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Abstract. Complex software systems, and self-adaptive systems in particular,
are characterized by complex structures and behavior. For their design, appropri-
ate notations for the specification of properties that integrate structural and tem-
poral aspects are required. We present Timed Story Scenario Diagrams (TSSD), a
visual notation for scenario specifications that takes structural system properties
into account and provides an integrated way of discussing system state evolution.
We present the key features of the notation and demonstrate how the patterns of
the Specification Pattern System [112] can be encoded using TSSDs. We also dis-
cuss how TSSDs can be derived from textual specifications in a straight-forward
manner, using a case study.
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1 Introduction

As part of the trend towards more intelligent, efficient, and flexible software-intensive
systems (cf. self-adaptive systems [3l4]), dynamic software architectures which per-
mit structural adaptation at run-time are beginning to displace static architectures and
models. While this allows building more flexible systems, designing and validating
adaptable systems poses new challenges to software engineers. In order to express re-
quirements and commitments concerning the evolution of the structure over time, ap-
propriate integrated notations for the specification of properties covering structural and
temporal aspects are required as these are closely intertwined.

The need for formal specifications expressed using logics or automata is a major
obstacle for the adoption of formal verification techniques by practitioners. We do not
only need techniques for the description of structural and temporal properties which are
sufficiently expressive and provide the essential theoretical concepts, but which are ap-
propriate for use by normal designers, requirements engineers, or even informed stake-
holders who can handle UML class diagrams (domain experts or engineers from outside
the software domain) rather than experts on logic.
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For specifying structural properties, the UML only provides a textual specifica-
tion language, the OCL [5]]. The writing of OCL properties requires that the developer
translates his/her concrete ideas about the required structural properties from the famil-
iar structural view in form of UML Class and Object Diagrams into an often intricate
textual syntax. When reading OCL, a complicated and error prone translation in the
opposite direction is required. This mental mapping problem is the reason why OCL
with its textual appearance is rarely used in practice, as the UML’s popularity is in large
part due to its visual nature and the accessibility of its structural modeling concepts (see
also [6]]).

Several approaches try to overcome this problem. Constraint diagrams [[7] visualize
constraints as restrictions on sets using Euler circles, spiders and arrows and constraint
trees [8]]. VisualOCL [9] focuses on mapping OCL syntax to a visual format as closely
as possible, thus facilitating the parsing of structural constraints. However, the resulting
visually complex diagrams have only little relation with the original UML specification
so that a similar gap results. In contrast, Story Patterns (cf. [[10]) extend UML Object
Diagrams and thus avoid this gap. However, they have deficits when it comes to quan-
tification and negation.

For temporal properties, temporal logics such as LTL or CTL [11]] represent the
standard. However, as reported in [2]], even experts have serious problems handling the
intricate nature of these logics. Even in projects with trained experts, employing them is
often impossible, as the resulting property specifications will usually be unintelligible
to domain experts from other disciplines that need to participate in the effort. Specifica-
tion patterns for temporal properties represent an attempt to alleviate this problem. As
outlined in [2], many useful temporal properties can be constructed using a small set of
elementary building blocks. This idea has been extended and applied to real-time sys-
tems in [12]]. However, while applying the patterns is intuitive, the resulting formulas
themselves are no more transparent or readable than before.

Scenarios in form of UML sequence diagrams [13]], Triggered Message Sequence
Charts (TMSCs) [14]], or Live Sequence Charts (LSC) [15] have been proposed as a
more accessible means for the description of temporal properties. Visual Timed event
Scenarios (VTS) [16] are an alternative which focuses on scenarios for pure events,
rather than the interaction of predefined units. Therefore, they provide a more intuitive
notion of temporal ordering than Sequence Diagrams, which require specifying a se-
quence of interactions that "enforces’ this ordering.

The existing approaches which combine structural and temporal properties are
mostly extensions of the OCL towards the description of dynamics. Through the in-
troduction of additional temporal logic operators in OCL (e.g., eventually, always, or
never), the specification of required behavior by means of temporal restrictions among
actions and events is enabled, e.g., [17]. Temporal extensions of the OCL that consider
real-time issues have been proposed for events in OCL/RT [18]] and for states in RT-
OCL [19]. As temporal logic alone already causes an even more demanding mental
mapping problem (cf. [2]]), integrating the OCL and some temporal logic concepts at
the textual level does not yield a sufficiently comprehensible solution.

In [20], an embedding of graph patterns into LTL formulas is proposed in order to be
able to capture structural properties. This approach tackles the theoretical aspects of the
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proposed integration rather than the design of a practical specification language, which
would suffer from the intricate nature of the underlying LTL.

The only notation that takes an approach similar to ours is a recent proposal [21] for
writing temporal graph queries. The approach extends Story Diagrams [22] — an exten-
sion of UML Activity Diagrams with Story Patterns — by annotating unary forward or
past operators from LTL with additional explicitly encoded time constraints. It requires
the explicit specification of an accepting automaton rather than employing the idea of
scenarios. In cases where only partial orders of events or time constraints between par-
tially ordered situations have to be specified, the encoding of the time constraints in the
automaton will therefore become rather complex.

We can conclude from our analysis of the state of the art that no existing approach
fully supports the joint specification of structural and temporal properties in the desired
scenario-based manner. The notations either lack support for one of the aspects or seem
unsuitable for the intended audience, as they require handling the combination of two
notations that already seem forbiddingly complex own their own.

In this paper, we demonstrate that the outlined requirements for jointly specifying
structural and temporal properties in a comprehensible manner can be met by a visual
language. First, we outline how Story Decision Diagrams (SDD) [23] can be used to
capture structural requirements. SDD are an extension of Story Patterns [10], combin-
ing the intuitive concept of matching structural patterns with decision diagrams, which
foster a consecutive if-then-else decomposition of complex properties into comprehen-
sible smaller ones. We then introduce Timed Story Scenario Diagrams (TSSD), a new
notation inspired by the Visual Timed Event Scenario approach [[16], as a way of captur-
ing temporal properties. They provide conditional timed scenarios describing the partial
order of specific structural configurations.

The paper is structured as follows: After providing a short introduction to SDDs as
a means of capturing structural properties in Section 3, we introduce TSSDs, which
employ SDDs as basic building blocks for capturing joint structural and temporal prop-
erties, in Section Bl We then demonstrate the capabilities of TSSDs by showing that
the Property Specification Pattern System proposed in [112] can be easily described in
a compositional manner in Section ] and outline how to systematically derive TSSDs
from given textual description by a systematic stepwise transformation process in Sec-
tion 3l Finally, the conclusions of the paper and outlook on future work is presented.

2 Specifying Structural Properties

The fundamental abstraction underlying our approach is the idea of interpreting in-
stance situations of an object-oriented system as graphs. We map each object/value to a
node and each attribute/association to an edge of a labeled graph. The theory of graph
transformation systems (cf. [24]]) provides the formal semantics that are typically miss-
ing from UML-based notations, which allows reasoning about states and behavior of
object-oriented systems modeled using a visual notation.

The system structure is modeled using UML Class Diagrams characterizing all pos-
sible system states. Figure [l provides the example that is used in the case study below,
a networked system of elevators.
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Fig. 1. Elevator class diagram — SDD illustrating basic syntax

Story Patterns are an extended type of UML Object Diagram (cf. [10]) that allow
expressing properties as specific object configurations (in accordance with a given Class
Diagram). They provide a notation for forbidding individual elements, but no negation
of subgraphs, disjunction, implication, or modularity, which limits their use for the
encoding of more complex properties.

Story Decision Diagrams (SDD) are an extension that remedies the shortcomings
of Story Patterns while retaining an accessible visual notation. An SDD is a directed
acyclic graph (DAG). Each node contains a Story Decision Diagram Pattern (SDDP)
specifying an elementary structural property, basically a Story Pattern without forbid-
den elements. Pattern elements bound by one node remain bound in subsequent nodes.

During evaluation, the nodes are processed starting from the root node with an empty
binding. Each node in the SDD can essentially be seen as a local if-then-else decision
based on the current binding. If a match is found, we extend the binding and follow the
solid then connector, if no match is found, we leave the binding unchanged and follow
the dashed else connector. When a binding reaches a (1) or (0) leaf node, it evaluates
to true or false, respectively. SDDs are thus similar to decision trees, but allow sharing
isomorphic subtrees and leaf nodes to reduce diagram size. Like in decision diagrams,
consecutive conditions correspond to logical conjunction or, equivalently, implication,
i.e. if a then b else c corresponds to (a = b) A (—a = ¢). SDDs allow multiple then
or else connectors per node as a way of expressing alternatives.

As all pattern elements are positive, negation is expressed by switching the then
and else connectors, i.e. a match leads to failure and no match leads to success. By
appropriately chaining the corresponding nodes, complex negative conditions can be
expressed. In absence of negation, the leaf nodes are implied and can be omitted[]

SDDs allow quantification over the free variables of each node. Accordingly, we
differentiate between existential nodes, which require that at least one of the bindings
they propagate reaches a (1) leaf node, and universal nodes, which require this of every
propagated binding. If an existential node binds explicitly named variables var; to ob-
jects or links, it is marked with [3 var;"]. If the node only binds anonymous variables

! Note that color is used to make diagrams more readable, but redundant at the semantic level.
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to links, it is marked with [3 ]. If the node contains no free variables at all, it becomes
a guard node — marked with [e] — that sends the original binding down the appropriate
connector depending on the specified constraints on attributes. A universal node con-
taining the free variables var; is marked with [¥ var;"]. If no matching binding exists,
the expected semantics of V quantification require that the expression evaluate to true,
i.e. an else connector to (1) is implied. Finally, it is possible to specify cardinalities for
anode’s then connector that constrain the number of extensions that may be generated
for the same original binding. If too few or many bindings are found, the original bind-
ing is propagated down the else connector. The SDD in Figure [l illustrates the basic
concepts, requiring that every elevator is at a floor or else the doors are not open.
Most visual specification techniques lack the capability to compose complex proper-
ties by referencing other properties. SDDs support the composition of specifications by
means of Embedded Story Decision Diagrams (ESDD). ESDDs are defined as patterns
with free variables that are bound depending on the respective current context. The ESDD
definition begins with a A\ node that defines the pattern’s name and rebinds variables of
the host node to the local roles. If a node contains a reference to an ESDD, represented
by the UML pattern symbol, a binding only matches the node if it also fulfills the em-
bedded pattern. ESDDs are evaluated like normal SDDs, but introduce a local scope. In
Figure2l an ESDD is defined, expecting a floor and an elevator as its parameters.

requested: 1. to, agent

move up : he,f
to : Floor | agent : Elevator
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‘ to : Floor ] + re
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Fig. 2. Simple ESDD definition — Recursive ESDD definition

It is possible to define ESDDs recursively (see Figure 2)), providing a way to encode
reachability and other transitive properties. The formal semantics of SDDs is defined
in [25]], where we define the semantics of recursive ESDDs using least fixed points and
demonstrate that ESDD evaluation terminates on arbitrary finite graph structures.

3 Specifying Temporal Properties

The temporal behavior of a system can be described as a sequence of states. As we
model the system as a graph transformation system, each of these states corresponds
to a graph. Between states, the identity of nodes and edges is preserved. The idea be-
hind Timed Story Scenario Diagrams (TSSD) is to use the ordering of incidences of
structural properties in order to specify temporal properties as sets of valid orderings.
The diagrams are thus directed acyclic graphs consisting of nodes, each containing the
specification of a structural property, and edges, constraining the ordering of incidences.
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Fig. 3. Basic Example of the TSSD syntax

While TSSDs were designed with SDDs in mind, the structural properties could be en-
coded using any sufficiently expressive formalism.

Figure 3] is a basic example presenting the key elements of a TSSD. Whenever an
elevator is not at a floor, it has to reach a floor within 30 time units. Meanwhile, the
doors of the elevator must not be open, which is indicated by the (forbidden) guard
on the transition. Using the overview in Figure [ we now systematically introduce the
elements of the TSSD syntax. The formal semantics of TSSDs is defined in [25]].

Each node of a TSSD defines a situation. While a situation characterizes a set of
states, calling it a state would be misleading, as multiple situations of the same TSSD
can be incident, i.e. active, at the same time. A labeled situation can be referenced
in other places in order to reduce diagram size and avoid redundancies. Bindings are
shared between subsequent situations on the same path through the TSSD so that vari-
ables cannot be rebound in later situations. If bindings were not retained, it would be
difficult to specify properties such as ’If an elevator is assigned a request, it needs to
complete it.” because any elevator completing any request would complete the scenario.
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Fig. 5. The relationship between a situation and its observations

When matching a situation, its SDD generates a result set consisting of the alternative
candidates, i.e. the bindings that satisfied the SDD. As SDDs may contain V quantifica-
tion and can then only be satisfied by sets of valid bindings, the result set actually contains
candidate sets, even though these typically only contain a single binding. Each valid can-
didate set in the result set is called an observation of the situation. However, as the SDD
encodes a structural property, whose incidence is typically not limited to a single point
in time but spans an interval, the situation could generate infinitely many observations
for the same candidate set. An observation is thus made only at the specific time when a
structural property is first present after being absent. Figure[lillustrates this for a situa-
tion encoding that a specific elevator is requested at a specific floor. As the truth value
of this property changes over time for the different pairs, observations (marked by small
circles) are only generated where the truth value changes from false to true. For the
pair (E,, F,,), two observations are generated, one a time 1 and one at time 5.

The observations for a scenario are then placed in relation to each other using
temporal connectors between situations specifying their temporal ordering. The even-
tually connector (A » B) denotes that an observation for situation B is eventu-
ally made after an observation for situation A (or simultaneously). The until connector
(A »pB) denotes that an observation for situation A is made and that the specific
observation remains valid until a compatible observation for situation B is made. Oth-
erwise, the connector ceases to be enabled. The immediately connector (A > B)
denotes that an observation for situation B is made at the same time as the correspond-
ing observation for situation A. The connector is thus only enabled in a single state.

As situations generate sets of observations and as bindings are retained across situ-
ations, the indicated temporal ordering only makes sense when applied to compatible
pairs of observations, i.e. if the candidate set of the more recent observation actually
evolved from the candidate set of the earlier observation. For example, Figure [3| con-
strains the movement of a single elevator, independently of any other elevator. This
same argument applies to multiple observations based on the same candidate set (such
as the pair (F,, F,) in Figure[3) as well — a subsequent observation should not be in-
validated just because the structure matched by the antecedent reappears. A » B
therefore does not imply that all compatible A need to occur before B, but rather that
a compatible A exists before B. Such a sequence of correctly ordered compatible ob-
servations is called a trace. As there may be multiple antecedent observations with
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identical bindings, a single observation can extend multiple traces. As a binding may
later be extended in multiple ways, each trace may furthermore be extended by several
concurrent observations, resulting in a set of alternative traces.

Pseudostates control the scope of the scenario and encode logical operators. The
initial node e always matches exactly once, as soon as possible. The descriptive, se-
quential character of TSSDs implies the assumption that time is bounded in the past.
The termination node (¢) marks the end of a branch of a TSSD and always matches
as late as possible, i.e. the current state during runtime monitoring or the last state of
a finite system. In conjunction with an »» connector, a (®) node can thus express
that a property, e.g. safety, should hold globally. A trace starts at an initial node and
is completed once it has reached a termination node. A system execution path 7 then
fulfills a TSSD if a completed trace to a (¢) node exists within a prefix of 7.

While TSSDs need to be acyclic, each situation may have multiple successors and
predecessors. If the TSSD forks, both branches progress independently and in parallel.
Observations are only partially ordered. Disjunction can be expressed using multiple
(® nodes on independent branches, as one successfully completed trace is sufficient. If
a situation has multiple ingoing temporal ordering edges, observations for all situations
directly preceding it need to exist. Multiple incoming connectors thus correspond to
conjunction. Predecessor branches that do not begin in an initial node can be used to
make statements concerning the past. While the eventually connector then serves as
the past operator, until can be used to emulate since as time is assumed to be bounded
in the past. If there are multiple initial nodes in a single diagram, we require a satisfying
trace from every initial node, which can be used to create the parallel composition of
multiple TSSDs.

As a way of expressing logical — and negate whole scenarios, it is possible to turn
branches of a TSSD or the entire diagram into forbidden scenarios. In the style of SDD
connectors, required situations and connectors are drawn with solid (dark) green lines,
while forbidden situations and connectors use dashed (dark) red lines. Forbidden sce-
narios are defined by means of inhibiting connectors. Normally, a connector is disabled
and becomes enabled when it is reached by an appropriate trace. Inhibiting connectors
are enabled and become disabled if a trace reaches them. Inhibiting connectors mark
the end of a forbidden scenario and thus are the connectors leading from forbidden to
required elements. In the presence of an inhibiting connector, the subsequent required
situation is thus only enabled if no trace completing the forbidden branch exists. The
semantics of all other situations and connectors in a forbidden scenario is unchanged.
Forbidden scenarios may branch and join in any situation of the diagram. If they join
in a (@) node, they must never occur. As multiple (¢) nodes represent alternatives, a re-
quired and a forbidden scenario leading to different () nodes still represent alternatives.

Additional guards and time constraints can appear directly on the temporal con-
nectors defining the ordering of situations or on dedicated constraint edges connect-
ing any two situations regardless of their relative position in the diagram. Constraint
edges have no direction. Guards are situations that are forbidden between two situa-
tions. They are drawn with a bolder dashed border and connected to the connector or
constraint edge in question. For convenience, the notation provides support for speci-
fying required guards as well. We also directly support some commonly used idioms
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in connection with guards: While the observation semantics ensure that the same ob-
servation could not have been made earlier, we may want to require that the situation
should not yet have matched at all. While this can be achieved using a dedicated guard,
we allow "bending’ the forbidden guard onto the situation itself, which then becomes
strictly next. Likewise, a strictly previous situation needs to be the last possible obser-
vation. Finally, a strict situation without any connectors is forbidden between any two
situations unless explicitly required, or, if it is globally strict, also between situations
and pseudostates.

Time constraints allow setting a lower bound ! and an upper bound u for the permitted
delay between two observations for two situations A and B within the same trace or
related traces. A time constraint can either be placed directly on a temporal connector
(A (L-wculy, B) or on a dedicated constraintedge (A- - - [l ... u]- - - B). In case of multiple
constraints, the more restrictive bounds dominate the less restrictive ones. The dedicated
pseudostates first of and last of allow specifying (time) constraints between the earliest
and the latest observation for two sets of situations.

TSSDs provide quantification on different levels. As observations are generated by
SDDs, a situation can be observed as structurally equivalent but distinct instances of the
same pattern. This is quite different from typical event- or message-based approaches
that do not consider structure and cannot differentiate between multiple (concurrent)
instances of the same event. E.g., if an elevator needs to complete any one accepted
request, it is not sufficient to only match the first accepted request. The TSSD keeps
matching freshly accepted requests, as it might otherwise miss the one that is actually
completed. This is the reason why a TSSD, which represents a set of (potential) sce-
narios, can ’be’ in many states at once. Candidate sets provide another level of quantifi-
cation, e.g. 'If all requests are approved (at the same time), then eventually all (these)
requests have to be completed (at the same time)’, which could be written by universally
quantifying over all approved requests in the first situation.

The characteristic response and precedence relationships in scenarios are encoded
by means of trigger blocks. Whenever the sequence within the trigger block has been
observed in its entirety, the corresponding trace becomes a root trace. The TSSD is
then only fulfilled if every root trace successfully completes the triggered scenario. On
the other hand, if the trigger is never completed, there is no root trace and the TSSD
places no constraints on the system behavior. Borrowing from Live Sequence Charts
[L5], we distinguish between universal TSSDs, which possess a trigger and need to be
fulfilled every time it matches, and existential TSSDs, which are implicitly triggered
by their initial node and need to match once during the execution of the system. It
is possible to have multiple triggers in the same TSSD. An important feature is the
ability to trigger antecedent and intervening triggered scenarios. In order to support
this, only those previous situations that are directly connected to an initial node are
considered as preconditions when evaluating whether a trigger block is completed. A
trigger containing the trivially zrue situation matches in every state and allows encoding
properties such as fairness ("always occurs eventually again’).

Subscenarios provide a way to define and reference whole scenarios and thus pro-
vide a concept for modularity. A subscenario definition begins with a special \ situation
for rebinding roles and parameters. A subscenario invocation works in a similar fashion
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to ESDD invocations, however, as we may need to reference bindings that have been
created by the subscenario, the invocation itself needs to take place inside a second
A-node that allows exporting the generated bindings. Scenario situations are situations
that contain another TSSD and can be seen as in-place subscenario definitions. Most
notably, they can be used as ’parentheses’ for encoding V-joins. A subscenario is evalu-
ated in the given context of the surrounding scenario, i.e. its initial and () node cannot
match earlier/later than the subscenario’s predecessor/successor situations.

The expressiveness of TSSDs is discussed in [25], where we show that any LTL and
TPTL (LTL with clocks) formula can be encoded using TSSDs.

4 Specification Pattern System

The Property Specification Pattern System (cf. [[1]],[2]) proposes to address the problem
of making formal specification techniques and verification accessible to practitioners.
The idea is to allow users to construct complex properties from basic, assuredly correct
building blocks by providing generic specification patterns encoding certain elementary
properties (existence, absence, universality, bounded existence, precedence (chains),
and response (chains)), each specialized for a set of different scopes (globally, before R,
after (), between () and R, after () until R). We now demonstrate how the patterns of the
Specification Pattern System can be encoded using Timed Story Scenario Diagrams. A
convenient quality of TSSDs is that they allow us to define the scopes and the properties
separately as orthogonal concepts and then simply plug the appropriate property into the
desired scope.

»
m

o . -® ol @
4 » % *t?@
o-(0)-® oo {(9)-® ) -®

(a) globally (b) before R (c) after Q (d) between Q and R (e) after Q until R

Fig. 6. The scopes encoded as TSSDs (for a property )

In Figure |6l we define the scopes as TSSDs. The scopes before, after, between, and
until are encoded using trigger blocks where ¢ is the triggered scenario. As the table
shows, all definitions except the definition of until are very compact. The last case
requires an additional (® node because TSSDs provide no direct encoding of for the
operator U (weak until) so that the property that R may occur or not needs to be encoded
explicitly. This omission is intentional as we believe that, in the context of a scenario
notation, it is more intuitive to explicitly specify that the scenario might be successfully
completed in an earlier situation using the standard syntax for completion ((®)) instead
of introducing some additional, less obvious syntax for a U connector.

In Figure[Z} we define the ten different properties. Inbound connectors link to pos-
sible preconditions, outbound connectors encode success and lead to possible postcon-
ditions. Existence, absence, and universality are trivially encoded using the standard
syntax for required and forbidden scenarios. Bounded existence is encoded by enumer-
ating the acceptable sequences, i.e. 0, 1, or 2 occurences. As the number of occurences
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is relevant, all situations are strict so that no additional occurences are permitted be-
tween the observations of a trace. Again, the weak progress (no occurence of P is also
acceptable) is encoded by additional outbound connectors. When it comes to encoding
response and precedence chains, the notation excels — quite unsurprisingly, as this is the
use case for which it was designed. Triggers are designed for expressing response (and
its dual, precedence), while sequences such as .S, T are the basic concept in TSSDs.
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These property definitions can now simply be substituted for ¢ by completing them
with an intial node as their precondition and (¢) nodes as their postcondition(s). While
the trivial form of each combined pattern obtained using this mechanistic approach
already yields useable results, simplified versions can be derived using two simple
transformations that basically correspond to the elimination of redundant parentheses
in mathematical expressions: A scenario situation with a single (®) node can be elim-
inated by connecting each situation inside the scope whose predecessor is the scope’s
intial node to each of the scope’s predecessor nodes, and by connecting each situation
inside the scope whose successor is the scope’s (¢) node to each of the scope’s succes-
sor nodes (see Figure [§). Secondly, if both the surrounding scenario and the scenario
situation contain trigger blocks, these blocks are merged (see Figure[0).
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Fig. 10. Response (1,2), simplified versions

Figure [10] lists all simplified variants of the (1,2) response chain pattern. Note how
the simplified forms are quite natural expressions of the original requirements. Disre-
garding the Specification Pattern System’s distinction between scopes and properties,
e.g. S, T responds to P after () actually translates to ’after the sequence (), P, the se-
quence S, 7" needs to follow’, which is exactly what the TSSD expresses.

5 Deriving Specifications from Textual Requirements

We now discuss how structural and temporal property specifications can be derived
from informal textual requirements in a systematic manner. As our case study, we use
an elevator system. The application is in part inspired by an example property given
in [2], but extends the system from a single elevator to a large building with an arbi-
trary number of floors and elevators. The following requirements are provided for the
system: (1) Safety: Whenever an elevator is not at a floor, its doors may not be open.
(2) Responsive: Every request for an elevator is assigned to one elevator by the central
dispatcher. (3) Progress: An elevator may not stay between floors for more than 30 sec-
onds. (4) Progress: If requests have been assigned to an elevator, it may not be idle for
more than 22 seconds. (5) Purposeful: An elevator may only move towards some as-
signed request. (6) Fairness: Concurrent requests must be fulfilled within 300 seconds
of each other. (7) Fairness: When a request for a specific floor has been assigned to an
elevator, it may only arrive at this floor at most twice before opening its doors.

Using standard OOA techniques, we extract the class diagram in Figure [1 from the
requirements. As the safety property (1) is a structural requirement, we encode it as an
SDD. As suggested by the vertical lines, we decompose the textual requirement into the
semantically relevant blocks | every elevator | not at a floor | doors must not be open |,
which can be directly translated into SDD nodes |V elevator |3 at a floor | e door =
open |. After switching the connectors where negation is required, this results in the
SDD in Figure [Tl

Property (2) is not purely structural, unless requests are created with an assignment.
We therefore interpret it as | Every time | a request is (created) | it then | afterwards | is
assigned to one elevator |. We first encode the two structural terms 3 request
(Figure 11(a)), and 3 elevator assigned to request with a cardinality of [1..1]
(Figure 11(b)). | Every time | ... | then | becomes a trigger block around 3 request, while
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3e. | r:Request |
assigned )
Ir - Request [..1] elee \§0\‘ . > Request created —» Request assigned —»«@
(a) Request created (b) Request assigned (c) Scenario

Fig. 11. Deriving a TSSD

| afterwards | becomes an eventually connector (Figure 11(c)), resulting in the TSSD in
Figure

Property (3) is encoded using the same schema, but additionally introduces a time
constraint [0..30] between the two situations. Combined with a guard enforcing require-
ment (1), this yields Figure 3

For property (4), we interpret idleness as | Every time | an elevator with assigned re-
quests |is at a floor | then | it needs to move within [0..22] |. The trigger block includes
the first two situations, while there are two alternative triggered scenarios, resulting in
the TSSD in Figure[T2(b)

The difficulty in encoding property (5) is in detecting the direction of the movement
from a sequence of states in the trigger, which is achieved by the sequence elevator at
floor, eventually elevator at next floor for the up-direction. The triggered scenario is
then simply encoded by the recursive ESDD in Figure Pl that traverses floors, upwards,
until it finds a request or fails. The result is seen in Figure[12(c)]

Property (6) becomes |Every time|two concurrent requests exist|then |each
| is eventually | completed | within 300 seconds of the other |. After the trigger block,
the | each | introduces two V-branches. The | within | time constraint results in a con-
straint edge across the two branches, yielding the TSSD in Figure[T2(d)]

Property (7) is the famous example that results in a rather unwieldy LTL formula
(cf. [2]). It can be expressed using the bounded-existence-between pattern above. How-
ever, we believe that a slightly stronger interpretation of the requirement better reflects
what is expected of an elevator, namely that it eventually opens its door when it is
requested (i.e. as a strong instead of a weak until). We therefore encode the require-
ment as | Every time | an elevator is requested for a floor | then | it eventually | is at
the floor | for the first time | and eventually opens its doors |or eventually |is at the
floor|for the second time|and eventually opens its doors|. It is the explicit

»m

( ™ Jde r: Request —
» 31| r:Request > @ ) [0.22] -
. ) ‘ e : Elevator kassigned \./ . » Requested 7>{ At floor }—»{ Left floor +(./
(a) Property (2) (b) Property (4)
” Floor up ) { [ Move up \ >‘/6\\ ( )
| / » Request A ‘o
® - Ao | ’ ~ < fulfilled ~@)
loor ( Concurrent | -
\ : 4 Fioor d = Move down | (@) @~ ronessne o
oor down | Move down @) 4/ RequestB | 7~
— — fulfilled @
(c) Property (5) (d) Property (6)

Fig. 12. Requirements encoded as TSSDs
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requirement | for the first/second time | that turns being at the floor into a strict situa-
tion. The case that |is at the floor | never matches is omitted here as it is a necessary
precondition for opening the doors at the floor. The first structural property is encoded
by the ESDD in Figure2l Property (7) is then encoded by the TSSD in Figure[13l

‘ e : Elevator \: [
}1 >
)

3_
f: Floor /is at

. isat| € Elevator

I~
@

- Floor /| - doors = open

Y 'agent

m e: Elevator

() a efomar ||| =
e ‘

| f:Floor (| - doors = open F’{Q/
Fig. 13. The elevator may only arrive twice before opening the door

6 Conclusion and Future Work

The combination of TSSDs with SDDs allows the joint specification of structural and
temporal properties that is required in the context of complex software-intensive sys-
tems, in particular self-adaptive systems. We have shown that all Property Specification
Patterns proposed in [[12] can be easily encoded and derived in a compositional manner
using TSSDs (see [25] for the full catalogue). We have demonstrated that the mapping
from textual property descriptions to SDD/TSSD specifications is fairly direct as the
notations support many common intuitions (implication, precedence etc.).

We are currently developing tool support for the specification, monitoring, and ver-
ification of TSSDs, which will allow us to further evaluate them in larger case studies
with requirements engineers and domain experts.
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