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Abstract. We study the relationship between Concurrent Separation Logic
(CSL) and the assume-guarantee (A-G) method (a.k.a. rely-guarantee method).
We show in three steps that CSL can be treated as a specialization of the A-G
method for well-synchronized concurrent programs. First, we present an A-G
based program logic for a low-level language with built-in locking primitives.
Then we extend the program logic with explicit separation of “private data” and
“shared data”, which provides better memory modularity. Finally, we show that
CSL (adapted for the low-level language) can be viewed as a specialization of the
extended A-G logic by enforcing the invariant that “shared resources are well-
formed outside of critical regions”. This work can also be viewed as a different
approach (from Brookes’) to proving the soundness of CSL: our CSL inference
rules are proved as lemmas in the A-G based logic, whose soundness is estab-
lished following the syntactic approach to proving soundness of type systems.

1 Introduction

It is hard to prove non-interference and correctness of shared-state concurrent programs
because of the exponential state space. Memory aliasing makes concurrency verification
even harder. Therefore a program logic supporting both thread modularity and memory
modularity is the key to practical concurrency verification.

Peter O’Hearn [11, 10] proposed concurrent separation logic (CSL), which applies
the local-reasoning idea from separation logic [7, 14] to verify shared-state concurrent
programs with memory pointers. Separation logic assertions are used to capture owner-
ships of resources. Separating conjunction enforces the partition of resources. Verifica-
tion of sequential threads in CSL is no different from verification of sequential programs.
Memory modularity is supported by using separating conjunction and frame rules. How-
ever, following Owicki and Gries [12], CSL works only for well-synchronized programs
in the sense that transfer of resource ownerships can only occur at entry and exit points of
critical regions. It is unclear how to apply CSL to support general concurrent programs
with ad-hoc synchronizations.
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Another approach to modular verification of shared-state concurrent programs is the
assume-guarantee method (a.k.a. rely-guarantee method) [8]. In this approach, invari-
ants of state transitions are specified using assumptions and guarantees. Each thread
ensures that its atomic transitions satisfy its guarantee to the environment (i.e., the col-
lection of all other threads) as long as its assumption is satisfied by the environment.
Non-interference is guaranteed as long as threads have compatible specifications, i.e.,
the guarantee of each thread satisfies the assumptions of all other threads. The A-G
method supports thread modular verification in the sense that each thread is verified
with regard to its own specifications, and without looking into code of other threads. It
is very general and does not require language constructs for synchronizations. However,
in each individual step of the verification, we need to prove that the state transition satis-
fies the guarantee. This makes proofs more complicated in A-G reasoning than in CSL.
Also, assumptions and guarantees are usually complicated and hard to define, because
they specify global invariants for all shared resources during the program execution.

In this paper we study the relationship between CSL and A-G reasoning. We pro-
pose the Separated A-G Logic (SAGL), which extends A-G reasoning with the local-
reasoning idea in separation logic. Instead of treating all resources as shared, SAGL
partitions resources into shared and private. Like in CSL, each thread has full access
to its private resources, which are invisible to its environments. Shared resources can
be accessed in two ways in SAGL: they can be accessed directly, or be converted into
private first and then accessed. Conversions between shared and private can occur at
any program point, instead of being coupled with critical regions. Both direct accesses
and conversions are governed by guarantees, so that non-interference is ensured follow-
ing A-G reasoning. Private resources are not specified in assumptions and guarantees,
therefore specifications in SAGL are simpler and more modular than A-G reasoning.

We then show that CSL can be viewed as a specialization of SAGL with the invariant
that shared resources are well-formed outside of critical regions. The specialization is
pinned down by formalizing the CSL invariant as a specific assumption and guarantee
in SAGL. Our formulation can also be viewed as a novel approach to proving the sound-
ness of CSL. Different from Brookes’ proof based on an action-trace semantics [2], we
prove that CSL inference rules are lemmas in SAGL with the specific assumption and
guarantee. The soundness of SAGL is then proved following the syntactic approach to
type soundness [18]. The proofs are formalized in the Coq proof assistant [16].

Our study is based on an assembly language with RISC-style instructions and built-
in lock/unlock and memory allocation/free primitives. Instead of using the high-level
parallel language proposed by Hoare [6], we use the assembly language because it has
cleaner semantics, which makes our formulation much simpler. For instance, we do not
use variables, instead we only use register files and memory. Therefore we can have a
quick formulation [4] in Coq without worrying about variable renaming issues. Also
we do not have to formalize the complicated syntactic constraints enforced in CSL over
shared variables. Another important reason is that our work at low level can be easily
applied to generate proof-carrying code [9]. CSL and the A-G method studied in this
paper are all adapted to this low-level language. The relationship between the low-level
CSL and the original logic by O’Hearn [11, 10] is discussed in Sect. 7.
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In the rest of this paper, we first present our low-level language in Sect. 2. We then
present an A-G based logic (AGL) for this language in Sect. 3. We extend AGL with
local reasoning and propose SAGL in Sect. 4. In Sect. 5, we adapt the original CSL to
the low-level language and formalize the relationship between CSL and SAGL. We use
two examples to illustrate the use of SAGL in Sect. 6. Finally, we discuss related work
and conclude in Sect. 7.

2 The Language

Figure 1 defines the model of an abstract machine and the syntax of the assembly lan-
guage. The whole program state P contains a shared memory M, a lock mapping L

which maps a lock to the id of its owner thread, and n threads [T1, . . . ,Tn]. The memory
is modeled as a finite partial mapping from memory locations l (natural numbers) to
word values (natural numbers). Each thread Ti contains its own code heap C, register
file R, the instruction sequence I that is currently being executed, and its thread id i.

The code heap C maps code labels to instruction sequences, which is a list of assem-
bly instructions ending with a jump instruction. The set of instructions we present here
are the commonly used subsets in RISC machines. We also use lock/unlock primitives
to do synchronization, and use alloc/free to do dynamic memory allocation and free.

The step relation ( �−→ ) of program states (P) is defined in Fig. 2. We use the aux-

iliary relation (M,T,L) t�−→ (M′,T′,L′) to define the effects of the execution of the
thread T. Here we follow the preemptive thread model where execution of threads can
be preempted at any program point, but execution of individual instructions is atomic.
In Fig. 2 we show operational semantics of representative instructions, which are mostly
standard. Note that we do not support reentrant-locks. If the lock l has been acquired,
execution of the “lock l” instruction will be blocked even if the lock is owned by the
current thread. The relation Nextι defines the effects of the sequential instruction ι over
memory and register files.

(Program) P ::= (M, [T1, . . . ,Tn],L)
(Thread) Ti ::= (C,R,I, i)

(CodeHeap) C ∈ Labels ⇀ InstrSeq

(Memory) M ∈ Labels ⇀ Word

(RegFile) R ∈ Register → Word

(LockMap) L ::= Locks ⇀ {1, . . . ,n}
(Register) r ::= r0 | . . . |r31

(Labels) f,l ::= i (nat nums)
(Locks) l ::= i (nat nums)
(Word) w ::= i (nat nums)

(InstrSeq) I ::= j f | jr rs | ι;I
(Instr) ι ::= add rd ,rs,rt | addi rd ,rs, i | alloc rd ,rs | beq rs,rt ,f | bgt rs,rt ,f

| free rs | lock l | ld rt , i(rs) | sub rd ,rs,rt | st rt , i(rs) | unlock l

Fig. 1. The Abstract Machine
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(M, [T1, . . . ,Tn],L) �−→ (M′, [T1, . . . ,Tk−1,T
′
k,Tk+1, . . . ,Tn],L′)

if (M,Tk,L) t�−→ (M′,T′
k,L

′) for any k;

where

(M,(C,R,I,k),L) t�−→ (M′,T′,L′)
if I = then (M′,T′,L′) =

j f (M,(C,R,I′,k),L) where I
′ = C(f)

jr rs (M,(C,R,I′,k),L) where I
′ = C(R(rs))

beq rs,rt ,f;I′
(M,(C,R,I′,k),L)
(M,(C,R,I′′,k),L)

if R(rs) �= R(rt)
if R(rs) = R(rt) and I

′′ = C(f)

lock l;I′
(M,(C,R,I′,k),L{l �k})
(M,(C,R,I,k),L)

if l �∈ dom(L)
if l ∈ dom(L)

unlock l;I′ (M,(C,R,I′,k),L\{l}) if L(l) = k

ι;I′ for other ι (M′,(C,R′,I′,k),L) where (M′,R′) = Nextι (M,R)

and

if ι = then Nextι (M,R) =
addi rd ,rs, i (M,R{rd �R(rs)+i})
ld rt , i(rs) (M,R{rt �M(R(rs)+i)}) when R(rs)+i ∈ dom(M)
st rt , i(rs) (M{R(rs)+i�R(rt)},R) when R(rs)+i ∈ dom(M)
alloc rd ,rs (M{l, . . . ,l+R(rs)−1� },R{rd �l})

where l, . . . ,l+R(rs)−1 �∈ dom(M)
free rs (M\{R(rs)},R) when R(rs) ∈ dom(M)

Fig. 2. Operational Semantics of the Machine

Note the way we distinguish “blocking” states from “stuck” states caused by unsafe
operations, e.g., freeing dangling pointers. If an unsafe operation is made, there is no

resulting state satisfying the step relation ( t�−→ ) for the current thread. If a thread tries
to acquire a lock which has been taken, it stutters: the resulting state will be the same
as the current one (therefore the lock instruction will be executed again).

3 AGL: An A-G Based Program Logic

In this section we present an A-G based program logic (AGL) for our assembly lan-
guage. AGL is a variation of the CCAP logic [19] which applies the A-G method for
assembly code verification. Different from CCAP, AGL works for the preemptive thread
model instead of the non-preemptive model.

Figure 3 shows the specification constructs for AGL. For each thread in the program,
its specification contains three parts: the specification Ψ for the code heap, the assump-
tion A and the guarantee G. The specification Φ of the whole program just groups spec-
ifications for each thread. We use CiC, our meta-logic mechanized by Coq [16], as the
assertion language for assertions and program specifications. CiC corresponds to the
higher-order predicate logic with inductive definitions via Curry-Howard isomorphism.
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(XState) X ::= (M,(R, i),L)
(ProgSpec) Φ ::= ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)])

(CdHpSpec) Ψ ::= {f � a}∗

(Assertion) a ∈ XState → Prop

(Assume) A ∈ XState → XState → Prop

(Guarantee) G ∈ XState → XState → Prop

Fig. 3. Specification Constructs for AGL

Φ, [a1, . . . ,an] � P (Well-formed program)

Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)])
NI([(A1,G1), . . . ,(An,Gn)]) Ψk,Ak,Gk �{ak}(M,Tk,L) for all k

Φ, [a1, . . . ,an] � (M, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G �{a}(M,T,L) (Well-formed thread)

a (M,(R,k),L) Ψ,A,G � C :Ψ Ψ,A,G �{a}I

Ψ,A,G �{a}(M,(C,R,I,k),L)
(THRD)

Ψ,A,G � C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G �{Ψ′(f)}C(f)

Ψ,A,G � C :Ψ′ (CDHP)

Fig. 4. AGL Inference Rules

Assumptions and guarantees are meta-logic predicates over a pair of extended thread
states X, which contains the shared memory M, the thread’s register file R and id k,
and the global lock mapping L. The assumption A for a thread specifies the expected
invariant of state transitions made by the environment. The arguments it takes are states
before and after a transition, respectively. The guarantee G of a thread specifies the
invariant of state transitions made by the thread.

The code heap specification Ψ assigns a precondition a to each instruction sequence
in the code heap C.The assertion a is a meta-logic predicate over the extended thread
state X. It ensures the safe execution of the corresponding instruction sequence. We do
not assign postconditions to instruction sequences. Since each instruction sequence ends
with a jump instruction, we use the assertion at the target address as the postcondition.

Inference rules. Inference rules of AGL are presented in Figs. 4 and 5. The PROG rule
defines the well-formedness of the program P with respect to the program specifica-
tion Φ and the set of preconditions ([a1, . . . ,an]) for the instruction sequences that are
currently executed by all the threads. Checking the well-formedness of P involves two
steps. First we check the compatibility of assumptions and guarantees for all the threads.
The predicate NI is defined as follows:

NI([(A1,G1), . . . ,(An,Gn)])
def= ∀i, j,M,M′,Ri,R

′
i,R j,L,L′.

i �= j → Gi (M,(Ri, i),L) (M′,(R′
i, i),L

′) → A j (M,(R j, j),L) (M′,(R j, j),L′) ,
(1)
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Ψ,A,G �{a}I (Well-formed instr. sequences)

Ψ,A,G �{a} ι{a′} Ψ,A,G �{a′}I (a◦A)⇒a

Ψ,A,G �{a} ι;I
(SEQ)

∀X@(M,(R,k),L). a X → Ψ(R(rs)) X (a◦A)⇒a

Ψ,A,G �{a} jr rs
(JR)

Ψ,A,G �{a} ι{a′} (Well-formed instructions)

∀X@(M,(R,k),L). a X∧ l 	∈ dom(L) → a′ X′ ∧G X X′
where X′ = (M,(R,k),L{l �k}).

Ψ,A,G �{a} lock l {a′} (LOCK)

∀X@(M,(R,k),L). a X → L(l) = k∧a′ X′∧G X X′
where X′ = (M,(R,k),L\{l}).

Ψ,A,G �{a}unlock l {a′} (UNLOCK)

∀X@(M,(R,k),L).∀l. a X∧{l, . . . ,l+R(rs)−1} 	∈ dom(M) →
R(rs) > 0∧a′ X′ ∧G X X′

where X′ = (M{l, . . . ,l+R(rs)−1� },(R{rd �l},k),L)

Ψ,A,G �{a}alloc rd ,rs {a′}
(ALLOC)

Fig. 5. AGL Inference Rules (cont’d)

which simply says that the guarantee of each thread should satisfy assumptions of all
other threads. Then we apply the THRD rule to check that implementation of each thread
actually satisfies the specification. Each thread Ti is verified separately. therefore thread
modularity is supported.

In the THRD rule, we require that the precondition a be satisfied by the current ex-
tended thread state (M,(R,k),L); that the thread code heap satisfy its specification Ψ,
A and G; and that it be safe to execute the current instruction sequence I under the
precondition a and the thread specification.

The CDHP rule checks the well-formedness of thread code heaps. It requires that
each instruction sequence specified in Ψ′ be well-formed with respect to the imported
interfaces specified in Ψ, the assumption A and the guarantee G.

The SEQ rule and the JR rule ensure that it is safe to execute the instruction sequence
if the precondition is satisfied. If the instruction sequence starts with a normal sequen-
tial instruction ι, we need to come up with an assertion a′ which serves both as the
postcondition of ι and as the precondition of the remaining instruction sequence. Also
we need to ensure that, if the current thread is preempted at a state satisfying a, a must
be preserved by any state transitions (by other threads) satisfying the assumption A.
This is enforced by (a◦A)⇒a:

(a◦A)⇒a
def= ∀X,X′. a X∧A X X

′ → a X
′ .

If we reach the last jump instruction of the instruction sequence, the JR rule requires
that the assertion assigned to the target address in Ψ be satisfied after the jump. It also
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requires that a be preserved by state transitions satisfying A. Here we use the syntactic
sugar ∀X@(x1, . . . ,xn). P(X ,x1, . . . ,xn) to mean that, for all tuple X containing elements
x1, . . . ,xn, the predicate P holds. It is formally defined as:

∀X ,x1, . . . ,xn.(X = (x1, . . . ,xn)) → P(X ,x1, . . . ,xn) .

The notation λX@(x1, . . . ,xn). f (X ,x1, . . . ,xn) that we use later is defined similarly. The
rule for direct jumps (j f) is similar to the JR rule and is not presented here.

Instruction rules require that the precondition ensure the safe execution of the in-
struction; and that the resulting state satisfy the postcondition. Also, if shared states (M
and L) are updated by the instruction, we need to ensure that the update satisfies the
guarantee G. For the lock instruction, if the control falls through, we know that the lock
is not held by any thread. This extra knowledge can be used together with the precondi-
tion a to show the postcondition is satisfied by the resulting state. The rest of instruction
rules are straightforward and will not be explained here. Interested readers can refer to
the companion technical report [4] for a complete presentation of instruction rules.

The soundness of AGL is also formalized in the technical report [4], which is similar
to the soundness theorem of SAGL presented in Sect. 4.

4 SAGL: Separated A-G Logic

AGL is a general program logic supporting thread modular verification of concurrent
code. However, because it treats all memory as shared resources, it does not have good
memory modularity, and assumptions and guarantees are hard to define and use. During
program verification, we have to prove for each individual instruction that the guarantee
is not broken, even if there is no memory sharing. Moreover, if each thread dynamically
allocates memory and uses allocated memory as private resources (see the example in
Sect. 6), the domain of memory becomes dynamic and nondeterministic, which makes
it very hard to specify the assumption and guarantee.

In this section, we extend AGL with explicit partition of private resources and shared
resources. The extended logic, which we call Separated A-G Logic (SAGL), has much
better support of memory modularity than AGL without sacrificing any expressiveness.
Borrowing the local-reasoning idea in separation logic, private resources of one thread
are not visible to other threads, therefore will not be touched by others. Assumptions
and guarantees in SAGL only specify shared resources. The dynamic domain of private
memory caused by memory allocation is no longer a challenge to define assumptions
and guarantees because private memory does not have to be specified.

Figure 6 shows our extensions of AGL specifications for SAGL. In the specification
Ψ of each thread code heap, the precondition assigned to each code label now becomes
a pair of assertions (a,ν). The assertion a plays the same role as in AGL. It specifies the
shared resources (all memory are treated as shared in AGL). The assertion ν specifies
the private resources of the thread. Other threads’ private resources are not specified.

(CdHpSpec) Ψ ::= {f � (a,ν)}∗

(Assertion) a,ν ∈ XState → Prop

Fig. 6. Extension of AGL Specification Constructs in SAGL
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Φ, [(a1,ν1), . . . ,(an,νn)] � P (Well-formed program)

Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)]) NI([(A1,G1), . . . ,(An,Gn)])
Ms 
M1 
·· · 
Mn = M Ψk,Ak,Gk �{(ak,νk)}(Ms,Mk,Tk,L) for all k

Φ, [(a1,ν1), . . . ,(an,νn)] � (M, [T1, . . . ,Tn],L)
(PROG)

Ψ,A,G �{(a,ν)}(Ms,Mv,T,L) (Well-formed thread)

a (Ms,(R,k),L) ν (Mv,(R,k),L|k) Ψ,A,G � C :Ψ Ψ,A,G �{(a,ν)}I

Ψ,A,G �{(a,ν)}(Ms,Mv,(C,R,I,k),L)
(THRD)

Ψ,A,G � C :Ψ′ (Well-formed code heap)

∀f ∈ dom(Ψ′) : Ψ,A,G �{Ψ′(f)}C(f)

Ψ,A,G � C :Ψ′ (CDHP)

Fig. 7. SAGL Inference Rules

Inference rules. The inference rules of SAGL are shown in Figs. 7 and 8. They look
very similar to AGL rules. In the PROG rule, as in AGL, we check the compatibility of
assumptions and guarantees, and check the well-formedness of each thread. However,
here we require that there be a partition of memory into n+1 parts: one part Ms is shared
and other parts M1, . . . ,Mn are privately owned by the threads T1, . . . ,Tn, respectively.
When we check the well-formedness of thread Tk, the memory in the extended thread
state is not the global memory. It just contains Ms and Mk.

The THRD rule in SAGL is similar to the one in AGL, except that the memory visible
by each thread is separated into two parts: the shared Ms and the private Mv. We require
that assertions a and ν hold over Ms and Mv respectively. Since ν only specifies the
private resource, we use the “filter” operator L|k to prevent ν from having access to the
ownership information of locks not owned by the current thread:

(L|k)(l)
def=

{
k L(l) = k
undefined otherwise

(2)

i.e., L|k is a subset of L which maps locks to k.
Instruction rules are shown in Fig. 8. In the SEQ rule, we use (a,ν) as the precon-

dition. However, to ensure that the precondition is preserved by state transitions satis-
fying A, we only check a (i.e., we check (a◦A)⇒a) because A only specifies shared
resources. We know that the private resources will not be touched by the environment.
We require a to be precise to enforce the unique boundary between shared and private
resources. Following the definition in CSL [11], an assertion a is precise if and only if
for any memory M, there is at most one subset M

′ that satisfies a, i.e.,

Precise(a) def= ∀M,R,k,L,M1,M2. (M1 ⊆ M)∧ (M2 ⊆ M)∧
a (M1,(R,k),L)∧a (M2,(R,k),L) → M1 = M2 .

(3)

The JR rule requires a be precise and it be preserved by state transitions satisfying the
assumption. Also, the specification assigned to the target address needs to be satisfied
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Ψ,A,G �{(a,ν)}I (Well-formed instr. sequences)

Ψ,A,G �{(a,ν)} ι{(a′,ν′)} Ψ,A,G �{(a′,ν′)}I (a◦A)⇒a Precise(a)
Ψ,A,G �{(a,ν)} ι;I

(SEQ)

Precise(a) (a◦A)⇒a ∀X@(M,(R,k),L). (a∗ν) X → (a′ ∗ν′) X∧ (�G(a,a′) X X)
where (a′,ν′) = Ψ(R(rs))

Ψ,A,G �{(a,ν)} jr rs
(JR)

Ψ,A,G �{(a,ν)} ι{(a′,ν′)} (Well-formed instructions)

∀X@(M,(R,k),L). (a∗ν) X∧ l 	∈ dom(L) → (a′ ∗ν′) X′ ∧ (�G(a,a′) X X′)
where X′ = (M,(R,k),L{l �k})

Ψ,A,G �{(a,ν)} lock l {(a′,ν′)} (LOCK)

∀X@(M,(R,k),L). (a∗ν) X → L(l) = k∧ (a′ ∗ν′) X′∧ (�G(a,a′) X X′)
where X′ = (M,(R,k),L\{l})

Ψ,A,G �{(a,ν)}unlock l {(a′,ν′)} (UNLOCK)

Fig. 8. SAGL Inference Rules (cont’d)

by the resulting state of the jump, and the identity state transition made by the jump
satisfies the guarantee G. We use the separating conjunction of the shared and private
predicates as the pre- and post-condition. We define a∗ ν as:

a∗ν def= λ(M,(R,k),L).
∃M1,M2.(M1 �M2 = M)∧a (M1,(R,k),L)∧ν (M2,(R,k),L|k) .

(4)

Again, the use of L|k prevents ν from having access to the ownership information of
locks not owned by the current thread. We use f1 � f2 to represent the union of finite
partial mappings with disjoint domains.

To ensure G is satisfied over shared resources, we lift G to �G�(a,a′):

�G�(a,a′)
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′).

∃M1,M2,M
′
1,M

′
2. (M1 �M2 = M)∧ (M′

1 �M
′
2 = M

′)
∧ a (M1,(R,k),L)∧a′ (M′

1,(R
′,k′),L′)

∧ G (M1,(R,k),L) (M′
1,(R

′,k′),L′) ,

(5)

Here we use precise predicates a and a′ to enforce the unique boundary between shared
and private resources.

As expected, the SAGL rule for each individual instruction is almost the same as its
counterpart in AGL, except that we always use the separating conjunction of predicates
for shared and private resources. Each instruction rule requires that memory in states
before and after the transition can be partitioned to private and shared; private parts
satisfy private predicates and shared parts satisfy shared predicates and G.

It is important that we always combine shared predicates with private predicates
instead of checking separately the relationship between a and a′ and between ν and
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ν′. This gives us the ability to support dynamic redistribution of private and shared
memory. Instead of enforcing static partition, we allow that part of private memory
becomes shared under certain conditions and vice versa. As we will show in the next
section, this ability makes our SAGL very expressive and is the enabling feature that
makes the embedding of CSL into SAGL possible.

AGL can be viewed as a specialized version of SAGL where all the ν’s are set to
emp (emp is an assertion which can only be satisfied by memory with empty domain).

Soundness. The soundness of SAGL is formulated in Theorem 1. In addition to the
safety of well-formed programs, it also characterizes partial correctness: assertions as-
signed to labels in Ψ will hold whenever the labels are reached. Theorem 1 is proved
following the syntactic approach to type soundness [18]. Here we only present the main
theorem. The proof is given in our technical report and is formalized in Coq [4].

Theorem 1 (SAGL-Soundness). For any program P with specification
Φ = ([Ψ1, . . . ,Ψn], [(A1,G1), . . . ,(An,Gn)]), if Φ, [(a1,ν1) . . . ,(an,νn)] � P, then,

– for any natural number m, there exists P
′ such that (P �−→m

P
′);

– for any m and P
′ = (M′, [T′

1, . . . ,T
′
n],L

′), if (P �−→m
P

′), then,
• Φ, [(a′

1,ν′
1), . . . ,(a

′
n,ν′

n)] � P
′ for some a′

1, . . . ,a
′
n and ν′

1, . . . ,ν′
n;

• for any k, there exist M
′′, T

′′
k and L

′′ such that (M′,T′
k,L

′) t�−→ (M′′,T′′
k ,L′′);

• for any k, if T
′
k = (Ck,R

′
k, jr rs,k), then (a′′

k ∗ν′′
k ) (M′,(R′

k,k),L
′) holds, where

(a′′
k ,ν

′′
k ) = Ψk(R′

k(rs));
• for any k, if T

′
k = (Ck,R

′
k,bgt rs,rt ,f;I,k) and R

′
k(rs) > R

′
k(rt), then

(a′′
k ∗ ν′′

k ) (M′,(R′
k,k),L

′) holds, where (a′′
k ,ν

′′
k ) = Ψk(f);

5 Concurrent Separation Logic (CSL)

Both AGL and SAGL treat lock/unlock primitives as normal instructions. They do not
require that shared memory be protected by locks. This shows the generality of the A-G
method, which makes no assumption about language constructs for synchronizations.
Any ad-hoc synchronizations can be verified using the A-G method.

If we focus on a special class of programs following Hoare [6] where accesses of
shared resources are protected by critical regions (implemented by locks in our lan-
guage), we can further simplify our SAGL logic and derive a variation of CSL (CSL
adapted to our assembly language).

5.1 CSL Specifications and Rules

In CSL, shared memory is partitioned and each part is protected by a unique lock.
For each part of the partition, an invariant is assigned to specify its well-formedness.

(ProgSpec) φ ::= ([ψ1, . . . ,ψn],Γ)
(CdHpSpec) ψ ::= {f � ν}∗

(ResourceINV) Γ ∈ Locks ⇀ MemPred

(MemPred) m ∈ Memory → Prop

Fig. 9. Specification Constructs for CSL
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m∗m′ def= λM.∃M1,M2. (M1 �M2 = M)∧m M1 ∧m′
M2

ν∗m def= λX@(M,(R,k),L).∃M1,M2. (M1 �M2 = M)∧ν (M1,(R,k),L)∧m M2

∀∗x∈S. P(x) def=
{

emp if S = /0
P(xi)∗∀∗x∈S′. P(x) if S = S′ �{xi}

acq l ν def= λ(M,(R,k),L). ν (M,(R,k),L{l �k})

rel l ν def= λ(M,(R,k),L). L(l) = k ∧ν (M,(R,k),L\{l})

Fig. 10. Definitions of Notations in CSL

A thread cannot access shared memory unless it has acquired the corresponding lock.
After the lock is acquired, the thread takes advantage of mutual-exclusion provided by
locks and treats the part of memory as private. When the thread releases the lock, it
must ensure that the part of memory is well-formed with regard to the corresponding
invariant. In this way the following global invariant is enforced:

Shared resources are well-formed outside critical regions.

Figure 9 shows the specification constructs for CSL. The program specification φ
contains a collection of code heap specifications for each thread and the specification
Γ for lock-protected memory. Code heap specification ψ maps a code label to an as-
sertion ν as the precondition of the corresponding instruction sequence. Here ν plays
similar role of the private predicate in SAGL. Since each thread privately owns the lock
protected memory if it owns the lock, all memory accessible by a thread is viewed as
private memory. Therefore we do not need an assertion a to specify the shared memory
as we did in SAGL. This also explains why we do not need assumptions and guarantees
in CSL. The specification Γ of lock-protected memory maps a lock to an invariant m,
which specifies the corresponding part of memory. The invariant m is simply a predicate
over memory because the register file is private to each thread.

Inference rules. The inference rules for CSL are presented in Fig. 11. The PROG rule
requires that there be a partition of the global memory into n + 1 parts. Each Mk is
privately owned by thread Tk. The well-formedness of Tk is checked by applying the
THRD rule. Ms is the part of memory protected by free locks (locks not owned by any
threads). It must satisfy the invariants specified in Γ. Here aΓ is the separating conjunc-
tion of invariants assigned to free locks in Γ, which is defined as:

aΓ
def= λ(M,(R,k),L). (∀∗l ∈(dom(Γ)− dom(L)). Γ(l)) M , (6)

that is, shared resources are well-formed outside of critical regions. Here ∀∗ is an in-
dexed, finitely iterated separating conjunction, which is formalized in Fig. 10. Separat-
ing conjunctions with memory predicates (ν ∗ m and m∗ m′) are also defined in Fig. 10.
As in O’Hearn’s original work on CSL [11], we also require all invariants specified in
Γ to be precise, i.e., Precise(Γ).

The THRD rule checks the well-formedness of threads. It requires that the current
extended thread state satisfies the precondition ν. Since ν only cares about the resource
privately owned by the thread, it takes L|k instead of complete L as argument. Recall
that L|k is defined in (2) in Section 4 to represent the subset of L which maps locks to



184 X. Feng, R. Ferreira, and Z. Shao

φ, [ν1, . . . ,νn] � P (Well-formed program)

φ = ([ψ1, . . . ,ψn],Γ) Ms �M1 �·· ·�Mn = M

aΓ (Ms, ,L) Precise(Γ) ψk,Γ �{νk}(Mk,Tk,L) for all k

φ, [ν1, . . . ,νn] � (M, [T1, . . . ,Tn],L)
(PROG)

ψ,Γ �{ν}(M,T,L) (Well-formed thread)

ν (M,(R,k),L|k) ψ,Γ � C :ψ ψ,Γ �{ν}I

ψ,Γ �{ν}(M,(C,R,I,k),L)
(THRD)

ψ,Γ � C :ψ′ (Well-formed code heap)

∀f ∈ dom(ψ′) : ψ,Γ �{ψ′(f)}C(f)

ψ,Γ � C :ψ′ (CDHP)

ψ,Γ �{ν}I (Well-formed instr. sequences)

ψ,Γ �{ν} ι{ν′} ψ,Γ �{ν′}I

ψ,Γ �{ν} ι;I
(SEQ)

∀X@(M,(R,k),L). ν X → ψ(R(rs)) X

ψ,Γ �{ν} jr rs
(JR)

ψ,Γ �{ν} ι{ν′} (Well-formed instructions)

ν∗m ⇒ acq l ν′

ψ,Γ{l �m} �{ν} lock l {ν′}
(LOCK)

ν ⇒ (rel l ν′)∗m
ψ,Γ{l �m} �{ν}unlock l {ν′}

(UNLOCK)

Fig. 11. CSL Inference Rules

k. The CDHP rule and rules for instruction sequences are similar to their counterparts in
AGL and SAGL and require no more explanation.

In the LOCK rule, we use “acq l ν′” to represent the weakest precondition of ν′;
and “ν ⇒ ν′” for logical implication lifted for state predicates. They are formalized
in Fig. 10. If the lock l instruction successfully acquires the lock l, we know by our
global invariant that the part of memory protected by l satisfies the invariant Γ(l) (i.e.,
m), because l is a free lock before lock l is executed. Therefore, we can carry the knowl-
edge m in the postcondition ν′. Also, carrying m in ν′ allows subsequent instructions
to access that part of memory, since separation logic predicates capture ownerships of
memory.

In the UNLOCK rule, “rel l ν′” is the weakest precondition for ν′ (see Fig. 10). At the
time the lock l is released, the memory protected by l must be well formed with respect
to m = Γ(l). The separating conjunction here ensures that ν′ does not specify this part
of memory. Therefore the following instructions cannot use the part of memory unless
the lock is acquired again.

The complete set of rules are presented in the technical report [4]. The frame rule,
conjunction rule and consequence rule are admissible in our CSL. These rules and the
proof of their admissibility can be found in the report [4] too.
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5.2 Interpretation of CSL in SAGL

We prove the soundness of CSL by giving it an interpretation in SAGL, and proving
CSL rules as derivable lemmas. This interpretation also formalizes the specialization
made for CSL to achieve the simplicity.

From SAGL’s point of view, each thread has two parts of memory: the private and
the shared. In CSL, the private memory of a thread includes the memory protected by
locks held by the thread and the memory that will never be shared. The shared memory
are the parts protected by free locks. Therefore, we can use the following interpretation
to translate a CSL specification to a SAGL specification:

[[ν ]]Γ
def= (aΓ,ν) (7)

[[ψ ]]Γ
def= λf.[[ψ(f) ]]Γ if f ∈ dom(ψ) , (8)

where aΓ formalizes the CSL invariant and is defined by (6). We just reuse CSL speci-
fication ν as the specification of private memory, and use the separating conjunction aΓ
of invariants assigned to free locks as the specification for shared memory.

Since the assumption and guarantee in SAGL only specifies shared memory, we can
define AΓ and GΓ for CSL threads:

AΓ
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′).R = R

′ ∧ k = k′ ∧ (aΓ X → aΓ X
′) (9)

GΓ
def= λX@(M,(R,k),L),X′@(M′,(R′,k′),L′). k = k′ ∧aΓ X∧aΓ X

′ (10)

which enforces the invariant aΓ of shared memory.
With above interpretations, we can prove the following soundness theorem.

Theorem 2 (CSL-Soundness)

1. If ψ,Γ �{ν} ι{ν′} in CSL, then [[ψ ]]Γ,AΓ,GΓ �{[[ν ]]Γ} ι{[[ν′ ]]Γ} in SAGL;
2. If ψ,Γ �{ν}I in CSL and Precise(Γ), then [[ψ ]]Γ,AΓ,GΓ �{[[ν ]]Γ}I in SAGL;
3. If ψ,Γ � C :ψ′ in CSL and Precise(Γ), then [[ψ ]]Γ,AΓ,GΓ � C : [[ψ′ ]]Γ in SAGL;
4. If ψ,Γ �{ν}(Mk,Tk,L) in CSL, Precise(Γ), and aΓ (Ms, ,L), then

[[ψ ]]Γ,AΓ,GΓ �{[[ν ]]Γ}(Ms,Mk,Tk,L) in SAGL;
5. If ([ψ1, . . . ,ψn],Γ), [ν1, . . . ,νn] � P in CSL, then Φ, [[[ν1 ]]Γ, . . . , [[νn ]]Γ] � P in SAGL,

where Φ = ([ [[ψ1 ]]Γ, . . . , [[ψn ]]Γ], [(AΓ,GΓ), . . . ,(AΓ,GΓ)]).

6 SAGL Examples

We use two complementary examples to demonstrate how SAGL combines merits of
AGL and CSL. Figure 12 shows a simple program, which allocates a fresh memory
cell and then writes into and reads from it. Following the MIPS convention, we assume
the register r0 always contains 0. The corresponding high-level pseudo code is given as
comments (followed by “;;”). It is obvious that two threads executing the same code
(but may use different m) will never interfere with each other, therefore the test in line
(7) is always True and the program never reaches the unsafe branch.

It is trivial to certify the code in CSL since there is no memory-sharing at all. How-
ever, due to the nondeterministic operation of the alloc instruction, it is challenging to
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(1) start: -{(emp, emp)}
(2) addi r1, r0, 1 ;; local int x, y;
(3) alloc r2, r1 ;; x := alloc(1);

-{(emp, r2 �→ )}
(4) addi r1, r0, m
(5) st r1, 0(r2) ;; [x] := m;

-{(emp, (r2 �→ m)∧r1 = m)}
(6) ld r3, 0(r2) ;; y := [x];

-{(emp, (r2 �→ m)∧r1 = m∧r3 = m)}
(7) beq r1, r3, safe ;; while(y == m){}
(8) unsafe: -{(emp, False)}
(9) free r0 ;; free(0); (* unsafe! *)
(10) safe: -{(emp, r2 �→ )}
(11) j safe

Fig. 12. Example 1: Memory Allocation

a1
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)

a2
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)∧x = p∧y ≥ q∧ (p ≥ q → y = q)

a3
def= ∃p,q. (m �→ p)∗ (n �→ q)∧gcd(p,q) = gcd(α,β)∧x = p∧y = q∧ p > q

a4
def= ∃p. (m �→ p)∗ (n �→ p)∧ p = gcd(α,β)

A1
def= ([m] = [m]′)∧ ([n] ≥ [n]′)∧ ([m] ≥ [n] → [n] = [n]′)∧ (gcd([m], [n]) = gcd([m]′, [n]′))

G1
def= ([n] = [n]′)∧ ([m] ≥ [m]′)∧ ([n] ≥ [m] → [m] = [m]′)∧ (gcd([m], [n]) = gcd([m]′, [n]′))

local int x, y; local int x, y;
while(true){ while(true){

-{(a1, emp)}
x := [m]; x := [n];
y := [n]; y := [m];
-{(a2, emp)}
if(x > y) || if(x > y)

-{(a3, emp)}
[m] := x-y; [n] := x-y;

if(x == y) { break;} if(x == y) { break;}
} }
-{(a4, emp)}

Fig. 13. Example 2: Parallel GCD

certify the code in AGL because the specification of A and G requires global knowl-
edge of memory. We certify the code in SAGL. Assertions are shown as annotations
enclosed in “-{}”. Recall that in SAGL the first assertion in the pair specifies shared
resources and the second one specifies private resources. We treat all the resources as
private, therefore the shared predicate is simply emp. The corresponding A and G are
trivial. The whole verification is as simple as in CSL.

Our second example is adapted from Yu and Shao [19], which computes the greatest
common divisor (GCD) of α and β, stored at locations m and n initially. The high-level
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pseudo code is shown in Fig. 13. Each thread’s local variables are allocated in its private
registers in the assembly code, which is similar to the high-level code and is shown in
the technical report [4].

In this example, synchronization is achieved without using locks. To certify the code
in CSL, we have to rewrite it by wrapping each memory-access command using lock
and unlock commands and by introducing auxiliary variables. This time we use the
“AGL part” of SAGL to certify the code: private predicates are simply emp. Assertions
for the first thread are shown as annotations. In A1 and G1, we use primed values (e.g.,
[m]′ and [n]′) to represent memory values in the resulting state of each action.

We give more examples in the technical report [4], which illustrate the support of
dynamic redistribution of shared and private memory in SAGL.

7 Related Work and Conclusion

O’Hearn [11] proposed CSL for a high-level parallel language following Hoare [6].
Synchronization in the language is achieved by the conditional critical region (CCR)
in the form of “with r when b do c”. Semantics of CCRs is as follows: the statement c
can be executed only if the resource r has not been acquired by others and the Boolean
expression b is true; otherwise the thread will be blocked. We adapt CSL to an assembly
language. The CCR can be implemented using our lock/unlock primitives. Each lock in
our language corresponds to a resource name at the high-level. Atomic instructions in
our assembly language are very similar to actions in Brookes Semantics [2], where se-
mantic functions are defined for statements and expressions. These semantic functions
can be viewed as a translation from the high-level language to a low-level language sim-
ilar to ours. Recently, Reynolds [15] and Brookes [3] have studied grainless semantics
for concurrency. Brookes also gives a grainless semantics to CSL [3].

The PROG rule of our CSL corresponds to O’Hearn’s parallel composition rule [11].
The number of threads in our machine is fixed, therefore the nested parallel composi-
tion statement supported by Brookes [2] is not supported in our language. We studied
verification of assembly code with dynamic thread creation in an earlier paper [5].

CSL is still evolving. Bornat et al. [1] proposed a refinement of CSL with fine-
grained resource accounting. Parkinson et al. [13] applied CSL to verify a non-blocking
implementation of stacks. As in the original CSL, these works also assume language
constructs for synchronizations. We suspect that there exist reductions from these vari-
ations to SAGL-like logics. We leave this as our future work.

Concurrently with our work on SAGL, Vafeiadis and Parkinson [17] proposed an-
other approach to combining rely/guarantee and separation logic, which we refer to
here as RGSep. Both RGSep and SAGL partition memory into shared and private
parts. However, shared memory cannot be accessed directly in RGSep. It has to be
converted into private first to be accessed. Conversions can only occur at boundaries of
critical regions, which is a built-in language construct required by RGSep to achieve
atomicity. RGSep, in principle, does not assume smallest granularity of transitions. In
SAGL, shared memory can be accessed directly, or be converted into private first and
then accessed. Conversions can be made dynamically at any program point, instead
of being coupled with critical regions. However, like A-G reasoning, SAGL assumes
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smallest granularity. We suspect that RGSep can be compiled into a specialized version
of SAGL, following the way we translate CSL. On the other hand, if our instructions
are wrapped using critical regions, SAGL might be derived from RGSep too.

We also use SAGL as the basis to formalize the relationship between CSL and A-
G reasoning. We encode the CSL invariant as an assumption and guarantee in SAGL,
and prove that CSL rules are derivable from corresponding SAGL rules with the spe-
cific assumption and guarantee. Soundness of SAGL is proved following the syntactic
approach to type soundness. Our work has been formalized in Coq [4].
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