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Abstract. The development process in software product line engineering is di-
vided into domain engineering and application engineering. As a consequence 
of this division, tests should be performed in both processes. However, existing 
testing techniques for single systems cannot be applied during domain engineer-
ing, because of the variability in the domain artifacts. Existing software product 
line test techniques only cover unit and system tests. Our contribution is a 
model-based, automated integration test technique that can be applied during 
domain engineering. For generating integration test case scenarios, the tech-
nique abstracts from variability and assumes that placeholders are created for 
variability. The generated scenarios cover all interactions between the inte-
grated components, which are specified in a test model. Additionally, the tech-
nique reduces the effort for creating placeholders by minimizing the number of 
placeholders needed to execute the integration test case scenarios. We have ex-
perimentally measured the performance of the technique and the potential re-
duction of placeholders. 

1   Motivation 

Software product line engineering (SPLE) is a proven approach for deriving a set of 
similar applications at low costs and at short time to market [8][21]. SPLE is based on 
the planned, systematic, and pro-active reuse of development artifacts (including 
requirements, components, and test cases). There are two key differences between 
SPLE and the development of single systems [21]: 

1. The development process of a software product line (SPL) is divided into two sub 
processes: domain engineering and application engineering. In domain engineer-
ing, the commonalities and the variability of the SPL are defined and reusable arti-
facts, which comprise the SPL platform, are created. In application engineering, 
customer-specific applications are realized by binding the variability and reusing 
the domain artifacts.  

                                                           
* This work has been partially funded by the DFG under grant PO 607/2-1 IST-SPL and by 

Science Foundation Ireland under the CSET grant 03/CE2/I303_1. 



322 S. Reis, A. Metzger, and K. Pohl 

 

2. The variability of an SPL is modeled explicitly by variation points and variants. 
Variation points describe what varies between the applications of an SPL, e.g. the 
payment method in an online store. Variants describe concrete instances of this 
variation, e.g. payment by credit card, debit card, or invoice. 

Because of the division of the development process into domain and application 
engineering, there are two major kinds of development artifacts that have to be tested. 
In domain engineering, the SPL platform has to be tested, in application engineering 
the derived applications have to be tested.  

The SPL platform contains variability. This variability prevents the use of existing 
testing techniques for single systems, because the domain artifacts do not define a 
single application but a set of applications. With existing techniques from single sys-
tem testing, each of these applications would have to be individually tested in domain 
engineering, resulting in an enormous test effort.  

In the literature, several approaches for SPL testing have been proposed (e.g., 
[4][10][15][17][20][24]). However, these approaches cover unit and system testing 
only.  

This paper presents a model-based, automated technique for integration testing in 
domain engineering. Our technique generates integration test case scenarios (ITCSs), 
which support the test of the interactions between the components of an integrated 
sub-system. An ITCS describes the order and the type of interactions that have to be 
performed during test execution. By augmenting an ITCS with test data, integration 
test cases can be derived. 

The basic idea of our approach is to create placeholders for necessary variable parts 
and all components that are not part of the integrated sub-system. These placeholders 
are considered during the model-based generation of ITCSs. The benefits of our tech-
nique are as follows: 

� Other failures than the ones uncovered in unit testing can be found, because the 
goal of integration testing is to uncover intercomponent failures (see e.g. [6]). 

� Testing can be performed earlier compared to system testing. For integration test-
ing the complete system is not needed. Missing components or variants can be 
simulated. Such an early test can significantly reduce costs (see e.g. [7]). 

� Generally, not all possible interactions between components can be tested in inte-
gration testing. Our technique systematically selects a subset of all possible interac-
tions by using a test model. 

� The ITCSs are derived in such a way that the development effort for necessary 
placeholders is minimized. Thus, the testing effort is reduced. 

2   Related Work 

In the literature, several approaches for scenario-based integration test case derivation 
are presented (see [2][12][16][26][29]). All these approaches only support integration 
testing for the development of single systems, and therefore none of these approaches 
considers variability. As the consideration of variability is essential when testing in 
domain engineering, these approaches are not suitable for the use in the context of 
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SPLs without substantial extensions. Still, they substantiate that a scenario-based 
approach is one suitable approach towards integration testing.  

Many approaches for test case derivation in SPLE can be found in the literature 
[25]. Representatives are approaches by Bertolino and Gnesi [4][15], Geppert et al. 
[10], McGregor et al. [17][18], and Nebut et al. [20]. These approaches focus on unit 
and system testing only. In our previous work, we have developed the ScenTED tech-
nique for system testing [24][15] and performance testing [23]. McGregor focused on 
unit [18] and system testing [17], but furthermore he pointed out that all common 
artifacts can already be tested in domain engineering by integration tests. However, he 
did not present a concrete technique for that.  

In an approach by Muccini and van der Hoek [19] challenges in testing product 
line architectures are presented. For integration testing, they suggest to integrate all 
common components first and then to integrate the variant components. However, 
they do not present solutions for integration test case derivation. Cohen et al. [9] state 
that applying well-understood coverage criteria when testing the applications of an 
SPL could lead to a low coverage of the SPL platform. They have developed specific 
coverage criteria to improve on this situation. The approach by Cohen et al. [9] and 
our previous work [24][15] both support an early test in domain engineering by creat-
ing sample applications. However, creating a sample application assumes that all 
relevant components and variants have been developed. Consequently, this approach 
will be typically applied very late in the domain engineering process. 

General approaches for deriving test case scenarios from control flow graphs also 
exist (e.g., [22][5][27]). In the approach of Wang et al. [27], all possible scenarios 
through a test model are derived by employing existing algorithms. Then, a mathe-
matical optimization is performed to achieve the minimal set of these test case scenar-
ios for branch coverage. Other criteria than branch coverage are also discussed.  
Because of the possible use of other coverage and also optimization criteria, this is a 
quite general approach. Still, variability and specifics of integration testing are not 
explicitly discussed.  

Summarizing, none of the existing approaches for SPL testing support integration 
testing in domain engineering. 

3   Overview of the Technique 

In the following subsections, the test models that are used as input to our technique 
are described and an overview of the activities of the technique is given. 

3.1   Test Models 

Test models, which are used as input to our technique, are specified by UML 2.0 
activity diagrams. We use UML 2.0 activity diagrams to define the control flow of the 
platform (i.e. the actions and the allowed transitions between these actions) and to 
define which components perform a given action. The components that perform an 
action are specified by activity partitions (as an example, see C1, C2, and C3 in  
Fig. 1). A set of these components has to be integrated before our technique is per-
formed according to a defined integration strategy. For each new integrated sub-
system, our technique can be applied again. 
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To model variability, we stereotype certain elements in the activity diagrams to de-
note variation points (see VP1 in Fig. 1) and merge points (see MP1 in Fig. 1). We 
define a merge point as a specific node in the diagram where all variant control flows 
of a variation point are merged together and continue in a single control flow. 
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Fig. 1. Example of a Test Model 

We assume that within the test model, variability always starts with a variation 
point. There are no variable parts that can be reached without passing through a varia-
tion point. Moreover, the control flows of all variants of a variation point are always 
merged together in exactly one associated merge point. The only exceptions are loops, 
which are explicitly marked by a stereotype (see <<loop>> in Fig. 1).  

By using activity diagrams as test models, we follow other approaches where con-
trol flow graphs are used for this purpose (e.g. see [14]). In general, a test model can 
specify the behavior of the complete system or of the sub-system that should be inte-
gration tested. The abstraction level of the model strongly depends on the way the 
model has been developed. For example, the model can be developed on the basis of 
use cases from requirements engineering. If the scenarios of the use cases are docu-
mented in activity diagrams, these can be refined considering the architecture of the 
system. The abstraction level influences the quality of test results. The more abstract 
(i.e., less detailed) the model is, the less the coverage of the test object will be. Thus, 
the test model defines the quality of the test results. 

3.2   Activities 

Our technique for the generation of ITCSs for SPL consists of three main activities 
D1-D3. Fig. 2 shows these three activities together with their inputs and outputs. 
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Fig. 2. Overview of our Technique 
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In the first activity D1, we abstract the variability of the given test model. The vari-
ability is the main problem that prevents the application of test techniques from single 
system development. Because of variability, no executable system exists in domain 
engineering. We abstract the variability and handle it as a black box for the ITCSs 
generation, because we want to test only the common parts of the platform (see  
Sec. 4.1). Thereby, the complexity of the test model is reduced. The relevant result of 
this activity is a simplified test model where the variability is abstracted.  

In the second activity D2, all significant paths through the simplified test model are 
derived. For the derivation, we use Beizer’s Node Reduction Algorithm [3]. Because 
the ITCSs that are generated with our technique only need to cover the interactions 
between the integrated components, we typically can reduce the number of paths (see 
Section 4.2). We refer to the reduced set of paths as significant paths. 

In the third activity D3, we generate an optimal path combination, i.e. an optimal 
set of ITCSs, from the set of significant paths. We calculate the path combination 
with the minimal number of included abstracted variability. The variable parts within 
an ITCS have to be simulated by placeholders. In contrast to placeholders that are 
required for structural reasons, e.g. for enabling compilation, these placeholders are 
more complex because they have to simulate functionality. Therefore, the placehold-
ers of the variable parts within the ITCSs represent a significant additional test effort 
in domain engineering that should be minimized to keep the overall testing effort 
reasonable. 

4   Generation of Integration Test Case Scenarios 

In this section, the activities of our technique are described in detail.  

4.1   Abstraction of Variability (Activity D1) 

In our technique, we consider variability in functionality (e.g. alternative control 
flows) as well as variability in the architecture (e.g. alternative components). If a 
component is a variant (i.e. it can be included in a customer-specific application or 
not), we will not integrate it in a sub-system for an integration test in domain engi-
neering. The interactions between these components have to be tested in application 
engineering when the component is used as part of a specific application. Because 
variant components are not part of the integrated sub-system, they are simulated by 
placeholders in the same way that common components, which are not part of the 
integrated sub-system, are simulated. 

In the test model, variability in functionality is represented by variation points, 
merge points and variants in the control flow. This variability is abstracted in the first 
activity D1. During this abstraction, the control flow between the variation point and 
the associated merge point as well as the variation point and the merge point itself are 
replaced by a new action. We define these new actions as abstracted variability. 

Depending on the actual structure of the test model the abstraction is performed 
differently. We can differentiate between a normal arrangement of a variation point 
(see “A” in Fig. 3.) and a nested one (see “B” in Fig. 3.): 
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Fig. 3. Examples for Transformations for Abstracting Variability 

Loops in a test model can be classified into three different types: 

� A backflow within a variable part exists: This type poses no problem for abstrac-
tion and is already covered by the abstraction of a normal variation point (“A”). 

� A backflow out of a common part into a variable part exists: This type is not con-
forming to our assumptions from above. Because each variable part has to begin 
with a variation point, this composition is not allowed. 

� A backflow out of a variable part into a common part exists: This type represents a 
valid violation of our above assumption that all variants have to be merged in one 
merge point. Because we stereotyped all backflows, they can be identified and thus 
abstracted accordingly (see “C” in Fig. 3.).  

The implementation of our abstraction algorithm uses a relation matrix as a data 
structure to represent the test model. We have decided to use relation matrices, be-
cause in the subsequent activities of our technique for the generation of integration 
test cases, we will use existing algorithms that are based on matrices.  

The dimension of the relation matrix corresponds to the number of nodes in the test 
model (i.e. actions, decision points, variation points etc.). The entries of the matrix 
represent the edges between the different nodes. 
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Fig. 4. Steps of the Abstraction Algorithm applied to the Example from Fig. 1 

In Fig. 4. the steps of the abstraction algorithm are illustrated. The example test 
model consists of 11 nodes, including one variation point. The algorithm iterates 
through the rows of the matrix until a variation point is identified (see 1). With the 
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entries of the identified row (see 2), the reachable nodes are identified (see 3). For 
these nodes, again the reachable nodes are identified in the same way (see 4, 5). This 
procedure is repeated until the merge point of the identified variation point is reached. 
If a loop is detected, the procedure is finished for the respective loop node before 
reaching the merge node. The rows and columns that are identified with the algorithm 
are eliminated from the matrix and are replaced by a new action that represents ab-
stracted variability.  

4.2   Generation of Significant Paths (Activity D2) 

The second activity D2 of our technique is divided into five steps (D2a – D2e). These 
steps are illustrated by the example in Fig. 5., in which components C1 and C2 are 
integrated into the sub-system to be tested. 
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Fig. 5. Creation of an EP Matrix 

Step D2a: Derivation of path expression. We start activity D2 with computing a 
path expression that represents all paths of the test model in a compact string. This 
path expression is generated by Beizer’s node reduction algorithm of [3]. In the ex-
ample, this leads to the expression “ab(cdef)*cdeg” (the asterisk ‘*’ denotes an arbi-
trary repetition of the expression in parentheses). 

Step D2b: Derivation of paths through the simplified test model. The path expres-
sion from step D2a can be used to derive all paths through the test model. However, if 
the test model contains loops, this can lead to an infinite number of paths. As we want 
to cover all interactions between the integrated components, we can limit the number 
of paths by restricting the loop iterations to at most one. This leads to a set P := {p1, 
p2, …, pn} of paths pi.  In the example, P contains the two paths A = (a, b, c, d, e, g) 
and B = (a, b, c, d, e, f, c, d, e, g). 

Step D2c: Selection of significant paths for the sub-system. For the integration test 
of a given sub-system, only paths that affect the integrated sub-system need to be 
considered. Therefore, all paths that do not contain any edges that are associated to a 
component of the integrated sub-system are deleted. Further, all infeasible paths 
should be eliminated. The identification of infeasible paths is nontrivial. Still, several 
approaches have been suggested to identify infeasible paths (e.g., [13]). We suggest 
using one of these existing approaches to eliminate the infeasible paths. Also, a do-
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main expert could perform this step. The result of this step is a set R ⊆ P that contains 
all significant paths. In the example, paths A and B are significant, thus R = P. 

Step D2d: Creation of an EP Matrix. To prepare for the following activities of our 
technique, an edge-path frequency matrix (EP matrix) is created from the paths in the 
set R. The rows of an EP matrix G represent the paths. The columns of the matrix 
represent the edges, e ∈ E, of the test model. An element G(p, e) of the matrix G 
represents how often an edge e is contained in a path p. In the example, the element 
G(B, c) of the EP matrix contains a value of 2, because edge c appears twice in  
path B. 

Step D2e: Reduction of the EP Matrix. As a final step, the EP matrix is reduced. In 
integration testing, the interactions between the components of the integrated sub-
system are tested. Therefore, only edges of the test model that cross the component 
boundaries within the integrated sub-system have to be considered. As a consequence, 
all columns can be eliminated that represent other transitions, leading to a reduced 
matrix F. In the example, transition e is eliminated, because it is an internal transition 
of component C1. Transition c is eliminated, because it is not part of the component 
interactions within the integrated sub-system. 

4.3   Generation of the Optimal Path Combination (Activity D3) 

The third activity D3 generates a set of ITCSs based on the EP matrix F. The set of 
ITCSs has to cover all necessary edges of the test model, i.e. all interactions between 
the integrated components. Moreover, the set should lead to the minimal number of 
abstracted variability and thus required placeholders.  

An ITCS is represented by a path through the simplified test model. The optimal 
set of ITCSs therefore is represented by a subset c of the paths R that are specified in 
the matrix F. We want to determine a path combination that guarantees a complete 
coverage of the interactions between the integrated components. The coverage for any 
given path combination c can be computed from the EP matrix F as follows.  

Let s(c, e) be 

s(c, e) = ∑
∈cp

epF ),(  (1) 

The coverage of the interactions between the integrated components is only 
achieved if s(c, e) is larger than zero for all edges e. Otherwise, at least one edge has 
not been considered in the path combination. 

The generation of an optimal path combination through the simplified test model 
obviously represents an optimization problem. We use the generalized optimal path 
selection model by Wang et al. [27] to generate the optimal path combination. This 
model can easily be used for different optimization criteria. Wang et al. define the 
objective function Z as follows: 

Z  = bT WT x (2) 

The vector of decision variables x contains one decision variable for each signifi-
cant path through the simplified test model. The decision variable indicates, whether 
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the path is selected for the path combination or not. Therefore, the decision variables 
are binary: 

x = [ ( X i | Xi = 0, 1) ] (3) 

The vector b and the matrix W enable the weighting of the decision variables to 
upgrade or downgrade specific possible solutions.  

The minimization of the abstracted variability that is contained in the significant 
paths is realized by the weighting matrix W. Thereto, we specify a matrix V. The rows 
of V represent the significant paths R. The columns of V represent the nodes v within 
the simplified test model that represent the abstracted variability. An element V(p, v) 
of the matrix V is 1 iff the path p contains the node v, otherwise the element has the 
value 0. The matrix V is now used as weighting matrix W. 

The vector b can be used to prioritize the complexity of the single abstracted vari-
ability. In contrast to this, the matrix V is used to optimize the number of abstracted 
variability in the path combination. Because the complexity of abstracted variability 
depends on many different factors (e.g., on the way of implementation), we currently 
do not use the vector b in our optimization. The resulting objective function thus  
becomes: 

Z = 1T VT x (4) 

It should be noted that using the matrix V leads to an approximation with respect to 
minimizing the number of abstracted variability within the selected path combination. 
Because of an easier realization, the overall number of abstracted variability is  
minimized, not the number of different abstracted variability.  

The desired coverage of the test model is achieved by defining auxiliary  
conditions: 

AT x ≥ r (5) 

The matrix A defines the elements that have to be covered (e.g., paths, branches, or 
nodes). The variable r specifies the desired degree of coverage. We specify the 
coverage of the interactions between the integrated components with the matrix F. 
Therefore, we can replace the matrix A with matrix F. To guarantee the coverage, it is 
sufficient to run through each needed edge once. Therefore, we can set the degree of  
coverage r to 1. The adapted auxiliary conditions are the following: 

FT x ≥ 1 (6) 

The optimization problem that is described in this manner can be solved with the 
branch-and-bound approach (see e.g. [1]). Branch-and-bound is a general algorithmic 
method for finding optimal solutions of integer optimization problems.  

5   Evaluation of the Technique 

In this section, we present the results of the experimental evaluation of our technique 
concerning the performance and the benefits of the technique.  
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5.1   Design of the Experiment 

We have implemented a prototype for the complete technique in Java (JDK 1.4.2). 
The multi-constraint selection of an optimal set of paths through a graph is an NP 
complete problem. Therefore, the activity D3 of our technique is the most critical one 
and we focus on this activity in our evaluation. Our prototype uses for this activity D3 
the Gnu Linear Programming Kit (GLPK, [11]) for solving the optimization problem 
with the branch-and-bound approach. 

We have defined simplified test models by the random generation of EP matrices 
and W matrices. Then, we have generated the optimal set of ITCSs by applying our 
prototype. We have measured the computation time as well as the number of selected 
scenarios and the number of the contained abstracted variability. Altogether, we have 
generated and calculated over 2000 examples. All measurements have been per-
formed on a standard PC with a 2.8 GHz Pentium IV processor and 1 GB RAM, run-
ning Windows XP (SP2). 

The test models that have been used as input to activity D3 are represented by EP 
matrices and W matrices and can be characterized by six parameters: 

1. the number of paths through the simplified test model (rows of the EP matrix) 
2. the number of reduced interactions between the integrated components (columns 

of the EP matrix) 
3. the number of entries of the EP matrix, i.e. how many cells of the EP matrix have 

a value greater than 0 
4. the allocation of the EP matrix, i.e. the assignment of the values greater than 0 to 

the cells of the EP matrix 
5. the number of abstracted variability in the simplified test model (columns of the 

W matrix) 
6. the allocation of the W matrix, i.e. the assignment of the values greater than 0 to 

the cells of the W matrix 

For the execution of the test runs, we have varied the number of paths and interac-
tions of the EP matrix. We have started with 10 paths and 10 interactions and  
increased the values incrementally by 10. For each paths/interactions combination, we 
generated 5 examples with different kinds of allocations and different W matrices. 
Because of our experience with previous example test models, we have fixed the 
number of entries in the EP matrices to 50% and 25%. The allocation has been gener-
ated randomly. We prevent columns that contain a value greater than 0 in every row, 
because these columns would be covered by every path and therefore they would be 
needless and could be deleted. We also prevent columns that contain 0 in every row, 
because this would lead to a wrong test model. These columns could not be covered 
by any path through the simplified test model. The bounds of the number of ab-
stracted variability, VA, in the simplified test models (i.e., the number of columns in 
the W matrices) are the following: 1 < VA < (10*(columns of EP)). We assume that 
only 10% of the interactions of the original test model represent interactions between 
the integrated components. If more than 10% of the interactions represent interactions 
between the integrated components, the upper bound would be lower and less vari-
ability could be included in the model (e.g., 5*columns of EP for 20%). The number 
of entries and also the allocation of the matrix W have been generated randomly.  
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5.2   Validity Threats 

We have analyzed different types of threats to the validity of the results of our evalua-
tion (c.f. [28]). One threat leads to the necessity of using objective and repeatable 
measures. We have measured the computation time, the number of test case scenarios, 
and the number of reduced abstracted variability. These measures are objective, be-
cause it involves simple counting. Because the technique is automated, the measures 
are also repeatable.  

The environment of our experimentation consists of a PC that has no network con-
nection and there are no other applications running on the PC. We have performed all 
measurements on the same PC. Thus, the results are comparable. The implementation 
of the prototype has been intensively tested before we have performed the experiment.  

Because of the high number of more than 2000 computations of different test mod-
els, in our opinion the results can be generalized and with a high probability they are 
also relevant for industrial practice. 

5.3   Performance of the Technique 

In our experiment, the performance is measured by computation time. We have ap-
plied our prototype to more than 2000 generated examples with different characteris-
tics of EP matrices and W matrices.  
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Fig. 6. Computation Times [s] 

Fig. 6 shows the results concerning the computation time exemplary for EP matri-
ces with 50, 100, and 200 edges and an allocation of 50%. The results in the diagram 
respectively represent average values of five computations. Moreover, the figure 
shows the regression curves for each data set. As expected, simplified test models 
with more included interactions need more computation time. The longest computa-
tion time of all executed computations was 9087 seconds for an example with 200 
paths, 200 interactions (edges), and 1880 included abstracted variability. The variabil-
ity in this example could only be reduced to 1842. Examples with 100 interactions 
have been smoothly calculated in an acceptable time, even if they have 600 paths. The 
computation time of examples with 50 interactions was minimal. Analyzing the re-
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sults, we observed that the more variability could be reduced, the more computation 
time decreased. The most complex computations were those, where no variability 
could be reduced.  

It should be noted that the measured computation times correspond to the dimen-
sions of the simplified test model. Thus, directly determining computation time from 
the size of the (non-simplified) test model is not possible. However, the size of test 
models typically corresponds to a multiple of the size of the simplified test models. 
Because all computations of our experiment have been performed in an acceptable 
time (less than three hours), these results indicate that (non-simplified) test models of 
sufficient size can be calculated.  

5.4   Benefit of the Technique 

Our technique supports an early test in domain engineering because of the following 
aspects:  

� The complete system is not needed for applying our technique, because missing 
parts (e.g., variability or not implemented components) can be simulated. 

� The parts of the system that have to simulated are easily to identify. The variable 
parts can be identified by the nodes in the ITCSs that represent abstracted variabil-
ity. The placeholders that are needed because of structural reasons can be identified 
by the architectural information within the ITCSs. 

� The expected coverage is guaranteed. All common interactions between the com-
ponents of the system are covered. 

There are two additional benefits that could be measured in our experiment: 

Low number of integration test case scenarios. Applying our technique leads to a 
small set of ITCSs that guarantees the coverage of all necessary interactions of the 
test model. A small test set can reduce the test effort during test execution.  
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Fig. 7. Number of selected TCS 

Fig. 7. shows the number of ITCSs within the generated test set in contrast to the 
number of possible ITCSs for 25% and 50% allocations of the EP matrix. The number 
of scenarios within the generated test set is very small, i.e. only a few ITCSs are suffi-
cient to cover all necessary interactions of the test model. Although the number is not 
minimized during the computation and the generated test models are partially very  
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complex, the average number of scenarios for 25% allocations of the EP matrix is 7.2 
scenarios. On an average only 3.6 scenarios are sufficient for the coverage, if the EP 
allocation is 50%. 

Minimal number of abstracted variability. Applying our technique leads to a test 
set that contains a minimal number of abstracted variability. The minimal number of 
abstracted variability reduces the test effort during the preparation of the test, because 
less placeholders have to be developed.  
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Fig. 8. Measured reduction of Variability 

Fig. 8 shows the number of different abstracted variability in the selected ITCSs 
proportional to the overall number of different abstracted variability in the test model 
(50% allocation of EP). The difference between these numbers represents the reduc-
tion of variability and therefore a reduction of needed placeholders. In the diagram, 
the numbers of all performed computations are illustrated. The mean reduction is 
25%. However, the standard deviation is very high and therefore the mean reduction 
is not really significant. Because of the high distribution of the values, we have di-
vided the values in six categories. In 46% of the computations, only a reduction of 
less than 10% could be reached. But in more than 20% of the computations, a reduc-
tion of more than 50% could be reached. 4% of the computations lead to reduction of 
more than 90%. Summarizing, a high reduction is possible, but because of the high 
distribution of the results estimating the reduction for a given test model is not possi-
ble. The high distribution is due to the fact that the results are influenced by a set of 
parameters (e.g., allocation of the variability in the test model, size of the test model). 

6   Conclusion and Outlook 

In this paper, we have presented a model-based, automated technique for integration 
testing in domain engineering. The technique generates integration test case scenarios, 
based on which integration test cases can be developed. Our technique provides four 
significant benefits for software product line testing:  

� The technique facilitates integration testing by considering a test model that de-
scribes the control flow as well as its assignment to the components of the software 
product line platform. Components and variable parts, which have to be simulated 
by placeholders, are explicitly modeled. 
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� The technique supports an early test in domain engineering. Variability is ab-
stracted and placeholders can be used to simulate the abstracted variable parts of 
the software product line platform.  

� The technique selects integration test case scenarios systematically. Based on the 
test model, the integration test case scenarios are derived by our technique such 
that the coverage of all interactions between the components of an integrated sub-
system is guaranteed.  

� The technique reduces the testing effort, because the variable parts within the se-
lected integration test case scenarios, and thus the development effort for place-
holders, is minimized. Our experimental evaluation has shown that on an average 
the number of variable parts in the scenarios can be reduced by about 25%.  

Although the computations for minimizing the variable parts in the integration test 
case scenarios are quite complex, our experiments have shown that the technique can 
deal with large test models. However, the technique depends on the arrangement of 
variability in the test models. The abstraction of an unfavorable arrangement can – 
under rare circumstances – lead to an over-simplified test model, which prevents a 
reasonable application of the technique. 

Currently, we are planning to apply our testing technique in an industrial setting. In 
addition, the reuse of the generated integration test case scenarios in application engi-
neering is one topic of our future research. We are convinced that the testing effort 
can significantly be reduced, if the test case scenarios are systematically reused in 
application engineering. 
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