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Abstract. This paper contributes a technique that expands the set of object in-
variants that one can reason about in modular verification. The technique uses
history invariants, two-state invariants that describe the evolution of data values.
The technique enables a flexible new way to specify and verify variations of the
observer pattern, including iterators. The paper details history invariants and the
new kind of object invariants, and proves a soundness theorem.

1 Introduction

The observer pattern is an important and common programming idiom [13]]. For
example, it is a foundation of the model-view-controller paradigm on which all modern
graphical user interfaces rely. The observer pattern consists of a subject object, which
contains some data that may change over time, and a number of observer objects. An
observer depends on the data of the subject in some way. For example, an observer may
display the current data values of the subject in a graphical user interface. For efficiency,
such an observer may keep a local copy of the data to be displayed, so that it can redraw
the display without needing to consult the subject. A variation of the observer pattern is
the iterator pattern [13]], where the subject is a collection and the observers are iterators.
An observer may iterate through the items of the collection, providing clients with one
data item at a time. These two patterns are different mainly in that the collection does
not have references to its iterators. In this paper, we focus on the one-to-many depen-
dency between the subject and observers, which the two patterns have in common, so
we will simply refer to both of them as the observer pattern.

To verify the correctness of a program that uses the observer pattern, it is necessary
to be able to write specifications for both subject and observers. We are interested in
modular verification of programs, which allows a program’s modules (or classes) to
be verified separately. In order for the verification process to be sound, the separately
verified correctness of each module should imply the correctness of the whole program.
For the observer pattern, this means we want to be able to specify and verify the subject
separately from the observers.

Verifying the observer pattern is a challenge. The difficulty is that the data consis-
tency of an observer, which is expressed as an object invariant, depends on the data of
the subject. Updates of the subject and the maintenance of these invariants must there-
fore be coordinated. The situation is further complicated by the fact that the subject may
not be able to reach (through object references in the heap) all the observers, and the
observer invariants, let alone the observer classes, may not be available in the separate-
verification context of the subject. A partial solution, which works when the observers
are known by the subject, has been given by Barnett and Naumann [35].
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In this paper, we introduce a specification and verification methodology that is well-
suited for supporting the kinds of object invariants one wants to write in observer
classes. In a nutshell, the subject advertises how its data values evolve over time, and
this allows observers to declare object invariants that depend on the subject’s data, pro-
vided the object invariants are insensitive to the evolution of the subject. In more detail,
our solution consists of the following ingredients:

1. We use history invariants to specify how an object may evolve. A history invariant
is a reflexive and transitive two-state predicate that relates any earlier state to any
later state in a program’s execution. In our solution, subjects have history invariants.

2. We allow an object invariant of an observer to access the fields of the subject,
provided the dereference goes via a field annotated with a new field modifier,
subject. If an object invariant dereferences a subject field, we call it an
observer invariant.

3. We explicitly keep track of whether an object invariant is known to hold, in which
case we say that the object is consistent.

4. An observer invariant can be assumed if the observer and its subject are both in the
consistent state.

5. For the soundness of modular verification, each observer invariant gives rise to
an additional proof obligation, which is that it be maintained under the history
invariant of the subject.

Our main contributions in this paper are Pl [ and [5] which together give a method-
ology to specify and verify observer patterns, including its iterator variation. Ingre-
dient 3] comes from the Boogie methodology, which we explain in Section 2l For
ingredient I} history invariants were introduced by Liskov and Wing [22]] under the
name of constraints, and are supported by the Java Modeling Language (JML) [18];
our paper contributes a formalization of history invariants in the presence of reentrancy
and representation objects.

Example. Figure [Il shows our solution to specifying a verifiable observer pattern. An
observer’s cache depends on the state of the subject. When a subject’s state is updated,
it notifies all of its observers, so that they can synchronize their caches.

We use a field vers (for “version”) in both the subject and observers, so that an
observer can detect whether it is currently synchronized with the subject. We have
found this specification idiom useful for all of our observer-pattern examples, though
our methodology does not depend on it. (The vers field is in fact used in the implemen-
tation of the iterator pattern in both .NET [1] and Java [14]], where it is used to detect
modifications of the underlying collection when there is still an active iterator.)

Note that between the update of state and wvers in method Update, the observer’s
invariant is broken. Our methodology handles this on account of ingredient 4] At the
end of the expose block, the observer’s invariant holds again, on account of the spec-
ification idiom used in the observer invariant.

The program is correct and satisfies the proof obligations of our methodology: the
history invariants are admissible, because they are reflexive and transitive; the updates
performed by the Subject methods are allowed, because they maintain the history in-
variants; and the observer invariants are admissible, because they are maintained under
the subject’s history invariants.
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interface IObserver {
void Notify();

}

class Subject {
rep Set{peer [Observer) obs;
int state; int vers;

history invariant old(vers) < vers;
history invariant vers = old(vers) =
state = old(state);

Subject()
{ initialize (this) {
state = 0; wvers= 0;
obs = new Set(peer IObserver)();
}
}

void Register(1Observer o)
requires o # null A o.owner = owner;
{ expose (this)
{ obs.Add(0); }
o.Notify();

void Update(int y)
{ expose (this)
{ state = y; vers= wvers+1; }
foreach (IObserver o in o0bs)

{ o.Notify(); }

int Get()
ensures result = state;
{ return state; }

class MyObserver : IObserver {
readonly subject Subject subj;
int cache; int vers;

invariant vers < subj.vers;
invariant
subj # null A subj.vers = vers =
cache = subj.state;

MyObserver(Subject s)
requires s # null;
ensures owner = s.0wner;
{ initialize (this) {
cache = s.Get(); vers= s.vers;
sub= s; owner= s.owner;

}
}

void Notify()

{ expose (this) {
cache = s5.Get();
vers = s.vers;

}

}

void DisplayData()
}

class Program {
void Main() {
Subject s = new Subject();
MyObserver o=
new MyObserver(s);
s.Register(o);
s.Update(57);
}
}

Fig. 1. An example of the observer pattern, where class Subject uses objects of type [Observer
as its observers. Each of the two columns in this figure is a separately verifiable module. The
details of the constructs used in this example are explained in the paper. As details that make the
verification go through, we have assumed that each object has a reference valued owner and a
boolean inv field. Further, we assumed that the condition PeerConsistent(z) A —z.owner.inv
is implicitly added as a postcondition to all constructors (with this for z), as a precondition to
all methods (with this for z), and as a precondition to all constructors and methods (for each
reference parameter z ). On entry to a constructor body, we also assume that the new object starts
off with some arbitrary, unshared, and exposed owner. Finally, we assume that all methods are
implicitly allowed to modity the fields of this and of any parameter z, and also the fields of the

peers of this and z.
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Outline. In the next section, we describe the foundations of our work, as well as a body
of previous work that tackles the problem of specifying and verifying the observer pat-
tern. In Section 3l we define history invariants and their associated proof obligations.
In Section ] we define the additional machinery needed to support observer invariants,
culminating in a soundness theorem about them. The paper wraps up with additional
examples (Section[3)), more related work (Section[6)), future work (Section[7)), and con-
clusions (Section[§)).

2 Methodologies for Object Invariants

In this section, we review how a modular-verification system deals with objects invari-
ants. We also look at how previous work has tackled the problem of specifying and
verifying the observer pattern. In this section and throughout most of the paper, we
ignore the issue of subclassing.

Visible-state semantics. The first question to address when designing a methodology
for object invariants is: when does the invariant of an object hold? A simple answer is:
whenever no constructor or method of the object is active. This simple methodology is
called visible-state semantics [25/18]], because an object’s invariant holds in all states
visible to public clients of the object.

Because of the possibility of reentrancy in object-oriented programs, we need to be
concerned about the situation where an object a breaks its invariant, calls a method on
an object b, and then b calls back into some method of a that assumes the invariant
to hold. Visible-state semantics prevents this situation by using alias control, as with
the universe type system [25126]: a can be used only as a read-only object while the
method on b is invoked, restricting b’s use of a to read-only methods, and visible-state
semantics does not allow read-only methods to rely on the invariant.

Boogie methodology. A richer methodology is the Boogie methodology supported by
Spec# [4]. The basic Boogie methodology [2] adds a bit inv to every object. If
mv = true, the object is said to be consistent, its invariant holds, and its fields are
not allowed to be updated. If inv = false, the object is said to be mutable, its invariant
may be violated, and the fields are allowed to be updated. This guarantees the following
program invariant (a condition that holds in all reachable states of the program):

(Vo e o.inv = Inv(o)) (D

where, here and throughout, the quantification ranges over non-null, allocated objects
and Inv(o) denotes the declared object invariant of o. For the moment, we assume
Inv(0) to be an intra-object invariant, that is, that it depends only on the fields declared
in the class of o.

By mentioning inv explicitly in preconditions, methods can indicate whether or not
they expect the object invariant to hold on entry.

The Boogie methodology controls changes to the ¢nv field by introducing two spe-
cial program statements. The statement unpack o changes o.inv from true to false,
and the statement pack o changes o.inv from false to true, after first checking that
Inv(o0) holds. (This check can be done either by static verification or by run-time check-
ing. In this paper, we focus on static verification.)
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Use of unpack and pack is typically stylized, so in this paper we instead use a
block statement initialize (o) {S}, which abbreviates:

S; pack o
and a block statement expose (o) {S}, which abbreviates:
unpack o; S; pack o

The former typically wraps the body of a constructor and the latter wraps the bodies of
other methods, as we have seen in Fig.[Il

Owners and representation objects. Going beyond intra-object invariants, we now con-
sider invariants that span several objects. To meet preconditions involving ¢nv, it be-
comes necessary for an object o to know the state of its representation objects (or rep
objects), that is, the objects that o uses in its implementation. The Boogie methodology
lets a class declare a field with the rep modifier to say that the field references a rep
object (c¢f. [8I6I725110]).

We introduce another field for every object, owner, which determines an ownership
hierarchy among objects [19]. The owner field points in the inverse direction of rep
fields; in fact, declaring a field f to be rep induces the object invariant:

this.f = null V this.f.owner = this
The methodology guarantees the following program invariant [2/19]:
(Vo e o.inv = (Yr e r.oowner=o0 = r.inv)) )

To achieve this guarantee, the methodology restricts assignments to owner. For our
purposes, it suffices to set owner upon creation of objects (see [[19] for a treatment of
ownership transfer) and to add the following precondition to the unpack o statement:
—0.0wWNer.iny .

Using ownership, we can allow object invariants to dereference rep fields. That is,
if f is a rep field, then we can now allow Inv(o) to depend on o.f.z for any field
x . Nevertheless, this is not sufficient for the observer pattern: an observer can mention
fields of its subject (like this.subj.x) in its object invariant only if subj is a rep
field, which implies the observer is the unique owner of the subject. Not only does this
disallow the existence of more than one observer, but it also seems odd for an observer
to consider its subject to be part of its implementation.

Peers. As another possible field modifier, the Boogie methodology allows peer
[25l19110]. Declaring a reference-valued field f to be peer induces the following ob-
ject invariant:

this.f = null V this.owner = this.f.owner

Unlike rep fields, peer fields are not allowed to be freely dereferenced in object
invariants. However, peer modifiers lead us to the useful concept of an object o being
peer consistent, which says that o and all its peers are consistent:

PeerConsistent(o) = (Vp e p.owner = o.owner = p.inv )
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A subject and its observers are better suited as peers rather than that one owns the
other, because if both use PeerConsistent(this) in their method preconditions, then
the subject methods can invoke methods on any observer, and vice versa.

Visibility-based invariants. To specify and verify the observer pattern, we need a method-
ology that allows us to mention this.subj.2 in the invariant of observers, where subj
is a field that references the subject object and z is a field of the subject. This is allowed
under the two restrictions of scope visibility [19].

The first restriction of scope visibility says that an observer can mention this.subj.z
in its invariant if the invariant is visible to every verification context that can contain
an update of the z field. This works out fine for the iterator pattern, but forbids the
development of observer classes separate from the development of the subject class.

The second restriction is that updating a subject’s field s.z requires not only that
the subject s be in the mutable state (inv = false), but also that every observer o
for which o.subj = s be in the mutable state. This restriction is hard to live with if
the number of such observers o is unbounded. It is especially hard to live with if the
observers are not reachable from the subject, which is the case in the iterator pattern.

Update guards. Barnett and Naumann relax the second restriction for visibility-based
invariants [5]. Instead of requiring observers whose invariants mention this.subj.z to
be in the mutable state when 2 is updated, Barnett and Naumann propose checking that
the imminent update of = maintains the actual invariant of these observers. To provide
some way to abstract over an observer’s invariant, they also introduce the declaration of
an update guard in the observer classes. The update guard is a condition on the update
of the subject’s z field that is sufficient to maintain the observer’s invariant. The update
guard is declared as a two-state predicate. For example, an update guard

this.subj.z : old(this.subj.z) < this.subj.x

says that increasing the subject’s z field maintains the observer’s invariant.

Update guards can be used to specify the observer pattern, as long as the first restric-
tion for visibility-based invariants holds: observer classes must be visible to the subject
when it is verified.

Monotonicity. Another situation where we can allow an object invariant to mention
this.f.z is when z is a read-only field. This situation is almost like for intra-object in-
variants, because if  is immutable, then the only way to change the value of this.f.x
is to change this.f. Immutability is a special case of monotonicity. If the value of
a field = only changes monotonically, by some metric, then it is unproblematic to
allow an invariant Inv(o) to mention o.f .z, provided Inv(o) is maintained under such
monotonic changes (cf. [11]). Monotonicity conditions can be specified as reflexive and
transitive history invariants, which is in fact what we do.

Our solution. Let us briefly compare our solution to the previous work we have dis-
cussed in this section. Rather than declaring update guards in the observer classes,
which requires these observer classes to be known when the subject’s data are updated,
we propose declaring in the subject class how the subject’s data may evolve. This means
that the subject need not be aware of how many observers and observer classes there
are—such an observer is allowed to declare an invariant that depends on the subject’s
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data, provided the invariant has the property that it is automatically maintained when
the subject’s data evolve as advertised.

3 History Invariants

History invariants (or constraints, as Liskov and Wing called them [22]) are two-state
predicates. In this section, we first discuss intra-object history invariants in the context
of a visible-state semantics, and then look into inter-object history invariants in the
context of the Boogie methodology.

Visible-state semantics. In the visible-state semantics, an object invariant for object o
is a property that should hold of all visible states of o. A history invariant for o is
a property that should hold for any earlier-later pair of visible states of o. History
invariants can therefore be used to constrain the way that values change over time.

The history invariant in the following example says that the value of size will only
ever increase:

class Histogram(K) { Histogram(int size)
int size; requires 0 < size; {...}
invariant 0 < size;
history invariant old(size) < size; void Resize(int size)

requires this.size < size;

Let’s see how the Histogram class maintains its history invariant. The object’s first
visible state is defined at the time the Histogram constructor finishes. Different, sub-
sequent visible states can be created only by mutating methods, like Resize. The pre-
and post-states of Resize are visible states. Consequently, a visible-state semantics for
Histogram has to guarantee that the history invariant for this also holds between pre-
and post-states of Resize.

For visible-state semantics, history invariants are thus added as proof obligations to
post-conditions of public methods. But note that their verification only guarantees that
each pair of method pre- and post-states obeys the history invariant. However, history
invariants for an object o have to hold between any two visible states that result from
a computation on o. By requiring history invariants to be reflexive and transitive, we
guarantee that the history invariant holds between any earlier and later visible states.

Boogie methodology. We now describe how to incorporate history invariants into the
Boogie methodology. Continuing our example, we could implement the Histogram
class using a rep field of type Hashtable, where we assume that the class Hashtable
has a size field:

class Histogram(K) { Histogram(int size)
rep Hashtable(K ,int) hi; requires 0 < size; {...}
invariant 0 < ht.size;
history invariant Resize(int size)

old(ht.size) < ht.size; requires ht.size < size;
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In the visible-state semantics above, a history invariant of an object holds for pairs
of its visible states. In the Boogie methodology, a history invariant of an object holds
for pairs of its consistent states.

In the following formulas, we adorn state-dependent predicates with stores as in-
dices. One-state predicates have one state, two-state predicates have two states as in-
dices, i.e., g, denotes g evaluated in the two states o, 7 where old expressions in ¢
refer to state o and the non-old expressions refer to state 7. We use Hist(o) to denote
the declared history invariant of o; [Hist(0)]s - is Hist(o) evaluated in the two states
o,7. Weuse o < 7 to denote that state o occurs earlier than state 7 in a program run.

For the rest of the paper, we only allow ownership-based invariants with rep fields.
These give rise to the program invariants (I) and ). The methodology extended with
history invariants also needs to establish the following program invariant:

(Yo,0,7 @ 0 < T A Jo.inv], A [o.inv], = [Hist(0)]s,r ) (3)

This important condition says that if o and 7 are two states that occur in that execution
order and o.:nv holds in both of those states, then the history invariant for o relates
those two states.

We define a history invariant to be admissible if (a) it is reflexive, (b) it is transitive,
and (c) it depends only on the fields of this and the fields of transitive rep objects of
this. While property (c) is just a syntactical check, properties (a) and (b) give rise to
the proof obligations:

(Yo,0 e [Hist(0)]o,o) 4)
(Yo,o,7,v e [Hist(0)]sr A [Hist(0)]rn = [Hist(0)]ow ) (%)

which are checked by a theorem prover.

In addition to the proof obligations stemming from admissibility, a history invariant
also needs to be verified at various points in the program. Since the Boogie methodol-
ogy enforces that a field ¢.f can be changed only if ¢ and all its transitive owners are
mutable, the only way to violate the condition (3) in a program is when an object o
changes (in 7) from mutable to consistent and there was a previous time (namely o)
when o was consistent. Therefore, we check history invariants at the end of expose
blocks. That is, we redefine expose (o) {S} to stand for:

let p= o in unpack o; S; assert [Hist(0)],,,; pack o

where we use o to denote the current program state.
We can now prove that our methodology for history invariants is sound, that is, that
(@) follows from the admissibility checks and the added check in the expose statement.

Proof (3). Consider the (possibly infinite) sequence of states in any execution of the
program, and consider a particular object o. Consider any two states ¢ and 7 in this
sequence, such that o.inv holds in both of those states. The proof now proceeds by
induction over the length of the sequence from o to 7. We consider four cases.

— If o and 7 are the same state, then [Hist(0)], - follows directly from reflexivity ().

— If 0 and 7 are different states and there is some intervening state p in which
o.inv also holds, then by the induction hypothesis on the two shorter sequences,
[Hist(0)]s,, and [Hist(0)], - hold, so [Hist(0)],,~ holds by transitivity ().
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— If 0 and 7 are consecutive states, then ¢ and 7 bracket some primitive statement.
We argue that this primitive statement does not affect any field x.f, where z is o
or a transitive rep object of o, because the methodology allows a field update of
x.f only if x and its transitive owners are mutable (see (1) and @)).

— If o and 7 are different, non-consecutive states and they have no intervening state
in which o.inv holds, then o and 7 bracket the execution of an expose (0)
statement. The added check in the expose statement guarantees that [Hist(0)],, -
holds. ([

4 Observer Invariants

Object invariants of observers often depend on the stability of subjects. A prime exam-
ple for this dependency is given by the observer pattern, as implemented in Figure[Il Its
observer invariant says: if the version of the observer coincides with the version of the
collection, then the cache of the state of the observer coincides with the state held in the
subject. This property can now be used, for example, by the observer’s DisplayData
method: without reading the subject’s entire state, it can now guarantee that it displays
the current value of the subject, provided the versions of subject and observer still agree.

Observers make the dependency on their subject explicit by annotating a field with the

subject modifier. Declaring a field subj to be subject induces the object invariant:
this.subj = null V this.subj.owner = this.owner
This is the same as the object invariant induced by peer fields, but subject fields will
be used differently in defining the admissibility condition for object invariants.

We define an object invariant to be admissible if (a) it depends only on fields of this,
fields of transitive rep objects of this (that is, fields like this.fy.fi. - - .2 where the f;
are rep fields), and fields of subject objects of this (that is, fields like this.subj.x,
where subj is a subject field), and (b) it is stable under the history invariant of any
subject object dereferenced in the invariant. While property (a) is just a syntactic check,
property (b) gives rise to the following proof obligation, for every subject field subj
that is dereferenced in the invariant:

(Vo,o,7 e
o <7 A Jo.inv]e A (V] e [0.fle =o.f]r) A
[0.subj.inv], A [o.subj.inv]; A [Hist(o.subj)]s -
= [Inv(o)] )
This condition is checked by the theorem prover.

In the presence of subject fields, the object invariant doesn’t necessarily hold when
the object is consistent (as we saw at the program point between the updates of state
and vers in method Update in Fig. ). However, it does hold if the object’s subject
objects are consistent as well. So, in our methodology, the program invariant (I is re-
placed by the following program invariant:

(6)

(Yo e oinv A
(Vsubject field f of o dereferenced in Inv(o) e o.f = null V o.f.inv ) (7)
= Inv(o) )

(To receive the benefit of a stronger program invariant, one can think of Inv(o) as de-
noting just one conjunct of the object invariant, which reduces the number of f’s that
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the antecedent says need to be consistent, and then repeat the program invariant for each
conjunct of the object invariant.)

In order for (@) to hold, we need to add an additional check as part of the pack state-
ment, namely: for every subject field f of o, pack (o) also imposes the precondition
o.f =null V o.f.inv.

We can now prove that our revised methodology is sound, that is, that follows
from the admissibility checks and the added preconditions of the pack statement. For
brevity, we will give the proof for an object invariant Inv(o) that mentions exactly one
subject field, subj.

Proof (). The proof runs by induction over the sequence of states in any execution of
the program. The induction base is trivial: Program execution starts in a state where no
objects are allocated. In the induction step, we consider the different ways in which a
state change could violate (7))

case o is allocated: A newly allocated object o start with —o.inv.

case a heap location ¢.z that is referred to by a term o.fy.fi.---.z in Inv(o) is
changed: According to the methodology, a field ¢.x is allowed to be updated only if
t and its transitive owners are mutable, so —o.inv.

case o.inv is changed from false to true (which happens in pack (0)): The precon-
dition of the pack statement checks that Inv(o) holds.

case o.inv holds and s.inv is changed from false to true (which happens in pack
(s)), for an s such that o.subj = s: We distinguish two cases:

— If this pack (s) was part of an initialize (s), then —s.inv always held be-
fore this time. But since o.inv holds, there must have been an earlier pack (o),
o.subj would have been unchanged since the most recent such pack (o), and that
pack (o) would have checked that o.subj.inv held. So this case does not exist.

— If this pack (s) was part of an expose (s), then let o denote the state immedi-
ately before the expose (s) and let 7 denote the state immediately after s.inv has
been set to true, i.e., after the pack (s). Due to the block structure of expose state-
ments, we know that the condition —s.inv is stable throughout the execution after
state o and before state 7. Moreover, o.inv is stable between these states, because
any change to o0.inv would mean there was a pack (o) inside the expose (s),
and that pack (o) would have checked s.inv, which doesn’t hold. Because o.inv
is stable, then so is o.f forevery field f of o.In summary, we now have:

o <7 A [o.inv], A (Vf e [ofle =0.f]r) A
[0.5ubj.inv])s A [0.subj.inv],

By the last two conjuncts and (), we also have [Hist(o.subj)|s,- . Altogether, we
then have the antecedent of (6), from which we conclude [Inv(0)]- . O

S Further Examples
We show two more examples of how to use history invariants to prove observer patterns.

Collection Iterator Pattern [l[3]. Figure [2 shows an application of our methodology
to the class of a Collection (the subject) and its associated class of [terator objects
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class Collection(T) { class Iterator(T) {

rep T[] elems;
int ct; int vers;

invariant elems # null A
0 < ct < elems. Length,;
history invariant
old(vers) < vers;
history invariant
vers = old(vers) =
ct =old(ct) A
elems|0 : ct] = old(elems[0 : ct]);

Collection(int capacity)
requires 0 < capacity;
{ initialize (this) {
elems = new T[capacity];
ct= 0; wvers= 0;
}
}

void Add(T t)
{ expose (this) {
if (ct = elems.Length) { ... }
elems[ct] = t;
ct++; vers++;
}
}

T Remove(int 1)
requires 0 < 7 < ct;

{ Tt= elems[i];
expose (this) {

readonly subject Collection({T) coll;
readonly int vers;
int n; bool inRange;

invariant coll # null A
—1 < n A vers < coll.vers;
invariant
vers = coll.vers =
inRange = (0 < n < coll.ct);

Iterator(Collection(T) c)
requires ¢ # null;
ensures owner = c.oWner;
{ initialize (this) {
coll= c¢; vers= c.vers;
n= —1; inRange= false;
owner = c.owner;
}
}

bool MoveNezxt()
requires vers = coll.vers
otherwise InvalidOperation;
ensures result = inRange;
{ expose (this) {
if (n < coll.ct) { n++; }
inRange = n < coll.ct;

}

return inRange;

}

T Current()

elems[i: ct — 1] = elems[i + 1: ct]; requires vers = coll.vers
ct——; wvers++; otherwise InvalidOperation;
} requires inRange;
return ¢; { return coll.elems[n]; }
} }

}

Fig. 2. Class Collection{T) represents a list of items of type T that can be retrieved by an
Iterator(T) . These classes exhibit a variation of the observer pattern and their specifications are
handled by our methodology.

(the observers). Each Collection object contains a wvers field that is increased with
each update of the collection. The iterator’s methods require as a precondition that the
versions of the iterator and collection match up. If they don’t match up, the caller is in
error, a situation that is caught when trying to statically verify the caller.
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class Master {
int tm; int vers;

invariant 0 < tm;

history invariant old(vers) < vers;

history invariant vers = old(vers) =
old(tm) < tm;

class Clock {

readonly subject Master ms;
int tm; int vers;

invariant ms # null A 0 < tm;
invariant vers < ms.vers;
invariant vers = ms.vers =

tm < ms.tm;
Master()
ensures tm = 0 A vers = 0;
{ initialize (this) requires m # null;
{tm= 0; vers= 0; } ensures owner = m.owner;
} { initialize (this) {
ms= m; Synch();
owner = m.owner;

Clock(Master m)

void Tick(int n)
requires 0 < n; }
ensures old(tm) < tm; }
{ expose (this)
{tm= tm+mn; } private void Synch()
} { tm= ms.tm; vers= ms.vers; }

void Reset()
ensures tm = 0;

int GetTime()
ensures 0 < result < ms.tm;
{ expose (this) { if (vers # ms.vers)
{vers= wvers+1; tm= 0; } { expose (this) { Synch(); } }
} return tm;
} }
}

Fig. 3. Our rendition of Barnett and Naumann’s master and slave clock example [5]]. For verifica-
tion, we assume the private method Synch to be inlined at its call sites.

For compatibility with existing non-verified clients, the iterator methods will throw
an InvalidOperation exception in case the Iterator client is in error.

Note that the observer invariant is necessary for verifying the definedness of the
method Current: The implicit precondition says that the iterator is peer consistent.
The collection is a peer of the iterator, since coll is declared with subject, so peer
consistency of the iterator implies peer consistency of the collection. Because the iter-
ator and collection are both consistent, the observer invariant can be assumed on entry
to Current. Together with the explicit preconditions of the method, we conclude that
the array index n in Current’s implementation is in range.

Master and Slave Clocks [5]. A master clock has two timer functions, Tick, which
increases the time, and Reset, which resets the time to zero. A slave clock’s time never
exceeds its master’s time. Slaves have a GetTime method that returns the time at which
the slave clock most recently synchronized its time with the master. The number of
necessary synchronizations of a slave clock with a master clock should be minimal. This
means that as long as Tick is called on the master, a slave doesn’t have to synchronize.
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But as soon as the master’s clock is reset, a slave’s clock must be synchronized to fulfill
its contract. Figure 3] shows our solution.

6 Related Work

Automated program verification has a long history, cf. [23]]. Only much more recently
did it become feasible to do large-scale automatic reasoning as automatic theorem
provers made great progress and are now optimized for proving software checking (e.g.,
[9]), verification-condition generation became optimized for those theorem provers
(e.g., [12]]), and programming methodology progressed (e.g., [201905013])).

History invariants were introduced by Liskov and Wing [22] to constrain the behav-
ior of possible subtypes. Their paper did not explore the possibility of using them for
verifying object invariants. History invariants are also supported by the Java Modeling
Language (JML) [18]], which uses visible-state semantics. To the best of our knowledge,
static verification tools for JML do not yet support history invariants.

Our use of history invariants is similar to Rely/Guarantee style reasoning as intro-
duced by Jones [16]]. It enables a compositional reasoning about concurrent programs.
Rely/Guarantee conditions are also two-state predicates. In our setting, Rely/Guarantee
conditions would mean that a subject guarantees the stability of a property on which the
invariants of the observers rely.

Verifying observers is a form of verifying heap properties. This area has recently
gotten a lot of attention (e.g., [21]]). In the sequel, we focus only on traditional program
verification work for modern languages.

Another approach to specifying the update-notify idiom of the observer pattern is pro-
posed by Middelkoop et al. [24]. They use a mix between the visible-state semantics and
the Boogie methodology where all objects are consistent on method boundaries unless
explicitly stated otherwise. The approach does not yet address representation objects.

Inspector methods [[15] are pure methods that can depend on owned state. They el-
egantly address the existing data abstraction problem in ownership systems, but do not
help in verifying observers independent from subjects.

Kassios’s dynamic frames [17] abstractly specify the effect of mutator methods using
abstraction functions and dependency relations (and without needing a built-in owner-
ship system). The work is formulated in the context of an idealized logical framework;
it was not developed to address maintaining observer invariants, but rather to delineate
change. We look forward to seeing an implementation of the approach in an automatic
program verifier.

Like observers and subjects, the classes of a program can depend on each other in a
one-to-many way. For example, many classes depend on the String class. A different
approach exists for handling this situation [20].

An important recent strand in verifying heap structures is separation logic [27]. It is
an extension of Hoare logic for programs that use pointers or references into a heap.
However, its assertion language is not first order; instead, it uses a powerful spatial
conjunction that is integral for partitioning the heap. While proof system for separation
logic have been started, they are still somewhat primitive and tool support is not yet
there for a full object-oriented language.



Using History Invariants to Verify Observers 93

7 Future Work

We are currently investigating the best way to incorporate history invariants into Spec#
[4] and the Boogie program verifier [3]. We want to further develop the presented
methodology to support subtyping, which we believe to be an orthogonal issue, just
like in the basic Boogie methodology [2]]. With subtyping, one might have a situation
where a subclass acts like an observer to a field declared in a superclass. Another area
of interest is to understand how the verification of history invariants fits in with other
methodologies, like monotonic type states [[L1] and visibility-based invariants. Last but
not least, we want to explore whether history invariants can be used to verify more
design patterns, like invariants over static fields.

8 Conclusion

This paper extends the limits of sound modular verification for inter-object invariants.
In most previous approaches for one-to-many dependencies, all classes had to be de-
veloped together. Our approach allows one object (the subject) to export a history in-
variant, which other objects (the observers) can depend on. A history invariant typically
describes some stability of the subject’s state space. Introducing those properties has
two benefits: it allows observers to make their validity dependent on the stability of the
subject, and subjects do not have to know anything about the existence of observers.
This fosters modular development and verification.

Acknowledgments. We are grateful to the anonymous referees for their thoughtful and
helpful suggestions.
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