Activity-Driven Synthesis of State Machines*

Rolf Hennicker and Alexander Knapp

Ludwig-Maximilians-Universitdt Miinchen
{hennicker, knapp}@ifi.lmu.de

Abstract. The synthesis of object behaviour from scenarios is a well-known
and important issue in the transition from system analysis to system design.
We describe a model transformation procedure from UML 2.0 interactions into
UML 2.0 state machines that focuses, in contrast to existing approaches, on stan-
dard synchronous operation calls where the sender of a message waits until the
receiver object has executed the requested operation possibly returning a result.
The key aspect of our approach is to distinguish between active and inactive
phases of an object participating in an interaction. This allows us to generate well-
structured state machines separating “stable” states, where an object is ready to
react to an incoming message, and “activity” states which model the computa-
tional behaviour of an object upon receipt of an operation call. The translation
procedure is formalised, in accordance with the UML 2.0 meta-model, by means
of an abstract syntax for scenarios which are first translated into I/O-automata as
an appropriate intermediate format. Apparent non-determinism in the automata
gives rise to feedback on scenario deficiencies and to suggestions on scenario re-
finements. Finally, for each object of interest the corresponding I/O-automaton
is translated into a UML 2.0 state machine representing stable states by simple
states and activity states by submachine states which provide algorithmic descrip-
tions of operations. Thus the resulting state machines can be easily transformed
into code by applying well-known implementation techniques.

1 Introduction

Scenario-based approaches describe system behaviour in terms of typical interactions
between several objects participating, for instance, in a single use case. Scenarios are
particularly useful in the analysis phase since they focus on the overall collaboration
of objects to perform a particular task. However, scenarios do not show the complete
behaviour of a single object which is left to the design phase where the objects’ life-
cycles can be described by state machines.

We propose a rigorous method to transform a set of scenarios, represented by
UML 2.0 sequence diagrams, into state machines. Our general assumption is that each
scenario is simple in the sense that it focuses only on one interaction sequence at a
time. Hence, we will deliberately not consider more expressive notations for sequence
diagrams (like, e.g., alternatives) which add computational complexity at the cost of
clarity; cf. the discussion on the specification of conditional behaviour by Fowler [1]].

* This research has been partially supported by the GLOWA-Danube project (01LW0303A)
sponsored by the German Federal Ministry of Education and Research.

M.B. Dwyer and A. Lopes (Eds.): FASE 2007, LNCS 4422, pp. 87-1011 2007.
(© Springer-Verlag Berlin Heidelberg 2007

88 R. Hennicker and A. Knapp

Additional behaviour can be shown in separate sequence diagrams for (secondary) sce-
narios. The task then is to transform the set of sequence diagrams into a set of state
machines, each showing the complete behaviour of a single object across the scenarios.

There are many approaches in the literature suggesting various strategies and so-
Iutions for state machine synthesis and analysis, like, e.g., [213l4/5]]; see [6] for an
overview. These approaches deal with asynchronous communication in the sense that
the sender of a message is immediately ready for further activation and, in contrast to
synchronous communication, does not wait until the receiver has executed its reaction
to the incoming operation call. We claim that, as a consequence, the resulting state ma-
chines do not provide an adequate design model if we consider standard applications
with synchronous operation calls and returns. The goal of this paper is to provide a
synthesis algorithm that takes into account synchronous calls and their corresponding
execution traces such that the resulting state machines can be easily transformed into a
standard implementation with a single thread of control.

Our method is centred around the treatment of object activations that occur (in a
sequence diagram) when an object has received an incoming message. During an acti-
vation an object may send messages to other objects, wait for corresponding results and
finally provide a return value. We hence focus on reactive system objects where inactive
phases, in which an object is waiting for an incoming message, and active phases, in
which an object reacts to an incoming message, alternate. Inactive phases are considered
as “stable” states. They may be given a name which will be used for matching different
scenarios when generating state machines. During the translation different activations
represented in different scenarios but caused by the same incoming message (after the
same stable state) will be integrated into a single activity of an object. Activities can
be considered as procedures in the sense of “Executable UML” [7]. They are modelled
by UML 2.0 submachines with one entry point and, in general, several exit points rep-
resenting different possible results (inferred from the different scenarios)@ The overall
state machine representing the life-cycle of an object is then obtained by integrating
stable states and “activity” states (represented by submachine states). The generated
state machines exhibit a general pattern with alternating stable and activity states. Any
outgoing transition from a stable state leads to the entry point of an activity state and
is labelled by an incoming message; upon completion of an activity a transition is fired
which connects an exit point of the activity state with the next stable state.

Technically, our transformation sets out from a set of UML 2.0 interactions which
are formalised, in accordance with the UML 2.0 meta-model, in terms of an appropriate
abstract syntax for scenarios (see Sect.[2)). Taking these scenarios as input, our synthesis
procedure consists of the following four steps which are iteratively performed for each
(system) object o.

1. Projection of scenarios: For each scenario the communications in which the ob-
ject o under consideration participates are extracted. Such projections are usually
computed in state machine synthesis approaches.

2. Generation of behaviours from projected scenarios: Each projected scenario is
transformed into an equivalent but differently structured representation, called

' We do not use UML 2.0 activity diagrams to model activities because, in contrast to UML 1.x,
the activity diagrams of UML 2.0 are not specialisations of state machine diagrams.

Activity-Driven Synthesis of State Machines 89

behaviour. A behaviour groups, for each incoming message, all subsequent out-
going messages sent by o into one activation capturing “the reaction” of object o
for each synchronous operation call according to a particular scenario (see Sect. [3)).

3. Integration of behaviours into I/O-automata: After the first two steps there is still
one behaviour of system object o for each scenario. The different behaviours across
all scenarios are now integrated on the basis of common (stable) states. The result
is represented by an I/O-automaton with the incoming messages as input and the
corresponding object activations (together with a return) as output (see Sect. [4.).
The non-deterministic transitions of the I/O-automaton serve as a basis for gener-
ating suggestions for scenario changes which are, in particular, directed towards
behavioural completion (see Sect.[4.2).

4. Translation of I/O-automata into UML 2.0 state machines: Finally, the generated
I/O-automaton is transformed into a UML 2.0 state machine with stable states and
activity states. The activity states integrate possible different reactions to the same
incoming message in a particular stable state (which may still have been present
in an I/O-automaton) into one single activity (see Sect.[3)). It is worth to note that,
according to the abstract nature of the I/O-automata, translations into different con-
crete target representations are possible (e.g., generating instead of activity states
procedural expressions of some action language [7]]).

For ease of comparison of our synthesis procedure with the approaches from the liter-
ature (see Sect. [6) we base our description on a widely used automatic teller machine
(ATM) example [2/58]].

2 Scenarios

We introduce the sequence diagram language for describing scenarios by the well-
known ATM example [[2/548]]. In the following we consider the case where an atm object
reacts to a user who has inserted a card by validating the card with the help of the ob-
jects consortium and bank. The UML 2.0 sequence diagrams in Fig. [I(a) and Fig.[1(b)]
detail two possible scenarios which have been formulated in [2L5] with the difference,
as pointed out in Sect.[]] that we consider here messages as synchronous operation calls
which may provide return values 3

A scenario describes a sequence of communications between scenario participants.
For scenario participants we distinguish between user actors (headed by stick figures)
and system objects (depicted by boxes). A communication consists of a synchronous
operation call (shown above a solid line with filled arrow head) and a return message
with a value (shown above a dashed arrow with open arrow head). An operation call
on a system object causes an activation (grey vertical rectangle) of the system object.
Before and after an activation a system object is in a certain state which can be left
implicit or be named explicitly (shown in a rounded rectangle).

% Note that both scenarios can be considered as “secondary” scenarios since they describe vari-
ations of the normal behaviour described by a primary scenario which is not considered here
but could easily be included.

90 R. Hennicker and A. Knapp

sd Bad account J
X | bank_|

(_waitCard) (__ WaitVerify) WaitBank\Verif
insertCard ! ! !
requestPassword |
| |
l
| . |
enterPassword > 1, verifyAccount verifyCardWithBank N
_ badAccountMessage | |<. ... : badAccount || ... : badBankAccount.
Bl |
_ printReceipt :
» ejectCard |
requestTakeCard :
L |
1 |
WaitTakeCard I
takeCard | :
displayMainScreen :
|
| | |

(__waitCard) (__ WaitVerify) WaitBankVerif

(a) Scenario: Bad account

sd Bad password J
x [consorum | [benc|

(_WaitPassword) (__ WaitVerify) WaitBankVerify
enterPassword >, _verifyAccount verifyCardWithBank i
: badPassword | | .. : badBankPassword
requestPassword | [< 7T TtTTTTrT s ‘ ‘
T | |
| |
! !
cancel] | |
canceledMessage ; ;
_ ejectCard ! !
_ requestTakeCard ! !
| | |

(_WaitTakeCard) (__ WaitVerify) WaitBankVerify
| | |

(b) Scenario: Bad password

Fig. 1. ATM example

The abstract syntax of our scenario language, which conforms to a subset of UML 2.0
interactions [9], is rendered in the following BNF grammar where we assume the do-
mains SystemObject of system objects, User of user actors, State of states, Operation
of operations, and Value of typed values.

Scenario ::= Communication*
Communication ::= UserCommunication | SystemCommunication

Activity-Driven Synthesis of State Machines 91

UserCommunication ::= UserMessage Return
UserMessage ::= Object Operation User
SystemCommunication ::= State SystemMessage Return State
SystemMessage ::= Object Operation SystemObject
Return ::= Value | void
Object ::= SystemObject | User

In a sequence of communications, a user communication represents a message from a
sending object to a receiving user actor together with its return; and a system commu-
nication a message from a sending object to a receiving system object again with its
return. The first (pre-)state in a system communication represents the state of the re-
ceiving system object before actually receiving the message, the second (post-)state the
state after having sent the return to the incoming message. We require that the post-state
of a system communication equals the pre-state of the next system communication with
the same receiving system object, which disallows spontaneous state changes on reac-
tive system objects. The reaction of a system object o to an incoming message, i.e., its
subsequent activation, is given implicitly by the sequence of all communications with
o as sender before the next incoming message to o arrives. Hence, we do not consider
nested activations caused by call-backs. Finally, we require that all returns are type cor-
rect in the sense that for a given operation either all return messages have no return
value (represented by void) or all return messages have a return value of the same type.

Table 1. Tabular representation of the scenarios

(a) Scenario: Bad account

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)
WaitCard user insertCard atm void WaitPassword
— atm requestPassword user void —
WaitPassword user enterPassword atm void WaitTakeCard
WaitVerify atm verifyAccount consortium badAccount WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankAccount WaitBankVerify
- atm badAccountMessage user void -

— atm printReceipt user void —

— atm ejectCard user void —

— atm requestTakeCard user void —
WaitTakeCard user takeCard atm void WaitCard

- atm displayMainScreen user void —

(b) Scenario: Bad password

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)
WaitPassword user enterPassword atm void WaitPassword
WaitVerify atm verifyAccount consortium badPassword WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankPassword WaitBankVerify
- atm requestPassword user void -
WaitPassword user cancel atm void WaitTakeCard
— atm canceledMessage user void —

— atm ejectCard user void —

- atm requestTakeCard user void -

92 R. Hennicker and A. Knapp

Using a tabular notation, similar to the one suggested in the UML 2.0 superstructure
specification [9, App. E], the sequence diagrams for the scenarios of the ATM example
are represented by the two sequences of communications shown in Tab. [Il For missing
returns void has been filled in. In our example, all states have user-defined names, but
in general this is not necessary and states which were left implicit in the graphical
representation of the sequence diagrams would be considered to be pairwise different
and would be equipped with different artificial names. The symbol “—" is used in user
communications where no states are needed for the user actor.

For deriving the behaviour of a given system object across many scenarios, we as-
sume an ordering on the given set of scenarios such that the pre-state of the first com-
munication of the system object in a successive scenario is already present as a state in
one of its predecessor scenarios. For instance, the pre-state WaitPassword of atm in the
second scenario Bad password occurs in the first scenario Bad account.

The scenario language differs from the MSC-based languages used in [, [3], or [2]
by three main concepts: the distinction between user actors and system objects, the use
of activations and the use of return values. On the other hand, as discussed in Sect.[I]
we deliberately do not include more complex constructs for interaction composition.

3 Generating Behaviours from Scenarios

For the synthesis of state machines from scenarios we focus (iteratively) on a single
system object for which the different scenarios have to be integrated. In a first step,
similarly to all other synthesis algorithms, a projection operation discards communi-
cations in a scenario that are not relevant for the system object o under consideration.
More formally, given a system object o and a scenario S, the projection of S to o is de-
fined as the scenario proj (S, o) which consists of all those communications of .S where
o is either the sending or the receiving object. In our running example, the projection
proj (Bad account, atm) to the system object atm yields the sequence of communications
in Tab.[Il(a) with the fifth line removed, and the projection proj(Bad password, atm) to
atm yields the sequence of communications in Tab. [T(b) with the third line removed. If
we focus on the system object consortium the projections proj (Bad account, consortium)
and proj (Bad password, consortium) yield the communications shown in Tab.

In the second step we transform for each system object each single projected scenario
into an equivalent but differently structured representation, called behaviour, where for

Table 2. Projection of the scenarios to consortium

(a) Scenario: Bad account

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)
WaitVerify atm verifyAccount consortium badAccount WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankAccount WaitBankVerify

(b) Scenario: Bad password

Pre state (rcv.) Sender Operation Receiver Return Post state (rcv.)

WaitVerify atm verifyAccount consortium badPassword WaitVerify
WaitBankVerify consortium verifyCardWithBank bank badBankPassword WaitBankVerify

Activity-Driven Synthesis of State Machines 93

each incoming message (received in some state) the subsequent outgoing messages and
the final return are grouped into one activation. After an activation has finished the ob-
ject (possibly) changes its state. Thus, each (projected) scenario can be transformed into
a block structure where each block consists of a pre-state, an incoming message, the cor-
responding activation and a post-state. The following grammar captures this intuition:

Behaviour ::= Block*
Block ::= State InMessage Activation State
Activation ::= OutMessage™ Return
InMessage ::= Operation
OutMessage ::= Operation Object Return

From a scenario S' € Scenario and a system object o € SystemObject, the operation
beh (S, o) computes the behaviour of 0 in S, by first projecting S to o and then collecting
all messages sent by o between two subsequent messages received by o:

beh : Scenario x SystemObject — Behaviour
beh (S, 0) = act(proj(S,o),0)

act : Scenario X SystemObject — Behaviour

act(e,0) =¢

act((pre, (snd, op, 0), ret, post) cs,0) = {pre,op, (outs, ret), post) act(rest, o)
where (outs, rest) = collect(cs, o)

collect : Communication™ x SystemObject — OutMessage™ x Communication™
collect(g,0) = (g,¢)
collect({pre, (snd, op, rcv), ret, post) cs,0) =

€

(e, (pre, (snd, op, rcv), ret, post) cs) ifrev=o0
({op, rev, rety outs, rest) if snd =0
where (outs, rest) = collect(cs, 0)

where (pre, (snd, op, rcv), ret, posty € Communication and cs € Communication™; €
denotes the empty sequence; sequence composition is denoted by juxtaposition; and
angle brackets compound syntax fragments. The behaviours of atm and consortium for
our running example scenarios Bad account and Bad password are given in Tab.[3

Note that the construction of activations, based upon the function collect, marks
a significant methodological and technical difference to the approaches in [5], [2],
and [3]], which has a crucial impact on the construction of UML 2.0 state machines
described below.

4 Integrating Behaviours into I/O-Automata

The behaviours constructed in the last section are still split according to the origi-
nal set of scenarios. The goal of the next step is to integrate for each system ob-
ject its computed set of behaviours on the basis of shared states; these shared states
must have been determined already by the modeller of the scenarios by giving them
the same names. For the integration of behaviours we use as an intermediate format

94 R. Hennicker and A. Knapp

Table 3. Behaviours for atm and consortium in each scenario

(a) Behaviour of atm in scenario Bad account

Pre state Message in ~ Messages out Return Post state
WaitCard insertCard (requestPassword, user, void) void WaitPassword
WaitPassword enterPassword (verifyAccount, consortium, badAccount)

(badAccountMessage, user, void)

(printReceipt, user, void)

(ejectCard, user, void)

(requestTakeCard, user, void) void WaitTakeCard
WaitTakeCard takeCard (displayMainScreen, user, void) void WaitCard

(b) Behaviour of atm in scenario Bad password

Pre state Message in Messages out Return Post state
WaitPassword enterPassword (verifyAccount, consortium, badPassword)

(requestPassword, user, void) void WaitPassword
WaitPassword cancel (canceledMessage, user, void)

(ejectCard, user, void)

(requestTakeCard, user, void) void WaitTakeCard

(c) Behaviour of consortium in scenario Bad account

Pre state Message in Messages out Return Post state
WaitVerify verifyAccount (verifyCardWithBank, bank, badBankAccount) badAccount WaitVerify

(d) Behaviour of consortium in scenario Bad password

Pre state Message in Messages out Return Post state
WaitVerify verifyAccount (verifyCardWithBank, bank, badBankPassword) badPassword WaitVerify

I/O-(input-/output-)automata before we finally construct concrete state machines. To
use [/O-automata has several advantages: First, the integration process can be defined
in terms of standard techniques for joining I/O-automata. Moreover, I/O-automata pro-
vide an abstract representation which is appropriate for feedback on problems in the
integration process which can either be resolved by human manipulation of the scenar-
ios or by choosing a default integration strategy. Finally, the intermediate representation
paves the way for transforming scenario models into different concrete notations, like,
in our case, UML 2.0 state machines or the “Executable UML” [7]] or LTSA [5].

4.1 T1/O-Automata

Formally, an I/O-automaton is a quadruple (Z, In, Out, §) with Z its states, In the input
alphabet, Out the output alphabet,and 6 C Z x In X Out X Z the transition relation. An
I/O-automaton with initial state is a quintuple (Z, In, Out, 8, zo) where (Z, In, Out, §)
is an I/O-automaton and zg € Z is the initial state.

Each single behaviour of a system object constructed in Sect.[3can be seen as an 1/O-
automaton where the states in a behaviour are directly taken as the states of the automa-
ton, the input messages as the input to the automaton, the activations, i.e., the sequences
of output messages with final returns, as the output of the automaton, and each block as
a transition. Given a scenario S and a system object o, the function 70(S, 0) constructs

Activity-Driven Synthesis of State Machines 95

enterPassword /
(verifyAccount, consortium, badPassword)

(requestPassword, user, void) void
insertCard /

WaitCard . .
(requestPassword, user, void) void)
.9@ WaitPassword
takeCard /

(displayMainScreen, user, void) void

enterPassword /

(verifyAccount, consortium, badAccount)
(badAccountMessage, user, void)
(printReceipt, user, void)

(ejectCard, user, void)
(requestTakeCard, user, void) void

Q cancel /

WaitTakeCard (canceledMessage, user, void)
(ejectCard, user, void)
(requestTakeCard, user, void) void

(a) Integrated I/O-automaton of atm

verifyAccount / verifyAccount /
(verifyCardWithBank, bank, badBankAccount) (verifyCardWithBank, bank, badBankPassword)
badAccount badPassword

WaitVerify

(b) Integrated I/O-automaton of consortium

Fig. 2. Integrated I/O-automata for atm and consortium

an I/O-automaton (Z, In, Out, §) for the behaviour of 0 in S as follows: Z is given by the
set of states in beh (S, 0); In is given by the set of in-messages in beh (.S, 0); Out is given
by the activations in beh (.S, 0), i.e., the pairs of sequences of out-messages and returns;
and ¢ is defined by requiring (pre, in, (outs, ret), post) € § iff (pre, in, (outs, ret), post)
is a block in beh(S, o).

The integration intio(So, {S1, ..., Sn},0) of a given scenario Sy with further sce-
narios S1, ..., S, with respect to a system object o is now simply the (joined) I/O-
automaton with initial state (Zo U --- U Zy,,Ing U - - - U In,,, Outg U - - - U Outy,, 69 U
<« Ubp, 20) with i0(S;, 0) = (Z;, In;, Out;, 6;) and z, the pre-state of the first block in
beh(So, 0).

Figure shows the integrated I/O-automaton of the atm object (with initial state)
for the scenarios of our running example. Similarly, Figure 2(b)] shows the integrated
[/O-automaton of the consortium object.

4.2 Feedback

The integration of scenarios into a single I/O-automaton with initial state will, in gen-
eral, result in a non-deterministic automaton. On the one hand, non-determinism reflects
under-specification and thus is intentional. On the other hand, non-determinism can also
be a symptom for incompleteness or errors in the original scenarios. Indeed, we would

96 R. Hennicker and A. Knapp

% user consortium
|
|
|

WaitPassword

enterPassword = VverifyAccount

requestPassword | |—.._.._.__ : badAccount

=
|

|
|
WaitPassword :

Fig. 3. Non-deterministic scenario Bad password (fragment)

expect different reaction sequences to an incoming message to be justified by different
source states or by different returns in the sequence of outgoing messages of the reac-
tion, and the user of the synthesis procedure will be warned about the possible error.

Suppose that for some source state and an input in the integrated I/O-automaton two
sequences of outgoing messages of the following form appear:

my ... Mg_1 (0P, ICVi, Fety) (OPy 1, TCVi41, Felpq1) Mig2 ... Cl

/ !/ / / / /
My ... Mg_1 (OPy, ICVk, Fety) (OPy 1, TCVy 1, 7€l 1) My o...Cp

If rety, = ret}, but opy .y # opj ., or revi | # revi ., the user will be informed
that ret;, and ret’k should be different, in order to ensure deterministic behaviour. As a
simple example, consider the scenario fragment in Fig. [3| which modifies the scenario
Bad password of Fig. [I(b)] by using as a return for verifyAccount the same value badAc-
count that has been used in the scenario Bad account. Then, the different continuations
between the first and the (changed) second scenario indicate non-determinism which
should be resolved by the user.

Similarly, suppose that some source state pre and an input in is followed by two se-
quences of outgoing messages, subsequent returns, and successor states of the following
form:

(pre,in, (mq ... my, ret), post)

(pre,in, (my ...my,ret'), post’)

If ret # ret’, the user will be warned that either rer should be the same as ret’ or the ac-
tivation sequences before should be different, because after exactly the same activation
(for the same in-message and the same pre-state) there is no obvious reason to provide
different return values. Analogously, if ret = ret’ but post # post’ a warning is issued.

5 Translating I/0-Automata into UML 2.0 State Machines

The generated I/O-automaton for the integrated behaviour of a system object in scenar-
ios can be seen as a UML 2.0 state machine keeping the state-transition structure and
only turning in-messages into triggers and sequences of out-messages with a return into
effects. The drawback of this mere adaptation of the notation to UML is that it shows
different activations following the same incoming message on different transitions re-
taining unnecessary non-determinism.

Activity-Driven Synthesis of State Machines 97

[r=ret]
R
[r=ret,]

Fig. 4. Actions as state machine fragment

Thus, in order to obtain a comprehensive representation of the activity that follows
an incoming message we transfer activations to state machines by discerning two kinds
of states: stable states, in which a system object waits for a message; and activity states,
in which the reaction to an incoming message is processed. The different sequences of
outgoing messages and the subsequent returns mark different exits to such an activity
state, in general leading to different (stable) successor states. In UML 2.0, submachine
states provide the necessary structure for the activity states, with entry and exit points
(shown as circles and crossed circles) encapsulating the internal behaviour of the con-
tained state machine; simple states represent stable states. In fact, activity states capture
procedures in the sense of “Executable UML” [7], but make case distinctions in proce-
dure executions graphically explicit.

For integrating the reaction to an incoming message in € In in a state z € Z
of an I/O-automaton with initial state (Z, In, Out, 8, z9) = intio(So, {S1,...,Sn},0)
into a submachine, we first turn the outgoing operation calls in the activation set
R(z,in) = {out € Out | 3z’ € Z .(z,in,out,z’) € §} into state machine fragments:
If (op, rev) is a pair of an operation and a receiving object such that (op, rev, ret) oc-
curs in an out € R(z,in) with some return ret and if (mq ... my (op,rcv,rery)) ...
(my...my (op,rcv, rety,)) are all occurrences of (op,rcv) in R(z,in) after a com-
mon prefix my ... my with n > 0 different returns rety, . . ., ret,,, we construct a state
machine fragment M (z,in, my ... mg, op, rcv) of the form in Fig. @ with r an auxil-
iary variable. In a next step, the different state machine fragments for out-messages
in the activation set R(z,in) are assembled into a single submachine: The transition
for [r = ret;] of M(z,in,mq ...my,op,rcv) is merged to the incoming transition of
M(z,in,mq ... my (op, rcv, ret;), op’, rcev'). Finally, we define an entry point for each
M (z,in, e, 0p, rcv) and exit points for each M (z, in, my ... mg, op, rev) withmy .. .my,
a maximal sequence of out-messages in R(z, in). The result of applying this procedure
to enterPassword in the state WaitPassword in Fig. 2(a)]is depicted in Fig.[5(a)

Having defined submachines for the activation sets R(z, in) an integrated state ma-
chine can now be synthesised by introducing stable states from the I/O-automaton as
simple states and connecting these by transitions to activity states as submachine states
referencing the submachines from R(z, in). For the two ATM scenarios the result of the
translation of the I/O-automaton of atm in Fig. 2(a) is shown in Fig. [5(b)} The states
WaitCard, WaitPassword, and WaitTakeCard are the stable states, the states : insertCard,
: enterPassword, : cancel, and : takeCard are the activity states of the state machine.

It is worth noting that for each system object the separation of stable and activ-
ity states leads to a sequential behavioural design model which can be directly im-
plemented using the state pattern [[10] or a straightforward implementation by means
of state variables. The latter approach represents the incoming messages of a system
object by methods which show a case distinction according to the stable states and

98 R. Hennicker and A. Knapp

| enterPassword)
)%do/ } [check = badAccount] (do/

check := consor’(ium.verifyAccountJ user.badAccountMessage; ®1
user.printReceipt;
user.ejectCard;

user.requestTakeCard
{do / }

[check = badPassword]

user.requestPassword

!

2

(a) UML 2.0 submachine for reaction of atm to enterPassword.

WaitPassword

insertCard / / return void

WaitCard

cancel /

/ return void

enterPassword / / return void

/ return void

& takeCard / / return void O
: takeCard O WaitTakeCard X : enterPassword
oo 1 oo

(b) UML 2.0 state machine of atm with stable and activity states.

Fig. 5. Synthesised state machines for atm

implement the behaviour of the activity states. Using Java as implementation language
and recording the current state in an enumeration-typed variable currentState, the
implementation of enterPassword takes the following form:

void enterPassword() ({
switch (currentState) {
case WAIT_PASSWORD:
VerificationResult check = consortium.verifyAccount() ;
if (check == VerificationResult.BAD_ ACCOUNT) {
user .badAccountMessage () ;
currentState = State.WAIT TAKECARD;
return;
}
if (check == VerificationResult.BAD_ PASSWORD) {
user.requestPassword() ;
currentState = State.WAIT PASSWORD;
return;
}
break;
default:

Activity-Driven Synthesis of State Machines 99
6 Related Work

To our knowledge, in contrast to all other approaches to state machine synthesis our
method sets out from scenarios with a clear distinction between inactive (stable) states
and activation phases that follow as a reaction to a synchronous operation call. Our ap-
proach is activity-driven in the sense that during the transformation process different
activations occurring in different scenarios but following the same incoming message
(in the same stable state) are integrated into one single activity which models the be-
haviour of an operation across many scenarios. Such a model can be easily translated
into a sequential program.

In order to compare our results with the literature we can use the same ATM case
study which, in an asynchronous environment, is modelled by the same scenarios
as shown in Fig. [T} but deleting all states and replacing all synchronous and return
messages by asynchronous messages [2l5] (we have omitted the initial outgoing dis-
playMainScreen message). This example is also the basis for the detailed comparison
in [5]. The crucial difference to the synchronous case is that instead of the return
values badAccount and badBankAccount of the operations verifyAccount and verifyCard-
WithBank, respectively, now (call-back) messages are used to indicate the result of a
verification

For the integration of the asynchronous scenarios different strategies have been pro-
posed in the literature. According to [6]], these approaches can mainly be categorised
into synthesis algorithms which are based on matching conditions and algorithms which
are based on matching events or actions.

As an instance of the first group, the integration procedure of Whittle and
Schumann [2] is based on matching of pre-/post-conditions that the user has to pro-
vide (for incoming and outgoing messages) as an input to the transformation process.
As a result, Whittle and Schumann obtain for the atm the state machine in Fig.
which has a completely different structure than the activity-based state machine for syn-
chronous communication shown in Fig. Also the hierarchical state machine
developed in a last step in Whittle and Schumann’s algorithm does not follow an
activity-based integration strategy but groups states according to values of state vari-
ables in pre-/post-conditions. The approaches by Kriiger et al. [3] and Uchitel et al. [3]
are based on a similar strategy; here, explicit states, like in our scenarios, have to be pro-
vided, and Uchitel et al. also take into account combinations of basic scenario
blocks.

The Fujaba approach to integrate scenarios into a state machine, proposed by Maier
and Ziindorf [4], is based on matching of send actions. In this way one would obtain
for the above scenarios the state machine in Fig. which in turn is not aimed at
exhibiting the computational behaviour of operations. The SCED/MAS algorithm by
Mikinen and Systi [[L1] falls in the same category of event matching procedures, but
also uses a learning procedure for synthesis.

3 In the asynchronous approach, [2/3]] distinguish also a further scenario where the user can-
cels the transaction before the consortium has called back the atm, which is not possible
in the synchronous approach.

100 R. Hennicker and A. Knapp

badPassword /

%\ insertCard / (—\L—\ / user.requestPassword) enterPassword /
) -

consortium.verifyAccount
cancel / user.canceledMessage; user.ejectCard

badAccount /

user.badAccountMessage; user.printReceipt; user.ejectCard
/ user.requestTakeCard

takeCard /

user.displayMainScreen

(a) According to Whittle and Schumann [2]

. enterPassword /
insertCard / (" do / user. do / consortium.
requestPassword verifyAccount
badPassword /

cancel / badAccount /

do / user. do / user. do / user.
displayMainScreen cancelMessage badAccountMessage

takeCard /

do / user. do / user. do / user.
requestTakeCard ejectCard printReceipt

(b) According to Maier and Ziindorf [4]

Fig. 6. Integrated atm state machine in asynchronous approaches

7 Conclusions and Future Work

We have described a model transformation procedure for synthesising an integrated
UML 2.0 state machine from scenarios given as UML 2.0 interactions. The approach
focuses on reactive objects, where activities are triggered by incoming synchronous
messages. The transformation procedure constructs an intermediate I/O-automaton for
the behaviour of a single object integrating the scenarios. The non-deterministic tran-
sitions of the I/O-automaton provide the basis for systematic feedback to the user of
the transformation about integration problems, which will iteratively lead to more com-
plete and refined scenarios. Finally, the integrated I/O-automaton is translated into a
UML 2.0 state machine which describes the overall behaviour of an object distinguish-
ing between stable and activity states. The activity states are represented by UML 2.0
submachines (with entry- and exit-points) modelling the reaction of an object to an
operation call (occurring in a stable state).

A related distinction has been suggested by Tenzer and Stevens [[12]] who use pro-
tocol state machines to specify the permissible sequences of operation calls occurring
in stable states and method state machines to model the execution of the actions of
an operation. However, Tenzer and Stevens do not model state dependent reactions on

Activity-Driven Synthesis of State Machines 101

operation calls and do not focus on a synthesis procedure but rather on the modelling
of recursive calls and call-backs which we have not considered yet. Further steps to
make our synthesis algorithm more complete concern message parameters, which can
be easily added, and an extension to scenarios with both synchronous and asynchronous
messages, which should work along the same lines as the current approach.

Finally, let us remark that our approach can be adjusted to a component-based frame-
work where scenarios are used to identify provided and required interfaces of com-
ponents and the synthesis procedure generates UML 2.0 protocol state machines for
the ports of a component. In particular, the encapsulation of activities allows for inde-
pendent refinement, of operation behaviour, on the one hand, and of the protocol on
the other.

References

1. Fowler, M.: UML Distilled: Applying the Standard Object Modeling Language. Addison-
Wesley, Boston—&c. (1997)

2. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. In: Proc. 22" Int.
Conf. Software Engineering (ICSE’00), IEEE Press (2000) 314-323

3. Kriiger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In Rammig, F.J., ed.:
Distributed and Parallel Embedded Systems, Kluwer Academic, Boston—Dordrecht (1999)
61-71

4. Maier, T., Ziindorf, A.: The Fujaba Statechart Synthesis Approach. In: Proc. 2" Int. Wsh.
Scenarios and State Machines: Models, Algorithms, and Tools (SCESM’03), Portland, Ore-
gon (2003)

5. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios. IEEE
Trans. Softw. Eng. 29 (2003) 99-115

6. Liang, H., Dingel, J., Diskin, Z.: A Comparative Survey of Scenario-based To State-based
Model Synthesis Approaches. In: Proc. 5" Int. Wsh. Scenarios and State Machines: Models,
Algorithms and Tools (SCESM’06), Shanghai (2006) 5-12

7. Mellor, S.J., Balcer, M.J.: Executable UML — A Foundation for Model-Driven Architecture.
Addison-Wesley, Boston—&c. (2002)

8. Blaha, M., Rumbaugh, J.: Object-Oriented Modeling and Design with UML. 2" edn. Pear-
son Education, Upper Saddle River, N. J. (2005)

9. Object Management Group: Unified Modeling Language: Superstructure, version 2.0. (2005)
http://www.omg.org/cgi-bin/doc?formal/05-07-040612/28)

10. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Addison-Wesley,
Boston—&c. (1995)

11. Mikinen, E., Systd, T.: MAS: An Interactive Synthesizer to Support Behavioral Modelling
in UML. In: Proc. 23" IEEE Int. Conf. Software Engineering (ICSE’01), IEEE Computer
Society (2001) 15-24

12. Tenzer, J., Stevens, P.: Modelling Recursive Calls with UML State Diagrams. In Pezze,
M., ed.: Proc. 6™ Int. Conf. Fundamental Approaches to Software Engineering (FASE’03).
Volume 2621 of Lect. Notes Comp. Sci., Springer, Berlin (2003) 135-149

	Introduction
	Scenarios
	Generating Behaviours from Scenarios
	Integrating Behaviours into I/O-Automata
	I/O-Automata
	Feedback

	Translating I/O-Automata into UML 2.0 State Machines
	Related Work
	Conclusions and Future Work

