first analyze %GEN-TABLE-STRUCTURES, both with respect to space
and time. Note that this macro is invoked by both MEMB-WITH-TABLES and
GEN-TABLE, and both of these have a current ERE R; let m, be the size of
the RE root r of R. Step 1 takes space and time O(m,), including the time
to update the bits stating the membership of € to the language of each subex-
pression of r (and thus R). Steps 2-4 take space O(3_, . x spacegr(y)) and time
O(>_,cx timegT(x)), where spaceg(,) and timegT(y) are the space and the time
of GEN-TABLE(w, ¢(z)). The O(n?) space needed to store the table ¢, will be
counted as part of SPACEGT (o)} what is assigned to ¢, is a pointer to the table
already generated by GEN-TABLE(w, ¢(x)). Step 5 takes space and time O(m,.);
assume the worst case space here, so adding new edges (at most one per node)
to the automaton later will not require additional space. Since p(z) already con-
tains the information € € L(p(z)) and since no new space is needed to add a
new edge to a node in the automaton, Steps 6-10 take constant space and O(m,.)
time. Summing all these up, we obtain that %GEN-TABLE-STRUCTURES takes
space O(m, +) cx spacegr(y)) and time O(m, + 3 . x timear(s))-

Let us now analyze %STEP-WITH-TABLES. The space for the global sets Z,
Z1, ..., Zp has already been counted, and the space for the other operators can

340 G. Rosu

be reused, so this macro should take constant space in a good implementation.
Anyhow, we can afford to assume, conservatively, that the space needed by the
various operators is not reused, so the total space of %STEP-WITH-TABLES is
O(m,). Steps 1 and 12 take time O(m,) and Step 7 takes O(1), so the total time
taken by %STEP-WITH-TABLES is O(|X| - n + m,.).

Let us next analyze GEN-TABLE. Since it needs to create the table ¢ of size
O(n?), one can readily see that it takes space O(n* +m, +3_,c y spacegr(y))-
Step 1 takes time O(m,. +)y timeqT(s)). Steps 8-12, taking the major time
in the outmost loop, take time O(n - (|X|-n 4+ m,)), so the total time taken by
GEN-TABLE is O(n® - | X |4+ n? - m, + Y, ¢ x timegT(x))-

We can now analyze the main procedure, MEMB-WITH-TABLES. Without
making explicit the space and time consumed by GEN-TABLE, one can readily
see that MEMB-WITH-TABLES takes space O(m, +) x spacegr(,)) and time
On? - |X|+n-my -+, timegr(y). To complete the analysis, note that
GEN-TABLE is eventually invoked exactly once on every FRE R’ with —R’ a
subterm of the original ERE R. Since the sum of all the sizes m, of the RE
roots of these FREs R’ is O(m), one can relatively easily see that the total space
of MEMB-WITH-TABLES is O(n? - k 4+ m) plus the total space O(n - m) to store
Zo, Z1, oy Zn, that is, O(n? - k +n - m). One can similarly calculate the total
time of MEMB-WITH-TABLES to O(n® - k 4+ n? - m).

The space above can be non-asymptotically improved, by noting that once a
table is calculated for an FRF, the tables of its subexpressions are not necessary
anymore, so their space can be reused. Like the algorithms in [2IT2/T3IT4I6/4], the
algorithm in Figure 2l provides only a slight improvement over the classic one in
[3]. Unfortunately, all known membership algorithms, including the one above,
still require space £2(n?), which can be prohibitively large in many applications
of interest. The problem here comes from storing the tables t, for € X, each
requiring ©(n?) space. We will next see that one can significantly reduce the
required space as a function of n, namely from n? to n - logn. The idea is to
encode the languages of ¢(x) for z € X in a more space effective fashion.

4 An Effective ERE Membership Algorithm

Definition 6. A jumping machine P = (P, po,) consists of set P of states,
an initial state py, and a jumping map 7 : {0,1,...n — 1} x P —
({1,2,...,n} x P) U {L} with the property that for any 0 < i < n and any
p € P, if n(i,p) = (4,p') then i < j. Given 0 < i < n, we let w(i) de-
note the set {j1,72, .y Jn;} with w(i,po) = (J1,01), 7(J1,p1) = (J2,p2), --vs
T(Jni=1,Pni—1) = (Uni>Pni)s T(Gng,Pn;) = L. Given word w = wiws - - - wy, and
language L, we say that (P, po,7) is a jumping machine for w and L if and
only if (i) = {j | j >4, wiy1---w; € L}.

Therefore, a jumping machine provides a mechanism to generate the sets ()

in a stepwise manner. A jumping machine for w and L can therefore eventually
produce the same information as a table for w and L. However, the advantage of

An Effective Algorithm for the Membership Problem for ERE 341

MEMB-WITH-MACHINES(w, R)
Input: w = wiwsz -+ - w, € X

R e ERE

Output: true / false
Globals:Z’, Z

1.

No oA wN

% GEN-MACHINE-STRUCTURES
Y% INITIALIZE- QUEUES

Z/ — {So}

fori —0,1,...,n do

* %STEP-WITH-MACHINES
endfor

return ZNEF #£0

GEN-MACHINE(w, R)

Input: w = wiwsz -+ -w, € X*

R € ERE
Output: machine (P, po, 7)
1. %GEN-MACHINE-STRUCTURES
2. P« 2% po« {s0}
3. fori=0,1,....,n—1do
4. ‘forall pe P do
5. ' @ %INITIALIZE-QUEUES
6. -7 «—p 9.
7. ifori«—1,..,ndo 10.
8. it %STEP-WITH-MACHINES 11.
9. i if ZNF =0 and (i > [) thenl2.
10. ¢ ¢ ¢ 0 wg[l][p] < ¢; break-loop 13.
11. ¢ ¢ ¢ endif 14.
12. : : endfor 15.
13. : endfor 16.
14. endfor 17.
15. return (P, po,) 18.

macro % GEN-MACHINE-STRUCTURES

—_

© VXD T WD

(X,r,¢) <« DECOMPOSE(R)

for all z € X do

: (Py,p§,7z) <— GEN-MACHINE(w, ¢(x))
endfor

(S, 2, X,6,s0,F) «— GEN-NFA(r)

for all x € X do

“if e € L(p(z)) then

S 0(ing, €) «— ouly

- endif

endfor

macro %INITIALIZE-QUEUES
1. forall x € X do

2.

- INITIALIZE(Qq, {1,2, ...,n} X Py)

3. endfor
macro %STEP-WITH-MACHINES

e IR

for all z € X do

- if key(Topr(Qx)) equals ¢ then
C1 7 — 7' U{outy}

-+ while key(ToP(Qz)) equals ¢ do
© 10 (4, p2) «— EXTRACT-TOP(Q,)
o INSERT(Qq, 7 [i] [pa])

-+ endwhile

- endif

endfor

ARSNIVANS)

if 7 < n then

: for all z € X do

2 if ing € Z then

oo INSERT(Qq, 7 [i] [P)

-+ endif

- endfor

2 — (2, wit)

endif

Fig. 3. Membership algorithm using jumping machines

jumping machines in contrast to tables is that they may require much less space
to be stored. Indeed, a machine (P, pg,) can be encoded in space O(n - |P| -
(logn +log|P|)), namely when encoded as a n x |P| matrix storing in each cell
an element in ({1,2,...,n} x P)U{L}. This space can be roughly approximated
with ©(n -logn) when n is significantly larger than |P|, as opposed to O(n?) as

requ

ired by tables.

Figure Bl shows an FRE membership algorithm based on jumping machines,
that modifies the one in Figure [2] correspondingly.

342 G. Rosu

Theorem 1. MEMB-WITH-MACHINES(w, R) in Figure [3 returns true iff w €
L(R). If lw| = n and |R| = m then MEMB-WITH-MACHINES(w, R) runs in
space O(n - (logn +m) - 2™) and in time O(n? - (logn +m) - 2™).

Proof. One may show the correctness of this algorithm by analogy with the
table-based algorithm in Figure 2] which is the reason for which we actually
presented the table-based algorithm. In the table-based algorithm, given an ERFE
R that decomposed to (X, r,¢), we maintained a table ¢, listing ezplicitly the
entire “future” of each ¢(z) w.r.t. the remaining suffix of w (i.e., the set of
future indexes 1 < j < n for which the special state out, needs to be added
to the current set of states Z; at that moment). We now maintain a jumping
machine P, = (P, p§,) instead, which, at any “moment”, i.e., index 0 <
1 < n—1, “kmows” explicitly only the first future moment when out, needs
to be considered, namely the one given by the first component of 7[i][{p{}].
However, the jumping machine also “freezes” its corresponding state at that
future moment (the second component of 7[¢][{pg }]), so that it implicitly “knows”
how to generate the entire information in the corresponding table in the table-
based algorithm; but this will be done on a by-need basis.

Like in the table-based algorithm, the ultimate purpose of the data-structures,
jumping machines in this case, is to detect the future indexes at which the
special states out, need to be included in the set of (future) current states. In
the table-based algorithm, the sets Zy, Z1, ..., Z,, accumulated this information
progressively, by simply transferring it from the tables. Since the tables are
not available anymore, when the special state in, is encountered during the
global step of the root automaton, we need to store somewhere the first future
moment, say i, that ouf, needs to be considered. That informal “somewhere”
can be effectively replaced by a priority queue data-structure, Q.. Since the state
in, can be encountered several times before that moment i, each time starting
a new “jumping session” in P, we need to store all the first future moments
to consider out, of all the “sessions” that the jumping machine P, can be in.
Then at any global step of the algorithm, one needs to check whether any of
the jumping machine sessions “predicted” the current moment as one to include
out,. If that is the case then, besides including out, in the current global state,
one also needs to advance the corresponding session in the jumping machine to
its next “predicted” moment to include the state out,. This is what Steps 1-9
in %STEP-WITH-MACHINES do. To accomplish this task properly, we store not
only the first future moments of each session in the priority queue, but also the
corresponding jumping machine session. Since several different sessions in P,
could have predicted the same current moment, all these sessions need to be
advanced to their next predicted future moments to consider out, (Steps 4-7 in
%STEP-WITH-MACHINES). Making the intuitions above rigorous, the algorithm
MEMB-WITH-MACHINES in Figure [3 flows in a one-to-one analogy to the table-
based algorithm in Figure[2l As a “synchronization” point in this analogy, note
that Z at Step 10 in %STEP-WITH-MACHINES corresponds to Z; at Step 1 in
%STEP-WITH-TABLES.

An Effective Algorithm for the Membership Problem for ERE 343

Let us next analyze the space and time complexity of this algorithm. Following
a similar analysis to that of %GEN-TABLE-STRUCTURES, one immediately gets
that %GEN-MACHINE-STRUCTURES requires space O(m, +) x spacegi(y))
and time O(m, + > .y timegM(z)). GEN-MACHINE tells us that P, will have
size 2™, where mg is the size of the root of ¢(z). Since we need to insert
[{1,2,...,n} x Pg|, which is n - 2= in the priority queue Q,, and since each
element requires space log(n - 2™=) to be stored as part of the INITIALIZE step
of the queue, one obtains that %INITIALIZE-QUEUES takes space and time O(n -
Y owex 2™ -log(n - 2™)). %STEP-WITH-MACHINES is invoked at places where
all the memory it needs is allocated, so it takes constant space. The crucial
observation in the time analysis of %STEP-WITH-MACHINES is that the loop at
Steps 4-7 executes at most 2™+ times, because there can be at most that many
pairs (4,p) in total and because we do not allow duplicates in queues. Therefore,
Steps 1-9 take time O(D_ .y 2™ - log(n - 2™<)). Steps 10-18 only add time
O(m,.), where m, is the size of r, so the total time of %STEP-WITH-MACHINES
is O3 ,cx 2™ -log(n - 2™*) +m,.).

Let us now analyze the remaining two procedures. Step 1 in each of them takes
space O(my + >, x spacean(y))- GEN-MACHINE needs to allocate a jumping
machine, whose space is dominated by the matrix 7 of size n x 2™ keeping
elements in {1,2,...,n} x 2%, so each element of size log(n - 27). Therefore,
the total space required by 7 is O(n - 2™ - log(n - 2™n)). Since %INITIALIZE-
QUEUES at Step 5 can reuse the same space for each iteration of the loop at
Steps 4-13, we conclude that the total space required by GEN-MACHINE is O(n -
(2™ -log(n - 2™M7) + >0 cx 2™ -log(n - 2™=)) + > x spaceg(y))- Time-wise,
note that the loops at Steps 3 and 4, respectively, add a factor of n - 2™ to
the time of Steps 5-12. After calculations, we get that the total time of GEN-
MACHINE is O(n? - 2™ - (my, + >, c ¢ 2™ - log(n - 2™=)) + > timegm(a))-
Without making explicit the space and time of the invoked GEN-MACHINE, one
can quickly see that MEMB-WITH-MACHINES takes space O(m, +n-) oy 2™ -
log(n-2"=)+3 7, c x spacegm(y)) and time O(n- (m, +3_, c x 2™ -log(n-2"+)) +
2 e x limeaM(z))-

Let us now put all these together by iteratively expanding all the spacegn(y)
and timegm(y)- Let us first calculate the space. Note that if one iteratively
expands the terms spacegy(,) that occur in the space complexity of MEMB-
WITH-MACHINES, then each term of the form n - 2™ - log(n - 2™=) will occur
exactly twice. The resulting space then will be O(m, +n-Y , 2™ -log(n-2™+")),
which is O(m, +n-logn-Y_,, 2™ +n-3" , my -2"™"), where r’ ranges over all
the RE roots of all ERF's R’ occurring under a — operator in the original ERFE,
and m, is the size of r’. Since m,» < m and since) , My < QX Mt = 2m,
by overestimation we get that the space required by MEMB-WITH-MACHINES
is O(n - (logn + m) - 2™). The total time of MEMB-WITH-MACHINES can be
calculated in a similar manner to O(n? - (logn +m) - 2™).

Corollary 1. If n > 2™, then our ERFE-membership algorithm above runs in
space O(n -logn - 2™) and time O(n? -logn - 2™).

344 G. Rosu

Hence, if n > 2™, our algorithm above runs in space O(n - logn - 2™), com-
pared to O(n? - k 4+ n -m) (k is the number of complements in the ERE), the
space required by the best known algorithms to solve the same problem; all
algorithms, including ours, run in time a factor of n larger than their corre-
sponding space. When does the algorithm proposed in this paper outperform
the other algorithms? Roughly speaking, if k = ©(m) then by the monotonicity
of the function z/logx when x > 2, one gets n/logn > 2™/m, that is, that
n - logn - 2™ is asymptotically better than n? - k, so our algorithm wins. On
the other hand, if £ = ©(1) then our algorithm again wins, but this time when
n > m-2™; however, if k = ©(1) then one is likely better off using the standard
NFA-to-DFA-then-complement algorithm.

5 Conclusion

Previous known algorithms to test whether a word of size n is in the language of
an ERE of size m are either space/time non-elementary in m or otherwise space
2(n?) and time 2(n?). In the 27 years that passed since the first non-elementary
algorithm has been given in [3], several algorithms for the FRE membership
problem have been proposed. Unfortunately, none of them improved significantly
the original algorithm in [3]. In particular, all the current non-elementary-in-m
algorithms require space 2(n?), which is prohibitive in the context of some
applications of interest. For example, £2(n?) means more than 1TB of memory
when n is 1 million, and more than what today’s technology can offer when n
is larger than 1 billion. In this paper we presented an algorithm which is simply
exponential in m but is in the order of n-log n space-wise and n?-log n time-wise.
The proposed algorithm outperforms the known polynomial algorithms when n
is exponentially larger than m.

A novel data-structure, called jumping machine, was also introduced in this
paper and played a crucial technical role in our algorithm. It would be interesting
to investigate to what extent the jumping machines can be used for improving
other automata-theoretic constructions (that use two dimensional tables).

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

2. S. Hirst. A new algorithm solving membership of extended regular expressions.
Technical report, The University of Sydney, 1989.

3. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

4. L. Ilie, B. Shan, and S. Yu. Fast algorithms for extended regular expression match-
ing and searching. In Proceedings of STACS’03, volume 2607 of LNCS, pages
179-190, 2003.

5. J.R. Knight and E.W. Myers. Super-pattern matching. Algorithmica, 13(1/2):
211-243, 1995.

10.

11.
12.

13.

14.

An Effective Algorithm for the Membership Problem for ERE 345

O. Kupferman and S. Zuhovitzky. An improved algorithm for the membership
problem for extended regular expressions. In Proc. of MFCS’02, volume 2420 of
LNCS, pages 446-458, 2002.

. G. Myers. A four russians algorithm for regular expression pattern matching.

Journal of the ACM, 39(4):430-448, 1992.

. G. Rosu. An effective algorithm for the membership problem for extended regular

expressions. Technical Report UTUCDCS-R-2005-2964, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

. G. Rogu and M. Viswanathan. Testing extended regular language membership

incrementally by rewriting. In Proceedings of RTA’03, volume 2706 of LNCS,
pages 499-514. Springer, 2003.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). pages 1-9. ACM Press, 1973.

K. Thompson. Regular expression search algorithm. CACM, 11(6):419-422, 1968.
H. Yamamoto. An automata-based recognition algorithm for semi-extended regular
expressions. In Proc. of MFCS’00, volume 1893 of LNCS, pages 699-708, 2000.
H. Yamamoto. A new recognition algorithm for extended regular expressions. In
Proceedings of ISAAC’01, volume 2223 of LNCS, pages 257—267, 2001.

H. Yamamoto and T. Miyazaki. A fast bit-parallel algorithm for matching ex-
tended regular expressions. In Proc. of COCOON’03, volume 2697 of LNCS, pages
222-231, 2003.

	Introduction
	Preliminaries, Notations and Assumptions
	Contextual Regular Expressions and Automata
	An Effective ERE Membership Algorithm
	Conclusion

