
Immutable Objects for a Java-Like Language

C. Haack1,�, E. Poll1, J. Schäfer2,��, and A. Schubert1,3,� � �

1 Radboud Universiteit Nijmegen, The Netherlands
2 Technische Universität Kaiserlautern, Germany

3 Warsaw University, Poland

Abstract. We extend a Java-like language with immutability specifications and a
static type system for verifying immutability. A class modifier immutable spec-
ifies that all class instances are immutable objects. Ownership types specify the
depth of object states and enforce encapsulation of representation objects. The
type system guarantees that the state of immutable objects does not visibly mu-
tate during a program run. Provided immutability-annotated classes and methods
are final, this is true even if immutable classes are composed with untrusted
classes that follow Java’s type system, but not our immutability type system.

1 Introduction

An object is immutable if it does not permit observable mutations of its object state. A
class is immutable if all its instances are immutable objects. In this article, we present
an extension of a Java-like language with immutability specifications and a static type
system for verifying them.

For many reasons, favoring immutability greatly simplifies object-oriented program-
ming [Blo01]. It is, for instance, impossible to break invariants of immutable objects,
as these are established once and for all by the object constructor. This is especially
pleasing in the presence of aliasing, because maintaining invariants of possibly aliased
objects is difficult and causes headaches for program verification and extended static
checking tools. Sharing immutable objects, on the other hand, causes no problems
whatsoever. Object immutability is particularly useful in multi-threaded programs, as
immutable objects are thread-safe. Race conditions on the state of immutable objects
are impossible, because immutable objects do not permit writes to their object state.
Even untrusted components cannot mutate immutable objects. This is why immutable
objects are important in scenarios where some components (e.g. applets downloaded
from the web) cannot be trusted. If a security-sensitive component checks data that it
has received from an untrusted component, it typically relies on the fact that the data
does not mutate after the check. A prominent example of an immutable class whose
immutability is crucial for many security-sensitive applications is Java’s immutable
String class.

Unfortunately, statically enforcing object immutability for Java is not easy. The main
reason for this is that an object’s local state often includes more than just the object’s
fields. If local object states never extended beyond the object’s fields, Java’s final

� Supported by the EU under the IST-2005-015905 MOBIUS project.
�� Supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

��� Supported by an EU Marie Curie Intra-European Fellowship.

R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 347–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 C. Haack et al.

field modifier would be enough to enforce object immutability. However, String ob-
jects, for instance, refer to an internal character array that is considered part of the
String’s local state. It is crucial that this character array is encapsulated and any alias-
ing from outside is prevented. Java does not provide any support for specifying deep
object states and enforcing encapsulation. Fortunately, ownership type systems come
to rescue. Ownership type systems have been proposed to better support encapsulation
in object-oriented languages, e.g., [CPN98, CD02, BLS03, MPH01, DM05]. In order
to permit immutable objects with deep states, we employ a variant of ownership types.
The core of our ownership type system is contained (in various disguises) in all of the
ownership type systems listed above. In addition, our type system distinguishes be-
tween read-only and read-write objects. The difference between read-only objects and
immutable objects is that the latter have no public mutator methods at all, whereas the
former have public mutator methods that are prohibited to be called. We need read-
only objects in order to support sharing mutable (but read-only) representation objects
among immutable objects. Unlike read-only references [MPH01, BE04, TE05], our
read restrictions for immutable and read-only objects are per object, not per reference.

Our type system guarantees immutability in an open world [PBKM00] where im-
mutable objects are immutable even when interacting with unchecked components that
do not follow the rules of our immutability type system. The immutability type sys-
tem guarantees that unchecked components cannot break from outside the immutability
of checked immutable objects. All we assume about unchecked components is that
they follow the standard Java typing rules. Unchecked components could, for instance,
represent legacy code or untrusted code. Our decision to support an open world has
several important impacts on the design of our type system. For instance, we have to
ensure that the types of public methods of immutable objects do not constrain callers
beyond the restrictions imposed by Java’s standard type system. Technically, this is
easily achieved by restricting the ownership types of methods. Furthermore, we cannot
assume that clients of immutable objects follow a read-only policy that is not already
enforced by Java’s standard type system. For this reason, we define read-only types in
context world to be equivalent to read-write types.

A difficulty in enforcing object immutability is that even immutable objects mutate
for some time, namely during their construction phase. This is problematic for several
reasons. Firstly, Java does not restrict constructor bodies in any way. In particular, Java
allows passing self-references from constructors to outside methods. This is undesirable
for immutable objects as it would allow observing immutable objects while they are still
mutating. Moreover, the rules that control aliasing for constructors should be different
from the rules that control aliasing for methods. Constructors should be allowed to pass
dynamic aliases to their internals to outside methods as long as these methods do not
store any static aliases to the internals. Methods, on the other hand, must be disallowed
to leak dynamic aliases to internals, if our goal is immutability in an open world.

2 A Java-Like Language with Immutability

In this section, we present Core Jimuva, a core language for an immutability exten-
sion of Java. We use the same syntax conventions as Featherweight Java (FJ) [IPW01].
In particular, we indicate sequences of X’s by an overbar: X̄ . We assume that field

Immutable Objects for a Java-Like Language 349

declarations F̄ , constructor declarations K̄, method declarations M̄ and parameter dec-
larations t̄y x̄ do not contain duplicate declarations. We also use some regular expression
syntax: X? for an optional X , X* for a possibly empty list of X’s, and X | Y for an X
or a Y . For any entity X (e.g., X an expression or a type), we write oids(X) for the set
of object identifiers occurring in X and vars(X) for the set of variables occurring in X
(including the special access variable myaccess). For a given class table c̄, we write
Cext c̄D whenever fmcaclassCextD{..} ∈ c̄. The subclassing relation <:c̄ is the re-
flexive, transitive closure of ext c̄. We omit the subscript c̄ if it is clear from the context.
Like in FJ, we assume the following sanity conditions on class tables c̄: (1) subclassing
<:c̄ is antisymmetric, (2) if C (except Object) occurs anywhere in c̄ then C is declared
in c̄ and (3) c̄ does not contain duplicate declarations or a declaration of Object.

Core Jimuva — a Java-like Core Language with Immutability Annotations:

C,D,E ∈ ClassId class identifiers (including Object)
f ,g ∈ FieldId field identifiers
m,n ∈ MethId method identifiers
k, l ∈ ConsId constructor identifiers
o, p,q,r ∈ ObjId object identifiers (including world)
x,y,z ∈ Var variables (including this, myowner)

ca ::= immutable? class attributes
ea ::= anon? rdonly? wrlocal? expression attributes
ar ::= rd | rdwr | myaccess access rights for objects
fm ::= final? final modifier

u,v,w ∈ Val ::= null | o | x values
ty ∈ ValTy ::= C<ar,v> | void value types
T ∈ ExpTy ::= ea ty expression types

c,d ::= fmcaclassCextD{F̄ K̄ M̄} class declaration (where C �= Object)
F ::= C<ar,v> f; field
K ::= eaC.k(t̄y x̄){e} constructor (scope of x̄ is e)
M ::= fm<ȳ>T m(t̄y x̄){e} method (scope of ȳ is (T, t̄y,e), of x̄ is e)

e ∈ Exp ::= expressions and statements
v | v. f | v. f=e | v.m<v̄>(ē) | newC<ar,v>.k(ē) | letx=eine | (C)e | C.k(ē)

Derived Forms:

If e �∈ Val,x �∈ vars(e,e′, v̄, ē): e. f
Δ= letx=einx. f e. f=e′ Δ= letx=einx. f=e′

e.m<v̄>(ē) Δ= letx=einx.m<v̄>(ē) If x �∈ vars(e′): e;e′ Δ= letx=eine′

skip
Δ= null e;

Δ= e;skip letx, x̄=e, ēine′ Δ= letx=einlet x̄= ēine′

e.m(ē) Δ= e.m<>(ē) fmT m(t̄y x̄){e} Δ= fm<>T m(t̄y x̄){e}
C<ar>

Δ= C<ar,world> C<v>
Δ= C<rdwr,v> C

Δ= C<world>

Core Jimuva extends a Java core language by immutability specifications: the class
attribute immutable specifies that all instances of a class are immutable objects, i.e.,
their object state does not visibly mutate.

The other Java extensions are auxiliary and specify constraints on objects and methods
that immutable objects depend on: Ownership types are used to ensure encapsulation

350 C. Haack et al.

of representation [CPN98, CD02, BLS03]. The rdonly-attribute (read-only) is used to
disallow methods of immutable objects to write to their own object state. The wrlocal-
attribute (write-local) is used to constrain constructors of immutable objects not to write
to the state of other immutable objects of the same class. Vitek and Bokowski’s anon
(anonymous) attribute [VB01] is used to constrain constructors of immutable objects not
to leak references to this. For a given class table with immutable-specifications, these
additional expression attributes can be automatically inferred, but we prefer to make them
syntactically explicit in this paper.

Object types are of the form C<ar,v>, where ar specifies the access rights for the ob-
ject and v specifies the object owner. Omitted access rights default to rdwr, omitted
owners default to world. The expression newC<ar,v>.k(ē) creates a new object of
type C<ar,v> and then executes the body of constructor C.k() to initialize the new ob-
ject. Access rights and ownership information have no effect on the dynamic behaviour
of programs.

Access rights specify access constraints for objects (in contrast to Java’s access modi-
fiers protected and private, which specify access constraints for classes). The ac-
cess rights are rdwr (read-write, i.e., no constraints) and rd (read-only). Read-only
access to o forbids writes to o’s state and calls to o’s non-rdonly methods. Objects are
implicitly parameterized by the access variable myaccess, which refers to the access
rights for this. Consider, for instance, the following class:

class C ext Object {
C<myaccess,myowner> x;
wrlocal C.k(C<myaccess,myowner> x){ this.set(x); }
rdonly C<myaccess,myowner> get(){ x }
wrlocal void set(C<myaccess,myowner> x){ this.x = x; } }

If, for instance, o is an object of type C<rd, p>, then access to o is read-restricted. Fur-
thermore, access to all objects in the transitive reach of o is read-restricted, too: o.get(),
o.get().get(), etc., all have type C<rd, p> and therefore permit only rd-access. The
following example shows how C can be used:

class D ext Object {
C<rd,this> x; C<myaccess,myowner> y; C<rdwr,this> z;
...
void m() {

x = new C<rd,this>(new C<rd,this>(null)); // legal
y = new C<myaccess,myowner>(new C<myaccess,myowner>(null)); // legal
z = new C<rdwr,this>(new C<rdwr,this>(null)); // legal
new C<rd,this>(new C<myaccess,myowner>(null)); // illegal
x.get(); y.get(); z.get(); y.set(null); z.set(null); // legal
x.set(null); // illegal call of non-rdonly method on rd-object }

rdonly void n() {
y.set(null); // illegal call of non-rdonly method } }

It may perhaps be slightly surprising that the call y.set(null) in m() is legal, although
the access variable myaccess may possibly get instantiated to rd. This call is safe,
because it is illegal to call the non-rdonly method m() on a rd-object and, hence, the
call y.set(null) inside m() is never executed when myaccess instantiates to rd.

Immutable Objects for a Java-Like Language 351

Ownership types. Objects of type C<ar,o> are considered representation objects owned
by o, that is, they are not visible to the outside and can only be accessed via o’s interface.
Objects without owners have types of the form C<ar,world>. The special variable
myowner refers to the owner of this. Our type system restricts myowner and world
to only occur inside angle brackets < ·>. The myowner variable corresponds to the first
class parameter in parametric ownership type systems [CD02, BLS03] and to the owner
ghost field in JML’s encoding of the Universe type system [DM05]. Furthermore, the
Universe type system’s rep and peer types [MPH01] relate to our types as follows:
repC corresponds to C<rdwr,this>, and peerC to C<rdwr,myowner>.

Owner-polymorphic methods. In a method declaration <ȳ>T m(t̄y x̄){e}, the scope of
owner parameters ȳ includes the types T, t̄y and the method body e. The type system re-
stricts occurrences of owner parameters to inside angle brackets < ·>. Owner parameters
get instantiated by the values v̄ in method call expressions u.m<v̄>(ē).

Owner-polymorphic methods permit dynamic aliasing of representation objects.
Consider, for instance, a method of the following type:

<x,y> void copy(C<x> from, C<y> to)

A client may invoke copy with one or both of x and y instantiated to this, for in-
stance, copy<world,this>(o,mine), where mine refers to an internal representation
object owned by the client. Dynamic aliasing of representation objects is often danger-
ous, but can sometimes be useful. For immutability, dynamic aliasing is useful during
the object construction phase, but dangerous thereafter. For instance, the constructor
String(char[] a) of Java’s immutable String class passes an alias to the string’s
internal character array to a global arraycopy()method, which does the job of defen-
sively copying a’s elements to the string’s representation array. Our type system uses
owner-polymorphic methods to permit dynamic aliasing during the construction phase
of immutable objects, but prohibit it thereafter. The latter is achieved by prohibiting
rdonly-expressions to instantiate a method’s owner parameters by anything but world.

For String to be immutable, it is important that the arraycopy()method does not
create a static alias to the representation array that is handed to it from the constructor
String(char[] a). Fortunately, owner-polymorphic methods prohibit the creation of
dangerous static aliases! This is enforced merely by the type signature. Consider again
the copy() method: From the owner-polymorphic type we can infer that an implemen-
tation of copy does not introduce an alias to the to-object from inside the transitive
reach of the from-object. This is so, because all fields in from’s reach have types of
the form D<ar,x> or D<ar,from> or D<ar,world> or D<ar,o> where o is in from’s
reach. None of these are supertypes of C<y>, even if D is a supertype of C. Therefore,
copy’s polymorphic type forbids assigning the to-object to fields inside from’s reach.

Let-bindings. Unlike FJ [IPW01] but like other languages that support ownership
through dependent types [CD02, BLS03], we restrict some syntactic slots to values
instead of expressions, for instance, v. f instead of e. f . This is needed for our typing
rules to meaningfully instantiate occurrences of this in types. We obtain an expression

352 C. Haack et al.

language similar to FJ through derived forms, see above. An automatic typechecker for
full Jimuva will work on an intermediate language with let-bindings.

Constructors. Our language models object constructors. This is important, as object
construction is a critical stage in the lifetime of immutable objects: during construc-
tion even immutable objects still mutate! For simplicity, Core Jimuva’s constructors
are named. Moreover, we have simplified explicit constructor calls: instead of calling
constructors using super() and this(), constructors are called by concatenating class
name C and constructor name k, i.e., C.k(). Constructors C.k() are only visible in C’s
subclasses. We allow direct constructor calls C.k() from constructors, and even from
methods, of arbitrary subclasses of C. That is more liberal than real Java, but unprob-
lematic for the properties we care about.

Protected fields. Jimuva’s type system ensures that fields are visible in subclasses only.
This is similar to Java’s protected fields.1 Our reason for using protected instead
of private fields is proof-technical: a language with private fields does not satisfy
the type preservation (aka subject reduction) property. On the other hand, soundness
of a type system with private fields obviously follows from soundness of our less
restrictive type system with protected fields.

3 Operational Semantics

Our operational semantics is small-step and similar to the semantics from Zhao et
al [ZPV06]. However, in contrast to [ZPV06], we also model a mutable heap. The op-
erational semantics is given by a state reduction relation h :: s →c̄ h′ :: s′, where h is
a heap, s a stack and c̄ the underlying set of classes. We omit the subscript c̄ if it is
clear from the context. Stack frames are of the form (e ino), where e is a (partially exe-
cuted) method body and o is the this-binding. Keeping track of the this-binding will
be needed for defining the semantics of immutability. The world identifier is used as
a dummy for the this-binding of the top-level main program. Evaluation contexts are
expressions with a single “hole” [], which acts as a placeholder for the expression that
is up for evaluation in left-to-right evaluation order. If E is an evaluation context and e
an expression, then E [e] denotes the expression that results from replacing E ’s hole by
e. Evaluation contexts are a standard data structure for operational semantics [WF94].

Runtime Structures:

state ::= h :: s ∈ State = Heap×Stack states
h ::= obj ∈ Heap = ObjId → (FieldId → Val) heaps
obj ::= o{ f̄ = v̄} ∈ Obj = ObjId× (FieldId → Val) objects
s ::= f̄r ∈ Stack = Frame* stacks
fr ::= e ino ∈ Frame = Exp×ObjId stack frames
E ::= [] | v. f=E | v.m<v̄>(v̄,E , ē) | newC<ar,v>.k(v̄,E , ē) |

letx=E ine | (C)E | C.k(v̄,E , ē)
evaluation contexts

1 Java’s protected fields are slightly more permissive and package-visible, too.

Immutable Objects for a Java-Like Language 353

We assume that every object identifier o �= world is associated with a unique type
ty(o) of the form C<ar, p> such that p = world implies ar = rdwr. We define rawty(o)
Δ= C, if ty(o) = C<ar, p>.

We use substitution to model parameter passing: Substitutions are finite functions
from variables, including myaccess, to values and access rights. We let meta-variable
σ range over substitutions and write (x̄←v̄) for the substitution that maps each xi in x̄ to
the corresponding vi in v̄. We write id for the identity. We write e[σ] for the expression
that results from e by substituting variables x by σ(x). Similarly for types, T [σ]. The
following abbreviations are convenient:

self(u,ar,v) Δ= (this,myaccess,myowner←u,ar,v)
σ , ȳ←v̄

Δ= (x̄, ȳ←ū, v̄), if σ = (x̄←ū) and x̄∩ ȳ = /0

We use several auxiliary functions that are essentially as in FJ [IPW01] (see also
[HPSS07] for details): The function mbodyc̄(C,m) looks up the method for m on C-
objects in class table c̄. Similarly, cbodyc̄(C.k) for constructors. The function fdc̄(C)
computes the field set for C-objects based on class table c̄. We omit the subscript c̄ if it
is clear from the context.

State Reductions, state →c̄ state′:

(Red Get) h = h′,o{.. f = v..}
h :: s,E [o. f] in p → h :: s,E [v] in p

(Red Set)
h,o{ f = u, ḡ = w̄} :: s,E [o. f=v] in p → h,o{ f = v, ḡ = w̄} :: s,E [v] in p

(Red Call) s = s′,E [o.m<ū>(v̄)] in p ty(o) = C<ar,w> mbody(C,m) = <ȳ>(x̄)(e)
h :: s → h :: s,e[self(o,ar,w), ȳ←ū, x̄←v̄] ino

(Red New) s = s′,E [newC<ar,w>.k(v̄)] in p o �∈ dom(h) ty(o) = C<ar,w> fd(C) = t̄y f̄
h :: s → h,o{ f̄ = null} :: s,C.k(v̄);o ino

(Red Cons) s = s′,E [C.k(v̄)] in p cbody(C.k) = (x̄)(e) ty(p) = D<ar,w>
h :: s → h :: s,e[self(p,ar,w), x̄←v̄] in p

(Red Rtr) e = q.m<ū>(v̄) or e = newC<ar,u>.k(v̄) or e = C.k(v̄)
h :: s,(E [e] ino),(v in p) → h :: s,E [v] ino

(Red Let)
h :: s,E [letx=vine] in p → h :: s,E [e[x←v]] in p

(Red Cast) v = null or rawty(v) <: C
h :: s,E [(C)v] in p → h :: s,E [v] in p

4 Semantic Immutability

Intuitively, an object o is immutable in a given program P, if during execution of P no
other object p can see two distinct states of o. A class is immutable if all its instances
are immutable in all programs.

In order to formalize this definition, we have to describe the meaning of the phrase
“p sees o’s state”. The object p can read o’s fields directly or it can call o’s methods
and observe possible state changes that way. Thus, if o’s object state is always the same

354 C. Haack et al.

on external field reads and in the prestate of external method calls on o, we can be sure
that no object p ever sees mutations of o’s state.

Definition 1 (Visible States). A visible state for o is a state of the form(h :: s,E [o. f] in p)
or (h :: s,E [o.m<ū>(v̄)] in p) where p �= o.

We also have to formalize what o’s object state is. Just including the fields of an object
is often not enough, because this only allows shallow object states. We interpret the
ownership type annotations on fields as specifications of the depth of object states: if
a field f ’s type annotation has the form C<ar,this> then the state of the object that f
refers to is included in this’s state; if f ’s type annotation has the form C<ar,myowner>
then the state of the object that f refers to is included in myowner’s state. This is for-
malized by the following inductive definition:

Definition 2 (Object State). For any heap h, the binary relation ∈ state(h)() over
Obj×ObjId is defined inductively by the following rules:

– If o{ f̄ = v̄} ∈ h, then o{ f̄ = v̄} ∈ state(h)(o).
– If o{.. f = q..} ∈ h and C<ar,this> f ∈ fd(rawty(o))

and obj ∈ state(h)(q), then obj ∈ state(h)(o).
– If p �= o and p{.. f = q..} ∈ state(h)(o) and C<ar,myowner> f ∈ fd(rawty(p))

and obj ∈ state(h)(q), then obj ∈ state(h)(o).

Let state(h)(o) Δ= {obj |obj ∈ state(h)(o)}.

Example 1 (Object State)

class C ext Object { D<..,this> x; D<..,world> y; constructors methods }
class D ext Object { E<..,myowner> x; E<..,this> y; constructors methods }
class E ext Object { Object<..,myowner> x; constructors methods }

Let c{x = d1,y = d2}, d1{x = e1,y = e2}, e1{x = o1}, e2{x = o2} be instances of
C, D, E in heap h. Then state(h)(e1) consists of (the object whose identifier is) e1;
state(h)(e2) consists of e2; state(h)(d1) consists of d1,e2,o2; and state(h)(c) consists
of c,d1,e1,o1,e2,o2. �

Definition 3 (Immutability in a Fixed Program). Suppose P = (c̄;e0) is a Jimuva-
program and C is declared in c̄. We say that C is immutable in P whenever the following
statement holds:

If /0 :: e0 inworld →∗
c̄ h1 :: s1 →∗

c̄ h2 :: s2,
and h1 :: s1 and h2 :: s2 are visible states for o,
and rawty(o) <: C, then state(h1)(o) = state(h2)(o).

This immutability definition disallows some immutable classes that intuitively could be
allowed, because the last line requires state(h1)(o) and state(h2)(o) to be exactly iden-
tical. A more liberal definition would allow object state mutations that are unobservable
to the outside. For instance, immutable objects with an invisible internal mutable cache
for storing results of expensive and commonly called methods could be allowed. How-
ever, standard type-based verification techniques would probably disallow unobservable
object mutations. Because our primary goal is the design of a sound static type system,

Immutable Objects for a Java-Like Language 355

we do not attempt to formalize a more permissive definition of immutability up to a
notion of observational equivalence of object states, but instead work with our strict
definition that is based on exact equality of object states.

We are interested in immutability in an open world, where object immutability can-
not be broken by unchecked components. To formally capture the open world model,
we define a type erasure mapping | · | from Jimuva to Core Java, see [HPSS07] for de-
tails. This mapping erases ownership information, access rights, expression attributes
and class attributes. The operational semantics, →java , and typing judgment, 	java, for
Core Java are defined in [HPSS07]. The Jimuva typing judgment, 	, will be defined in
Section 6. A Java-program is a pair (c̄;e) such that (java c̄ : ok) and (java,c̄ e : ty) for
some Java-type ty. The semantics of Jimuva and Core Java are related as follows:

– If (c̄ : ok), then (state →c̄ state′) iff (|state| →java,|c̄| |state′|).
– If (c̄ : ok), then (java |c̄| : ok).

There is also an embedding e that maps a Jimuva class table c̄ and a Java class table d̄
(which refers to |c̄|) to a Jimuva class table ec̄(d̄) such that |ec̄(d̄)| = d̄, see [HPSS07]
for details. This embedding inserts the annotations rdwr and world wherever access or
ownership parameters are required. One can think of a Java-class as a Jimuva-class
without any Jimuva-specific annotations. The embedding e inserts Jimuva-defaults
where Jimuva-annotations are syntactically required.

Our type system is sound in an open world with legal subclassing. That is, we assume
that unchecked classes do not extend Jimuva-annotated classes or override Jimuva-
annotated methods. We could easily modify our system to guarantee immutability in an
open world without this subclassing restriction, by requiring Jimuva-annotated classes
and methods to be final. We choose not to, because we find that a bit too restric-
tive. Note, in this context, that Java’s Extension Mechanism supports sealed optional
packages, which prohibit subclassing from outside the package.2

Jimuva-annotated classes and methods: A field declaration C<ar,v> f is Jimuva-
annotated if ar �= rdwr or v �= world. A method fm<ȳ>eaty′ m(t̄y x̄){e} is Jimuva-
annotated if ȳ, ea or vars(ty′, t̄y) is non-empty. A class fmcaclassCextD{..} is
Jimuva-annotated, if it contains Jimuva-annotated field declarations or ca is non-empty.

Legal subclassing: A Java class table d̄ legally subclasses a Jimuva class table c̄, if
no class declared in d̄ extends a Jimuva-annotated class and no method declared in d̄
overrides a Jimuva-annotated method.

Definition 4 (Immutability in an Open World). Suppose C is declared in Jimuva-
class-table c̄ and (c̄ : ok). We say that C is immutable in c̄ whenever C is immutable
in (c̄,ec̄(d̄);ec̄(e)) for all Java-programs (|c̄|, d̄;e) where d̄ legally subclasses c̄.

Let us say that a class table c̄ is correct for immutability whenever every class that is
declared immutable in c̄ is in fact immutable in c̄. Jimuva’s type system is sound in
the following sense:

Theorem 1 (Soundness). If (c̄ : ok), then c̄ is correct for immutability.

2 Out-of-package subclassing results in a SecurityException at runtime.

356 C. Haack et al.

5 The Immutability Type System – Informally

The simplest example of an immutable class is:3

immutable class ImmutableInt ext Object {
int value;
anon wrlocal ImmutableInt.k(int i) { this.value=i; }
rdonly int get() { this.value } }

Here the state of an ImmutableInt object just consists of its instance field value. For
more complicated immutable objects, ownership annotations are needed to specify if
objects referenced by instance fields are part of the (immutable) state:

class Mutable ext Object {
int value;
anon Mutable.k(int i) { this.value=i; }
rdonly int get() { this.value }
void set(int i) { this.value=i; } }

immutable class EncapsulatedMutable ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable.k(Mutable m) {

this.m = new Mutable<this>.k(m.get()); }
rdonly int get(){ this.m.get() } }

Here the annotation <this> on the type of field m declares that the state of the ob-
ject referenced by m is considered part of the state of an EncapsulatedMutable ob-
ject. The type system enforces that constructor EncapsulatedMutable.k(m) makes
a defensive copy of m to prevent representation exposure. Technically, this is achieved
because m’s type Mutable, which is short for Mutable<world>, is not a subtype of
Mutable<this> and, thus, a direct assignment to the field this.m is disallowed.

Restrictions on methods with rdonly. Obviously, methods of an immutable object
should not modify their object state. One could try to ensure this by requiring that
methods of immutable objects are side-effect free. However, ensuring side-effect free-
ness is not so simple, because even side-effect free methods must be allowed to call
constructors that write to the heap. Limiting constructor writes for side effect freeness
in a practical and safe way requires alias control [SR05]. Therefore, instead of requiring
side-effect freeness, Jimuva uses a weaker restriction that is simpler to enforce on top
of the ownership infrastructure.

rdonly: An expression is read-only, if it (1) contains no field assignments, (2)
all its method calls have the form v.m<ū>(ē) where either (a) m is rdonly or
(b) ū = world and v has a type C<ar,world>, and (3) all its new-calls have the
form newC<ar,world>.k(ē).

rdonly-methods are guaranteed to not write to the state of immutable receivers. The
rdonly-restriction allows important side-effecting methods. For instance, the method
getChars(int srcBegin,int srcEnd,char[] dst,int dstBegin)fromJava’s

3 For readability, keywords that could be left implicit are written in italics.

Immutable Objects for a Java-Like Language 357

immutable String class writes to the array dst (owned by world). It is an example of
a rdonly method that is not side-effect free.

Restrictions on constructors with wrlocal and anon. A constructor of an immutable
object typically will have side-effects to initialize the object state. We have to restrict
constructors of immutable objects for two reasons: (i) we have to prevent them from
modifying other objects of the same class, (ii) we have to prevent them from leaking
the partially constructed this [Goe02].

Issue (i) stems from the fact that visibility modifiers in Java constrain per-class, not
per-object, visibility. So it is possible for a constructor of an immutable object to see
and modify other immutable objects of the same class. For example:

immutable class Wrong {
Mutable<this> m;
rdonly int get(){ m.get() } }
anon wrlocal Wrong.k(Wrong o) {

this.m = new Mutable<this>.k(o.get());
o.m.set(23); /* unwanted side-effect on other object! */ } }

To prevent such immutability violations, we require constructors of immutable objects
to be write-local in the following sense:

wrlocal: An expression is write-local, if (1) all its field assignments have the
form v. f=e where either v = this or v has a type C<rdwr,this> and (2) all its
method calls have the form v.m<ū>(ē) where either (a) m is rdonly or (b) m is
wrlocal and v = this or (c) m is wrlocal and v has a type C<rdwr,this>
or (c) v is has a type C<ar,world>.

To prevent constructors of immutable objects from leaking this, we use Vitek et al’s
notion of anonymity of [VB01, ZPV06]:

anon: An expression is anonymous, if it (1) is not this, (2) does not pass this
to foreign methods, (3) does not assign this to fields, and (4) all its method
calls have the form v.m<ū>(ē) where either v or m is anon.

Owner-polymorphic methods. The example below uses an owner-polymorphic method
to permit dynamic aliasing of the representation object this.m during object construc-
tion. As explained in Section 2, the polymorphic type of copy() prevents this method
from creating a static alias to its parameter to. This example is a small model of Java’s
String constructor String(char[] a), which gives an alias to a representation ob-
ject to a global arraycopy() method.

class Utilities ext Object {
Utilities.k(){ skip }
<x,y> void copy(Mutable<x> from, Mutable<y> to){ to.set(from.get()); } }

immutable class EncapsulatedMutable2 ext Object {
Mutable<this> m;
anon wrlocal EncapsulatedMutable2.k(Mutable m) {

this.m = new Mutable<this>.k(null);
new Utilities.k().copy<world,this>(m,this.m); }

rdonly int get(){ m.get() } }

358 C. Haack et al.

Now is a good point to present the subtyping relation: Subtyping is defined against
a type environment Γ that assigns types to variables. The following function is used in
its definition:

atts(Object) Δ= /0 atts(C) Δ= ca, if fmcaclassCextD{..} atts(void) Δ= /0

atts(C<ar,v>) Δ= atts(C)∪{ar} atts(ea ty) Δ= ea∪atts(ty) atts(o) Δ= atts(ty(o))

We interpret expression attributes ea as subsets of {anon,rdonly,wrlocal} ordered
by set inclusion.

Subtyping, Γ 	 T � U:

(Sub Rep) Γ 	 ar,v,v′ : ok
C <: C′ ea′ ⊆ ea

Γ 	 eaC<ar,v> � ea′C′<ar,v>

(Sub World)
Γ 	 ar,ar′ : ok ea′ ⊆ ea C <: C′

Γ 	 eaC<ar,world> � ea′C′<ar′,world>

(Sub Void)
ea′ ⊆ ea

Γ 	 eavoid � ea′ void

(Sub Share) ea′ ⊆ ea C <: C′

Γ 	 v,v′ : D,D′ in world immutable ∈ atts(D)∩atts(D′)

Γ 	 eaC<rd,v> � ea′C′<rd,v′>

The interesting rules are (Sub Share) and (Sub World). The former allows flows of read-
restricted objects with immutable owners into locations for read-restricted objects of
other immutable owners. That is, our type system permits sharing representation objects
among immutable objects as long as those are read-restricted. The rule (Sub World)
expresses that ownerless objects do not have to follow access policies. It is needed to
ensure that our type system is sound in an open world that includes clients that do
not follow Jimuva-policies. Compared to type systems with read references, e.g., the
Universe type system [MPH01], it is noteworthy that we do not allow upcasting read-
write objects to read objects. Allowing this would lead to an unsoundness in our system.
This means that read-restricted objects have to be created as read-restricted objects. Of
course, we then must allow constructors of read-restricted objects to initialize their own
state. This is safe, as long as constructors of read-restricted objects are wrlocal.

Sharing mutable representation objects. This example illustrates sharing of mutable
representation objects. The subtyping rule (Sub Share) is used to upcast o.m’s type
from SharedRepObject<rd,o> to SharedRepObj<rd,this> so that the assignment
to this.m becomes possible.

immutable class SharedRepObject ext Object {
Mutable<rd,this> m;
rdonly int get(){ m.get() } }
anon wrlocal SharedRepObject.k1(int i) {

this.m = new Mutable<rd,this>.k(i); }
anon wrlocal SharedRepObject.k2(SharedRepObject o) {

this.m = o.m; } /* sharing of mutable representation object */ }

6 The Immutability Type System – Formally
A type environment Γ = (Γacc,Γown,Γval) is a triple of partial functions Γacc ∈
{myaccess} → {•}, Γown ∈ Var ∪ ObjId → {•} and Γval ∈ Var ∪ ObjId → ExpTy. If

Immutable Objects for a Java-Like Language 359

v �∈ dom(Γval)∪{null}, we define Γval,v : T
Δ= Γval ∪{(x,T)}. Similarly, for Γacc and

Γown. We define Γ ,v : T
Δ= (Γacc,Γown,(Γval,v : T)). Similarly, for Γacc and Γown. We of-

ten write Γ (v) = T as an abbreviation for Γval(v) = T . Similarly, for Γacc and Γown. We

define dom(Γ) Δ= dom(Γacc)∪dom(Γown)∪dom(Γval).

Substitution Application for Environments, Γ [σ]:

Γ [σ] Δ= (Γacc[σ],Γown[σ],Γval[σ]) Γval[σ] Δ= {(v,T [σ]) |(v,T) ∈ Γval}
Γacc[σ] Δ= {(ar[σ],•) |ar ∈ dom(Γacc)}∩{(myaccess,•)}
Γown[σ] Δ= {(v[σ],•) |v ∈ dom(Γown)}∩ (Var ∪ObjId)×{•}

In addition to subtyping, there are judgments of the following forms:

	 c : ok “c is a good class declaration”
Γ 	 e : T in v,ar “if this = v and v has access rights ar, then e has type T ”

In useful judgments (Γ 	 e : T in v,ar), the this-binding v is either this itself or an
object identifier. For type-checking class declarations, it is sufficient to consider judg-
ments where dom(Γ) ⊆ Var∪{world,myaccess} and v = this. We allow arbitrary
object identifiers in type environments and as this-binders, so that we can type runtime
states, which is needed for proving type soundness.

The typing judgments are defined with respect to an underlying class table. This
class table remains fixed in all typing rules and we leave it implicit. In contexts where
we want to explicitly mention it, we subscript the turnstyle: (Γ 	c̄ e : T in v,ar). We use
auxiliary functions ctype(C.k) and mtype(C,m) that compute the types of constructors
and methods based on the underlying class table. These are essentially as in FJ [IPW01].
Method subtyping treats methods invariantly in the parameter types and covariantly in
the result type. See [HPSS07] for more details.

Auxiliary Predicates and Judgments:

eaC<ar,v> legal Δ= (v = myowner ⇔ ar = myaccess) eavoid legal Δ= true
C<ar,v> generative Δ= (immutable ∈ atts(C) ⇒ v = world, v = world ⇒ ar = rdwr)
(ea,u,aru,vu) wrloc in v

Δ= (u = v,wrlocal ∈ ea) or (aru,vu) = (rdwr,v)
ar wrsafe in ar′ Δ= (ar = rdwr or ar′ = rd or ar = ar′)
(c̄ : ok) Δ= (∀c ∈ c̄)(c : ok) (Γ 	 e : T) Δ= (Γ 	 e : T in myaccess)
(Γ 	 e : T in ar) Δ= (Γ 	 e : T in this,ar) (Γ 	 e : T in v) Δ= (Γ 	 e : T in v,rdwr)
(Γ 	 ē,e : T̄ ,T in v,ar) Δ= (Γ 	 ē : T̄ in v,ar and Γ 	 e : T in v,ar)
(Γ 	 e : T � U in v,ar) Δ= (Γ 	 e : T in v,ar and Γ 	 T � U)
(Γ 	 �) Δ= (world ∈ dom(Γown) and (∀v ∈ dom(Γval))(v �= world and Γ 	 Γval(v) : ok))
(Γ 	 v : •) Δ= (Γ 	 � and Γ (v) = •) (Γ 	 v : ok) Δ= (Γ 	 � and v ∈ dom(Γ)∪{null})
(Γ 	 ar : ok) Δ= (Γ 	 � and ar ∈ dom(Γ)∪{rdwr,rd})
(Γ 	 eavoid : ok) Δ= (Γ 	 �) (Γ 	 eaC<ar,v> : ok) Δ= (Γ 	 ar : ok and Γ 	 v : ok)

360 C. Haack et al.

Good Class Declarations, 	 c : ok:

(Cls Dcl) D is not final Γ = (world,myowner,myaccess,this : •)
ca �= /0 ⇒ (atts(D) �= /0 or D = Object) atts(D) �= /0 ⇒ ca �= /0
Γ ,this : rdonly wrlocalC<myaccess,myowner> 	 F̄ , K̄,M̄ : ok in C

	 fmcaclassCextD{F̄ K̄ M̄} : ok

(Fld Dcl)
CextD ⇒ f �∈ fd(D) E<ar,v> legal Γ 	 ar : ok Γ 	 v : •

Γ 	 E<ar,v> f : ok in C

(Cons Dcl) t̄y legal this �∈ vars(t̄y)
atts(C) �= /0 ⇒ anon,wrlocal ∈ ea Γ , x̄ : anon rdonly wrlocal t̄y 	 e : eavoid

Γ 	 eaC.k(t̄y x̄){e} : ok in C

(Mth Dcl) CextD ⇒ Γ 	 mtype(m,C) � mtype(m,D) atts(C) �= /0 ⇒ rdonly ∈ atts(T)
ar = myaccess or ({rdonly,wrlocal}∩ ea = /0, ar = rdwr) σ = (myaccess←ar)
Γ [σ], ȳ : •, x̄ : anon rdonly wrlocal t̄y[σ] 	 e[σ] : T [σ] in ar t̄y,T legal this �∈ vars(t̄y,T)

Γ 	 fm<ȳ>T m(t̄y x̄){e} : ok in C

Well-typed Expressions, Γ 	 e : T in v,ar:

(Var) Γ (x) = T
Γ 	 arv,v : ok,•
Γ 	 x : T in v,arv

(Obj) Γ (o) = T
ea = {anon |o �= p} Γ 	 arp, p : ok,•

Γ 	 o : eaT in p,arp

(Sub)
Γ 	 e : T � U in v,arv

Γ 	 e : U in v,arv

(Null)
Γ 	 T,arv,v : ok,ok,•
Γ 	 null : T in v,arv

(Let) Γ 	 e : eae tye in v,arv x �∈ vars(tye′)
Γ , x : eae tye 	 e′ : eae′ tye′ in v,arv ea =

⋂
(eae,eae′)

Γ 	 letx=eine′ : ea tye′ in v,arv

(Cast) C declared
Γ 	 e : eaeCe<are,ve> in v,arv

Γ 	 (C)e : eaeC<are,ve> in v,arv

(Get) ty f ∈ fd(Cu) σ = self(u,aru,vu)
Γ 	 u,v : eau Cu<aru,vu>,Cu<arv,wv> in v,arv

Γ 	 u. f : anon rdonly wrlocal ty[σ] in v,arv

(Set) ty f ∈ fd(Cu) Γ 	 vu : •
ea =

⋂
({x as wrlocal |({x},u,aru,vu) wrloc in v}∪{anon},eae) aru wrsafe in arv

Γ 	 u,v,e : eauCu<aru,vu>,Cu<arv,wv>,eae ty[σ] in v,arv σ = self(u,aru,vu)

Γ 	 u. f=e : ea ty[σ] in v,arv

(Call) mtype(m,Cu) = fm<ȳ>t̄y→eam ty′

(rdonly ∈ eam) or (aru wrsafe in arv) σ = self(u,aru,vu), ȳ←w̄
ea =

⋂
ēaē ∩ ⋃

({anon}∩ (eam ∪ eau), {x as rdonly |x ∈ eam or vu, w̄ = world},
{wrlocal |(eam,u,aru,vu) wrloc in v or rdonly ∈ eam or vu = world})

Γ 	 u, ē : eau Cu<aru,vu>, ēaē t̄y[σ] in v,arv Γ 	 w̄ : • (aru = rd or Γ 	 vu : •)
Γ 	 u.m<w̄>(ē) : ea ty′[σ] in v,arv

(New) ctype(C.k) = t̄y→eak void (ar = rdwr) or (wrlocal,anon ∈ eak)
ea =

⋂
({rdonly |w = world}∪{wrlocal,anon}, ēaē) Γ 	 ar,w : ok,•

Γ 	 ē : ēaē t̄y[σ] in v,arv σ = self(null,ar,w) C<ar,w> generative

Γ 	 newC<ar,w>.k(ē) : eaC<ar,w> in v,arv

(Cons) ctype(C.k) = t̄y→eak void σ = self(v,arv,wv)
Γ 	 ē,v : ēaē t̄y[σ],C<arv,wv> in v,arv ea =

⋂
(eak, ēaē)

Γ 	 C.k(ē) : eavoid in v,arv

Immutable Objects for a Java-Like Language 361

7 Conclusion

More on related work. We have already referenced and compared to some related work
throughout the text and have no space to repeat all of that. Ernst et al’s Javari lan-
guage [BE04, TE05] statically checks reference immutability, i.e., read-only references.
They report an impressive implementation. They do not support object immutability in
an open world, like we do. In particular, their system does not fully prevent repre-
sentation exposure. Pechtchanski et al [PS05] and Porat et al [PBKM00] present im-
mutability analyses for Java. Their analyses are implementation driven and are not
designed against a formal semantics like ours. Parts of our formal type system are in-
spired by similar informal static rules from Jan Schäfer’s masters thesis [Sch04]. Clarke
and Drossopolous [CD02] and Lu and Potter [LP06b, LP06a] combine ownership type
systems with systems to control write- and/or read-effects. In spirit, this is similar to our
system which contains a write-effect analysis (for rdonly and wrlocal) on top of an
ownership type system. In contrast to the above mentioned systems, our system supports
an open world and treats object constructors. Our system does not control read-effects.
However, a read-effect analysis would be desirable, because for many applications of
immutability, e.g., thread safety, it is important that immutable objects do not read from
mutable state. We expect that we could combine our system with a variant of [CD02]’s
read effect analysis to achieve this.

Summary. We have presented a core Java language with statically checkable immutabil-
ity specifications in the form of a type system, which has been proved sound w.r.t.
a formal semantic definition of object immutability. The system is quite flexible and
employs, for instance, owner-polymorphic methods to permit dynamic aliasing during
object construction, and read-only objects to permit sharing of mutable representation
objects among immutable objects of the same class. We view this paper as the careful
design for a sound, type-based immutability analysis and plan to implement an im-
mutability checker for Java based on this system.

References

[BE04] A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In OOPSLA’04, pages 35–49, October 26–28, 2004.

[Blo01] J. Bloch. Effective Java. Addison-Wesley, 2001.
[BLS03] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.

In POPL’03, pages 213–223, 2003.
[CD02] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of

type and effect. In OOPSLA’02, pages 292–310, 2002.
[CPN98] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In

OOPSLA’98, pages 48–64, 1998.
[DM05] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of

Object Technology (JOT), 4(8):5–32, October 2005.
[Goe02] Brian Goetz. Java theory and practice: Safe construction techniques–don’t let the

”this” reference escape during construction. IBM DevelopersWork, 2002.
[HPSS07] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like

language. Technical report, Radboud University Nijmegen, 2007. Forthcoming.
[IPW01] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus

for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

362 C. Haack et al.

[LP06a] Y. Lu and J. Potter. On ownership and accessibility. In ECOOP’06, volume 4067
of LNCS, pages 99–123. Springer-Verlag, 2006.

[LP06b] Y. Lu and J. Potter. Protecting representation with effect encapsulation. In
POPL’06, pages 359–371. ACM Press, 2006.

[MPH01] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and depen-
dency control. Technical Report 279, Fernuniversität Hagen, 2001.

[PBKM00] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of im-
mutable fields in Java. In CASCON’02. IBM Press, 2000.

[PS05] I. Pechtchanski and V. Sarkar. Immutability specification and applications. Con-
currency and Computation: Practice and Experience, 17:639–662, 2005.

[Sch04] J. Schäfer. Encapsulation and specification of object-oriented runtime components.
Master’s thesis, Technische Universität Kaiserslautern, 2004.

[SR05] A. Salcianu and M. C. Rinard. Purity and side effect analysis for Java programs. In
VMCAI’05, pages 199–215, 2005.

[TE05] M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java. In
OOPSLA’05, pages 211–230, October 18–20, 2005.

[VB01] J. Vitek and B. Bokowski. Confined types in Java. Softw. Pract. Exper., 31(6):507–
532, 2001.

[WF94] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

[ZPV06] T. Zhao, J. Palsberg, and J. Vitek. Type-based confinement. Journal of Functional
Programming, 16(1):83–128, January 2006.

	Introduction
	A Java-Like Language with Immutability
	Operational Semantics
	Semantic Immutability
	The Immutability Type System -- Informally
	The Immutability Type System -- Formally
	Conclusion

